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Abstract. In this paper, we investigate structure-from-motion (SfM) for
surfaces that deform isometrically. Our SfM framework is intended for the
estimation of both the 3D surface and the camera motion at one time
through a template-based approach founded on the combination of a ToF
sensor and a conventional RGB camera. The objective is to take advan-
tage of depth maps acquired by the ToF sensor so that a considerable
enhancement can be achieved in the reconstruction of the non-rigid struc-
ture using the high-resolution images captured by means of the RGB cam-
era. A triangular mesh is adopted to represent isometric surfaces. The
depth of a sparse set of 3D feature points spread all over the surface will be
obtained with the help of the ToF camera, thereby enabling the recovery
of the depth of the mesh vertices using a multivariate linear system. Sub-
sequently, a non-linear constraint is formed based on the projected length
of each edge of the mesh. A second non-linear constraint is then used for
minimizing re-projection errors. These constraints are finally incorporated
into an optimization scheme to solve for structure andmotion. Experimen-
tal results show that the proposed approach has good performance even
if only a low-resolution depth image is used.

Keywords: Structure from motion · Isometric surface · ToF camera ·
3D reconstruction

1 Introduction

Structure-from-motion can be defined as the problem of simultaneous inference of
the motion of a camera and the 3D geometry of the scene solely from a sequence
of images. SfM was also extended to the case of deformable objects. Non-rigid
SfM is under-constrained, which means that the recovery of non-rigid 3D shape
is an inherently ambiguous problem [23,24]. Given a specific configuration of
points on the image plane, different 3D non-rigid shapes and camera motions
can be found that fit the measurements. To solve this ambiguity, prior knowledge
on the shape and motion should be used to constrain the solution. For example,
Aanaes et al. [1] impose the prior knowledge that the reconstructed shape does
not vary much from frame to frame while Del Bue et al. [2] impose the constraint
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that some of the points on the object are rigid. The priors can be divided in
two main categories: the statistical and the physical priors. For instance, the
methods relying on the low-rank factorization paradigm [1,2] can be classified as
statistical approaches. Learning approaches such as [3,21,22] also belong to the
statistical approaches. Physical constraints include spatial and temporal priors
on the surface to be reconstructed [6,7]. A physical prior of particular interest
is the hypothesis of having an inextensible (i.e. isometric) surface [8–10]. In this
paper, we consider this type of surface. This hypothesis means that the length of
the geodesics between every two points on the surface should not change across
time, which makes sense for many types of material such as paper and some
types of fabric.

3D reconstruction of non-rigid surfaces from images is an under-constrained
problem and many different kinds of priors have been introduced to restrict the
space of possible shapes to a manageable size. Based on the type of the surface
model (or representation) used, we can classify the algorithms for reconstruction
of deformable surfaces. The point-wise methods only reconstruct the 3D position
of a relatively small number of feature points resulting in a sparse reconstruction
of the 3D surface [9]. Physics-based models such as superquadrics [11], triangular
meshes [10], Thin-Plate Splines (TPS) [9], or tensor product B-splines [18] have
been also utilized in other algorithms. In TPS, the 3D surface is represented as
a parametric 2D-3D map between the template image space and the 3D space.
Then, a parametric model is fit to a sparse set of reconstructed 3D points in order
to obtain a smooth surface which is not actually used in the 3D reconstruction
process. There has been increasing interest in learning techniques that build sur-
face deformation models from training data. More recently, linear models have
been learned for SfM applications [12,13]. There have also been a number of
attempts at performing 3D surface reconstruction without using a deformation
model. One approach is to use lighting information in addition to texture clues
to constrain the reconstruction process [14], which has only been demonstrated
under very restrictive assumptions on lighting conditions and is therefore not
generally applicable. A common assumption in deformable surface reconstruc-
tion is to consider that the surface is inextensible. In [9], the authors propose
a dedicated algorithm that enforces the inextensibility constraints. However,
the inextensibility constraint alone is not sufficient to reconstruct the surface.
Another sort of implementation is given by [4,10]. In these papers, a convex cost
function combining the depth of the reconstructed points and the negative of the
reprojection error is maximized while enforcing the inequality constraints arising
from the surface inextensibility. The resulting formulation can be easily turned
into a SOCP problem. A similar approach is explored in [8]. The approach of
[9] is a point-wise method. The approaches of [4,8,10] use a triangular mesh as
surface model, and the inextensibility constraints are applied to the vertices of
the mesh.

1.1 Model and Approach

In this work, we aim at the combined inference of the 3D surface and the camera
motion while preserving the geodesics by using a RGB camera aided by a ToF
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range sensor. Usually, RGB cameras have high image resolutions. With these
cameras, one can use efficient algorithms to calculate the depth of the scene,
recover object shape or reveal structure, but at a high computational cost. ToF
cameras deliver a depth map of the scene in real-time but with insufficient reso-
lution for some applications. So, a combination of a common camera and a ToF
sensor can exploit the capabilities of both. We assume that the fields of view of
both the RGB and the ToF cameras mostly overlap. The surface is represented
as a triangular 3D mesh and a set of correspondences between 3D feature points
and 2D locations in an input image is available. In practice, they are obtained by
matching SIFT features between the input image and a reference image in which
the surface shape is known. The 2D points in the reference image correspond
to 3D feature points on the mesh. The goal of the algorithm is to allow the 3D
reconstruction of the surface mesh when matching is difficult and depth esti-
mates are available for a limited number of points on the surface. Our approach
performs SfM under the constraint that the deformation be isometric.

1.2 Outline of the Paper

This paper is organized as follows: to represent an isometric surface, a triangular
mesh as well as a planar reference configuration is used. In Sect. 3, the matching
between data from the range and the RGB cameras is described. Next, the
estimation of the depth of the mesh vertices based on the depth of the feature
points is described. The entire approach for the estimation of the 3D shape
and motion is based on minimizing the sum of both the re-projection errors
and the errors on the projected length of the mesh edges. Experimental results
and quantitative evaluation are presented in the last section. We show that our
approach is able to handle isometry indirectly without having to directly apply
this constraint. In addition, it obviates the need for a dense set of 3D points
lying on the surface by effective use of a ToF sensor.

2 Notation and Background

2.1 Notation

Matrices are represented as bold capital letters (A ∈ R
n×m, n rows and m

columns). Vectors are represented as bold small letters (a ∈ R
n, n elements).

By default, a vector is considered a column. Small letters (a) represent one
dimensional elements. By default, the jth column vector of A is specified as aj .
The jth element of a vector a is written as aj . The element of A in the row i
and column j is represented as Ai,j. A(1:2) and a(1:2) indicate the first 2 rows of
A and a. A(3) and a(3) denote the third row of A and a, respectively. Regular
capital letters (A) indicate one dimensional constants. We use R after a vector
or matrix to denote that it is represented up to a scale factor. There might be
few cases opposed to this notation, however, the aim is to comply with it as
closely as possible.
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2.2 Barycentric Coordinates

In geometry, the barycentric coordinate system is a coordinate system in which
the location of a point of a simplex (a triangle, tetrahedron, etc.) is specified as
the center of mass, or barycenter, of masses placed at its vertices.

Fig. 1. RGB/ToF camera setup.

3 Combining Depth and RGB Images

3.1 Mapping Between Depth and RGB Images

The resolutions of the depth and the RGB images are different. A major issue
that directly arises from the difference in resolution is that a pixel-to-pixel corre-
spondence between the two images can not be established even if the FOVs fully
overlap. Therefore the two images have to be registered so that the mapping
between the pixels in the ToF image and in the RGB image can be established.
The depth map provided by the ToF camera is sparse and affected by errors.
Several methods can be used to improve the resolution of the depth images [15–
17,25] allowing the estimation of a dense depth image. We will use a simple
approach based on linear interpolation.

To estimate depth for all the pixels of the RGB image, based on the depth
provided by the ToF camera, a simple linear approach is used. We assume that
the relative pose between both cameras, specified by the rotation matrix R

′
and

translation vector t
′
has been estimated. We also assume that both cameras are

internally calibrated, i.e., their intrinsic parameters are known. Let ptof and
prgb represent the 3D coordinates of a 3D point in the coordinate system of the
Tof and the RGB cameras, respectively.

We use a pinhole camera model for both the RGB and the ToF cameras.
Assume that the relative pose of the RGB camera and ToF sensor is fixed with
a rotation R

′
and a translation t

′
: prgb = R

′
ptof + t

′
as shown in Fig. 1. The

point cloud ptof is obtained directly from the calibrated ToF camera. Since
the relative pose is known as well as the intrinsic parameters for both cameras,
prgb can be obtained from ptof . To estimate depth for all points of the RGB
image, a simple linear interpolation procedure is used. For each 2D point of the
RGB image, we select the 4 closest neighbors whose depth was obtained from
the depth image. Then, a bilinear interpolation is performed. Another possibility
would be to select the 3 closest neighboring points (therefore, defining a triangle)
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and assume that the corresponding 3D points define a plane. An estimate for
the depth of the point could then be obtained by intersecting its projecting ray
with the 3D plane defined by the three 3D points.

3.2 Recovery of the Mesh Depth

Assume that a sparse set of 3D feature points pref =
{
pref
1 , · · · , pref

N

}
on a

reference template with a known shape (usually a flat surface), and a set of 2D
image points q =

{
q1, · · · , qN} tracked on the RGB input image of the same

surface but with a different and unknown deformation are given. As already
stated, we represent the surface as a triangulated 3D mesh with nv vertices vi

(and ntr triangles) concatenated in a vector s =
[
vT
1 , · · · , vT

nv

]T , and denote
by sref the reference mesh, and s the mesh we seek to recover. Let pi be a
feature point on the mesh s corresponding to the point pref

i in the reference
configuration. We can express pi in terms of the barycentric coordinates of the
triangle it belongs to:

pi =
3∑

j=1

aijv
[i]
j (1)

where the aij are the barycentric coordinates and v[i]
j are the vertices of the

triangle containing the point pi. Since we are dealing with rigid triangles, these
barycentric coordinates remain constant for each point and can be easily com-
puted from points pref

i and the mesh sref . Let us denote by A =
{
a1, · · · , aN

}

the set of barycentric coordinates associated to the 3D feature points, where
ai =

[
ai1, ai2, ai3

]
. The rigidity of a triangle enforces that the sum of the rel-

ative depths around a closed triangle be zero. Assuming that the depth of the
vertices of a triangle is denoted as vz,1, vz,2 and vz,3, we have: (vz,1−vz,2)+(vz,2−
vz,3)+(vz,3−vz,1) = 0. Substituting (vz,1−vz,2), (vz,2−vz,3) and (vz,3−vz,1) for
rz1, rz2 and rz3, respectively, which denote the relative depth of the edges of the
triangle, we can represent the above equation differently as: rz1 + rz2 + rz3 = 0
where rz1 = vz,1−vz,2, rz2 = vz,2−vz,3, and rz3 = vz,3−vz,1. Having the above
equations for any triangle of the mesh makes a total of ntr+ne (the number of tri-
angles + the number of edges) linear equations which can be jointly expressed as
M1(ntr+ne)×(nv+ne)x1(nv+ne)×1 = 0. This homogeneous system of equations must
be satisfied at each time instant (i.e. for any deformation). However, finding a
unique solution is not possible. More specifically, M1 is rank-deficient by nv,
that is, it does not have nv +ne linearly independent columns (rank(M1) = ne).
So, there will be a nv-dimensional basis for the solution space to M1x1 = 0. Any
solution is a linear combination of basis vectors. In order to constrain the solution
space and determine just one solution out of the infinite possibilities, in a way
that this linear system matches only one particular deformation, it is necessary
to add nv independent equations. To add additional constraints, we augment
this system with the z coordinate of few properly distributed feature points in
this arrangement: using the method described in the previous section, we can



A ToF-Aided Approach to 3D Mesh-Based Reconstruction 151

obtain an estimate for the depth of a feature point i, indicated by pz,j . From
the Eq. 1, we can derive pz,i = ai1v

[i]
z,1 + ai2v

[i]
z,2 + ai3v

[i]
z,3. This non-homogeneous

system of equations can be represented as M2(N×nv)x2(nv×1) = pz. It can be ver-

ified that x1 =
[
rz
x2

]
. rz is a ne-vector of the relative depth of the edges. Having

the above equation for any feature point results in N linear independent equa-
tions. Putting together both sets of equations just explained, we end up with

ntot = ntr + ne + N linear equations (Mx1 =
[
0
pz

]
) where the only unknowns

are the depth of the vertices and of the edges (i.e. nv + ne unknowns), which
means that the resulting linear system is overdetermined. In fact, we obtain
ne + N independent equations out of ntot equations. Yet, this is not enough
to find the right single solution because there are still an infinitude of further

solutions that minimize
∥
∥
∥
∥Mx1 −

[
0
pz

]∥
∥
∥
∥ in the least-squares sense. One possible

approach after the 3D coordinates are estimated is to fit an initial surface using
polynomial interpolation, to the data which consists in xy-coordinates of the
feature points on the reference configuration as input and their z-coordinates on
the input deformation as output. Once the parameters of the interpolant have
been found, we can obtain initial estimates of depth for the vertices, with their
xy-coordinates on the reference configuration as input. The interpolated depth
has proved to be very close to the correct one. Then, we add an equality con-
straint for each vertex as Inv×nvx2 = v

′
z (v

′
z is the interpolated depth of the

vertices). The new linear system Mnewx1 = b has most likely full column-rank.
So, the number of independent equations out of ntot + nv equations would be
ne + nv. Since the number of independent equations is equal to the number of
unknowns, there must be a unique solution, which can be computed via the nor-
mal equations. In principle, finding the least-sqaures estimate is recommended.

4 Global Metric Estimation of Structure and Motion

Next we describe two non-linear constraints applied to the estimation problem.
These two constraints are used to solve for SfM so that metric reconstruction
of the shape is achieved and the motion matrices lie on the appropriate motion
manifold. Furthermore, when there are too few correspondences without addi-
tional knowledge (as is the case here), shape recovery would not be effective.
So, we need to limit the space of possible shapes by applying a deformation
model. This model adequately fills in the missing information while being flexi-
ble enough to allow reconstruction of complex deformations [3]. We assume we
can model the mesh deformation as a linear combination of a mean shape s0 and
nm basis shapes (deformation modes) S = [s1, ..., snm

]:

s = s0 +
nm∑

k=1

wksk = s0 + Sw (2)
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4.1 Constraint 1: Projected Length

Assume that the RGB camera motion relative to the world coordinate system is
expressed as a rotation matrix R and a translation vector t. A common approach
to solve for the camera motion and surface structure is to minimize the image
re-projection error, namely by bundle adjustment. The cost function being min-
imized is the geometric distance between the image points and the re-projected
points. However, we are going to adapt bundle adjustment to our own problem
rather than use it directly, as follows: the errors to be minimized will be the
difference between the observed and the predicted projected lengths of an edge.

Orthographic Camera. Under orthographic projection, if we assume that the
mesh vertices are registered with respect to the image centroid, we can drop
the translation vector. The modified formulation of bundle adjustment can be
specified as the following non-linear constraint:

epl =
ne∑

i=1

(
li −

∥
∥
∥R(1:2)

[
s[i]1 − s[i]2

]∥∥
∥
)2

(3)

where the leftmost term is the measurement (observation) of the projected length
of an edge (the computation of li is trivial with the help of estimated mesh
depth). ne is the number of edges. s[i]1 and s[i]2 denote 2 entries of the mesh,
which account for the ending vertices of the edge i. epl can be also expressed as
a quadratic function.

Perspective Camera. In this case, we formulate a non-linear constraint based
on what we call “unnormalized projected length”, as:

epl =
ne∑

i=1

(
li −

∥
∥
∥
∥K

◦
rgb [R|t]

[[
s[i]1
1

]
−

[
s[i]2
1

]]∥
∥
∥
∥

)2

(4)

where K◦
rgb is a known calibration matrix equivalent to

⎡
⎣
f 0 0
0 f 0
0 0 1

⎤
⎦. From the esti-

mated mesh depth, li can be easily measured using simple mathematical manip-
ulation. Since there is a subtraction in the above cost function, the translation
vector t can be removed. Also, note that the 2-norm is applied to the first 2
entries of a 3-vector to estimate the square of unnormalized projected length.
So, only the 2 first rows of the product of K◦

rgb.R are involved in the constraint:

epl =
ne∑

i=1

(
li −

∥
∥
∥f [i](R(1:2), w)

∥
∥
∥
)2

(5)



A ToF-Aided Approach to 3D Mesh-Based Reconstruction 153

4.2 Constraint 2: Reprojection Error

Several difficulties may affect the estimation of the depths namely:

Errors due to the depth interpolation;
Irregular distribution of the feature points over the object surface.

As a result of these factors, the depth estimate for the mesh vertices may be
significantly inaccurate. In addition, there are also reprojection errors, that is,
errors on the image positions of the 3D feature points. We should thus account
for the reprojection error by adding a term to the function to be optimized. By
combining Eqs. 1 and 2, we’ll have:

pi =
3∑

j=1

aijs
[i]
j (6)

where s[i]0j and S[i]
j are the subvector of s0 and the submatrix of S (respectively),

corresponding to the vertex j of the triangle in which the feature point i resides.
The term corresponding to the reprojection error can be obtained as indicated

below.

Orthographic Camera

ere =
N∑

i=1

∥
∥
∥qi − R(1:2)pi

∥
∥
∥
2

(7)

Perspective Camera

ere =
N∑

i=1

∥
∥
∥
∥λi

[
qi

1

]
−

[
K◦

rgb [R|t]
[
pi

1

]]∥
∥
∥
∥

2

(8)

The projective depths λi can be determined using the estimated depth for
feature’s image points on the RGB image. Subsequently, errors in λi (induced by
the first condition mentioned above) would introduce false search directions in
the ere-based minimization problem. Therefore, it is advantageous to reformulate
the above equations so that λi is removed from them. So, we take into account
the equation below:

λi

[
qi

1

]
= K◦

rgb

[
3∑

j=1

aijR.s
[i]
j

]
+K◦

rgb.t (9)

After some simple algebraic manipulation, we obtain:

[
ai1Ai ai2Ai ai3Ai

]
2×9

⎡

⎢
⎣
R.s[i]1
R.s[i]2
R.s[i]3

⎤

⎥
⎦

9×1

+ Ai.t =
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[
e
[i]
1 (R,w, t)

e
[i]
2 (R,w, t)

]

2×1

= 0 where Ai = K◦(1:2)
rgb − qi.K

◦(3)
rgb (10)

This equation provides 2 linear constraints as: e
[i]
1 (.) = 0 and e

[i]
2 (.) = 0. Thus,

the modified ere takes a form free of λi as follows: emre =
∑N

i=1

(
e
[i]
1 (.)2 + e

[i]
2 (.)2

)
,

where emre denotes the modified ere. epl is a function of R(1:2) and w whereas
emre (or ere) is a function of R, w and t. In order to simplify epl, we modify it
by considering that: 1- the translation vector t is fixed and the camera setup has
only rotational movement relative to the world coordinate system. 2- adding the
following function to f [i](R(1:2),w) in the first constraint, we are able to solve
for the full matrix R:

f [i]
rz (R

(3),w) =
(
R(3)

[
s[i]1 − s[i]2

])
(11)

erz = rzi − f [i]
rz (R

(3),w) (12)

where rzi = v
[i]
z,1 − v

[i]
z,2. erz is actually the difference between the observed and

the predicted relative depths of edge i. Combining f [i](.) and f
[i]
rz (.), it yields:

empl =
ne∑

i=1

(√
(l2i + rz2i ) −

∥
∥
∥
∥

[
f [i](R(1:2),w)
f
[i]
rz (R(3),w)

]∥
∥
∥
∥

)2

(13)

where empl represents a modified version of epl. As a result, we brought empl and
emre into a common form where both are functions of R and w.

Fig. 2. Representation of the approach via block diagram.
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4.3 Objective Function

So far, we have derived two constraints expressed as two separate non-linear
problems. However, we intend to integrate both constraints into one single objec-
tive function so that they are taken into account at once, when estimating all
the parameters. To do so, we minimize the weighted summation of them in such
a way that the reprojection error term is assigned a weight m that accounts for
its relative influence within the combined objective function. A block diagram
of the overall structure of the approach is demonstrated in Fig. 2. In our global
optimization, we first consider a simplified formulation of the objective function
by excluding the camera motion [R|t]. We include it back in the second case.

Estimation of Structure only. The constraints are simplified so that the only
unknown parameter is the structure (we assume that the camera motion is set
to [I|0]).

Orthographic Camera: minw etot = (epl + m.ere)
Perspective Camera: minw etot = (empl + m.emre)

Estimation of both Structure and Camera Motion. We consider now the
full optimization by including the camera motion.

Orthographic Camera: minR(1 :2),w etot = (epl + m.ere)
Perspective Camera: minR,w etot = (empl + m.emre)

The above optimization problems can be solved using a non-linear minimiza-
tion algorithm such as Levenberg-Marquardt (LMA). The rotation estimates
obtained from this optimization may not satisfy the orthormality constraints.
So, the optimization algorithm must be fed with a good initialization. To pro-
vide initial estimates relatively close to the true ones, we do the following: if
initial guesses for R(1:2) and R are not given, they can be initialized using well-
known methods that attempt to solve for SfM through non-rigid factorization of
{qij} and {λijqij} from all frames, for instance, as in [13]. In these methods, the
factorization is followed by a refinement step to upgrade the reconstruction to
metric. The deformation coefficients wk are initialised to random small values.
One possible solution to further meet the rotation constraints is to subsequently
apply Procrustes [19,20].

4.4 Additional Constraint

Non-linear optimization may converge to local minima. The probability of such
occurrence can be reduced by adding a new regularization term that requires
the estimated depth data to be as close to the measured one as possible. So, we
would have:

ez =
nv∑

i=1

(
v[i]
z −

(
R(3)s[i] + t(3)

))2

(14)
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where v
[i]
z is the depth of the vertex i, already recovered and s[i] is the 3D position

corresponding to the vertex i. Notice that this regularization is very dependent
on the accuracy of v[i]

z .

5 Experiments

5.1 Synthetic Data

Next, we evaluate the methods described above using synthetic data. We syn-
thetized a number of frames of a deforming circle-like paper (radius = 20 cm)
approximated by a 9×9 mesh such as the one shown in Fig. 2. The reason to use
a circular mesh is that it is uniform and has a symmetric shape. Therefore, it has
similar shapes (up to a rotation) for a number of different deformations, which, in
fact, brings more complexity to the reconstruction of the right deformation. The
inextensible meshes used for training have been built using Blender and PCA
was then applied to estimate the deformation model. In order to generate the
input data, we get a sparse set of 3D feature points (N = 32) well-distributed on
the surface of a reference planar mesh. The experiments are repeated equally for
both the orthographic and the perspective cameras. For the perspective case, the
camera model is defined such that the focal length is f = 500 pixels. The model
assumes that the surface is located 50 cm in front of the cameras (along the
optical axis). The 3D feature points across the surface are then projected onto
the 2D camera and a zero-mean Gaussian noise with 1-pixel standard deviation
(Std) was then added to these projections. The depth data of feature points is
also generated by adding a zero-mean Gaussian noise with 0.1 − cm Std. The
results of the quantitative assessment represent an average obtained from five
deformations randomly selected. By performing 50 trials for each deformation,
each average value was acquired from 250 trials. Two of the estimated deforma-
tions and their equivalent ground-truth are qualitatively illustrated in Fig. 3.

Fig. 3. Left: a 9× 9 template mesh with sparse feature points - radius = 20 cm. Right:
metric coordinates in cm - overlap between the ground-truth shapes (blue) and the
recovered ones (red) (Color figure online).

Reconstruction Error. The accuracy of the method is reported in terms of
reconstruction errors. The reconstruction errors are computed with respect to
two measures as:
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Table 1. Preliminary results.

Reconstruction error PRE MRE RotationAccuracy

Our approach - orthographic 0.0608 0.0755 0.002

Our approach - perspective 0.0603 0.0751 < 1◦

1- Point reconstruction error (PRE): The normalized Euclidean distance
between the observed (p̂i) and the estimated (pi) world points according to
PRE = 1

N

∑N
i=1

[
‖pi − p̂i‖2 / ‖p̂i‖2

]
.

2- Mesh reconstruction error (MRE): The normalized Euclidean distance
between the observed (v̂i) and the estimated (vi) mesh vertices, which is com-
puted as MRE = 1

nv

∑nv

i=1

[
‖vi − v̂i‖2 / ‖v̂i‖2

]
. The reprojection error of the

feature points can be also regarded as another measure of precision. The accuracy
of the Stiefel rotation matrix is evaluated based on the orthonormality constraint
as RotationAccuracy =

∥
∥R(2×3)R(2×3)T − I(2×2)

∥
∥2

F
. In case of the perspective

camera, we compare the axis-angle of the recovered and ground-truth rotations

as RotationAccuracy =
∣
∣
∣angle − ˆangle

∣
∣
∣
2

.
The quantitative output can be seen in Table 1. Our approach takes into

consideration just few feature points, though we take advantage of the ToF
sensor to get the depth of them.

Fig. 4. Orthographic camera - left: average PRE and average MRE with respect to the
increasing noise in image points. Right: average PRE and average MRE with respect
to the increasing noise in depth data.

Length of the Edges. When a 3D surface is reconstructed in a truly inextensible
way, the length of the recovered edges must be the same as that of the template
edges. So, in order to see to what extent the lengths remain the same along the
deformation path,we specify ametric to figure out the discrepancy between the ini-
tial and recovered lengths as: IsometryExtent =

(
1 −
(

1
ne

∑ne
i=1

(∣∣∣Li − L̂i

∣∣∣ /L̂i

)))
×100%

which has been found to be 95.77 % for the proposed method, which indicates that
it preserves the length of the edges greatly, confirming that isometry constraint is
satisfied to a large degree.
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Fig. 5. Perspective camera - left: average PRE and average MRE with respect to the
increasing noise in image points. Right: average PRE and average MRE with respect
to the increasing noise in depth data.

The Impact of Noise. Different levels of noise (whether in image points or
in depth data) have been simulated to demonstrate how robustly the approach
reacts to the noise. Each of these 2 types of noise has been investigated sepa-
rately. Figures 4 and 5 illustrate results for increasing levels of Gaussian noise
in feature’s image points, where the Std varied from 0 to 4 pixels with 1-pixel
increments, together with the reconstruction error for various levels of Gaussian
noise in depth of feature points, with 0.1 − cm increments of Std, which was
computed following the remark that, since the depth variation of the surface
itself is small, the deviations from the true depth of every 3D point may be very
close together, varying at each trial according to a Gaussian distribution. From
the Figs. 4 and 5, we may draw the conclusion that the white noise does not
make a dramatic impact on the output, ensuring that the performance remains
pretty stable and the algorithm carries on efficiently in the face of noise.

5.2 Real Data

We performed also experiments with real data recorded using a camera setup
comprising a ToF camera and a RGB camera. The camera configuration is set
up in a way that makes the FOV of the ToF camera be part of the FOV of the
2D camera and the camera setup was calibrated both internally and externally.
Bilinear interpolation was applied to estimate the depth of each 2D point track.
We used a piece of cardboard to make real inextensible deformations and pro-
ceeded with the tracking and matching of few feature points with respect to the
reference template using SIFT local feature descriptor. The same deformation
model as the one acquired in synthetic experiments was employed. Some defor-
mations and their recovered shapes are shown in Fig. 7. Although it was not
possible to quantitatively assess the results and do benchmarking, the efficiency
of the approach was visible from the 3D reconstruction output.



A ToF-Aided Approach to 3D Mesh-Based Reconstruction 159

5.3 Comparative Evaluations Using Motion Capture Data

Rather than generate the training data synthetically using Blender, we take
advantage of datasets recorded using Vicon which is able to capture real defor-
mations accurately. Since the synthetically deformed meshes might not exactly
overlap the real deformations, we rebuilt the deformation model based on this
real data and redid the experiments. The template configuration is now com-
posed of equal triangles and covers a 20×20-cm square-like area. As an example,
the reconstructed surfaces in Fig. 7 look better than the ones in Fig. 6. Conse-
quently, when learned with real data, the deformation model would be more
robust to the deformations.

As a general rule, two different entities can be compared only when they
meet identical conditions which characterize them. To this end we analyzed the
state-of-art literature and selected the approach described in [3]. In particular
this approach also uses a triangular mesh and can use the same types of data sets
required by our approach. As a result, to show how the real training data will
influence the 3D reconstruction, we performed a set of simulations as we already
did with Blender data and we compare the performance of our SfM framework
to this approach (where the authors use a second-order cone program (SOCP)
to accomplish the 3D reconstruction of inextensible surfaces). Their approach is
known to be very robust and efficient, where a linear local deformation model
integrates local patches into a global surface and requires many feature points
distributed throughout the surface. To account for noise in our approach, like
before, a Gaussian noise with 1-pixel Std was added to the image points and
a Gaussian noise with 0.1 − cm Std to the depth data. The SOCP-based app-
roach was evaluated without noise. We obtained the results for 5 deformations
after having done 50 trials for each one. From the Table 2, it can be seen that
the result of our approach is comparable to that of the SOCP-based method.
The reconstruction errors are considerably lower than those in Table 1, which
may imply that the use of good-quality real data for training might improve
significantly the results.

Fig. 6. Real deformations; A 20 × 20-cm square was selected from the intermediate
part of the cardboard and the corresponding circle was reconstructed.
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Fig. 7. The reconstructed shape of the corresponding squares in Fig. 6.

Table 2. Comparison between the proposed approach and the SOCP-based one.

Reconstruction error PRE MRE

Our approach 0.0120 0.0185

SOCP-based approach 0.0162 0.0217

6 Conclusions

In this paper, we have proposed a SfM framework combining a monocular camera
and a ToF sensor to reconstruct surfaces which deform isometrically. The ToF
camera was used to provide us with the depth of a sparse set of feature points,
from which we can recover the depth of the mesh using a multivariate linear
system. The key advantage of the RGB/ToF system is to benefit from the high-
resolution RGB data in combination with the low-resolution depth information.
As a result, our approach to inextensible surface reconstruction is formulated
as an optimization problem on the basis of two non-linear constraints. Finally,
we carried out a set of experiments showing that the approach generates good
results. As next objective, we’ll extend the approach to deal with non-rigid sur-
faces which are not isometric e.g. conformal surfaces and etc.
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