
Kernel Matrix Completion for Learning Nearly
Consensus Support Vector Machines

Sangkyun Lee(B) and Christian Pölitz

Fakultät für Informatik, LS VIII, Technische Universität Dortmund,
44221 Dortmund, Germany

{sangkyun.lee,christian.poelitz}@tu-dortmund.de

Abstract. When feature measurements are stored in a distributed fash-
ion, such as in sensor networks, learning a support vector machine (SVM)
with a full kernel built with accessing all features can be pricey due to
required communication. If we build an individual SVM for each sub-
set of features stored locally, then the SVMs may behave quite differ-
ently, being unable to capture global trends. However, it is possible to
make the individual SVMs behave nearly the same, using a simple yet
effective idea we propose in this paper. Our approach makes use of two
kernel matrices in each node of a network, a local kernel matrix built
with only locally stored features, and an estimate of remote information
(about “local” kernels stored in the other nodes). Using matrix comple-
tion, remote information is fully recovered with high probability from a
small set of sampled entries. Due to symmetric construction, each node
will be equipped with nearly identical kernel matrices, and therefore
individually trained SVMs on these matrices are expected to have good
consensus. Experiments showed that such SVMs trained with relatively
small numbers of sampled remote kernel entries have competent predic-
tion performance to full models.

Keywords: Support vector machines · Kernel methods · Matrix com-
pletion · Multiple kernel learning · Distributed features

1 Introduction

Training the support vector machines (SVMs) [2] in distributed environments has
been an interesting topic in machine learning research. Considering distributed
storage of data, the topic can be largely divided into two categories depending
on whether examples or features are distributed. When examples are distributed
(in this case, features are usually not assumed to be distributed), an SVM can be
trained using a distributed optimization algorithm [3] but incurring potentially
a good amount of communication, or individual SVMs can be trained locally
with extra constraints to reduce their disparity to other SVM models in a net-
work [7] with less amount of information exchange. Alternatively, local SVMs
can be trained completely independently on data partitions and then combined
to produce a more stable and accurate model than individual ones [6,10].
c© Springer International Publishing Switzerland 2015
A. Fred et al. (Eds.): ICPRAM 2014, LNCS 9443, pp. 93–109, 2015.
DOI: 10.1007/978-3-319-25530-9 7

94 S. Lee and C. Pölitz

On the other hand, when features are distributed (examples are not distrib-
uted) and they are not agglomerated for analysis, learning machineries have to
deal with a set of partitioned feature spaces, figuring out how they can accu-
rately predict global trends overall feature spaces. Although this scenario has
potential use for emerging applications such as sensor network [14], it has not
been studied much in machine learning research for obvious difficulties. This
paper focuses on this scenario and proposes a simple but effective method for
training SVMs for distributed features, with a major difference to the existing
methods [12,20] that no central coordination will be involved in learning. Part
of this paper has been published in a conference [11], and this paper extends the
previous one with updated results on projection error and matrix completion,
and new discussions on classification error bounds of using approximate kernels.

Figure 1 shows a sketch of our proposed method. Each local feature storage
node (represented as a circle) creates a local kernel matrix using only locally
stored features. It also creates an empty matrix to store remote information, for
which some entries are sampled from kernels stored in the other nodes (built
with only features stored in them). The unseen entries of this partially observed
remote kernel matrix are recovered via matrix completion, where the recovery is
perfect with high probability if samples are noise-free. Then, each node makes
use of a combination of the two matrices, a local and a recovered remote kernels,
to train an SVM predictor as if the node has seen all features over a network.

Fig. 1. A sketch of the proposed method. (A) each local feature storage node (a circle)
create a kernel matrix for local features, and a null estimate of remote information,
(B) each node obtains sampled entries of “local” kernels in the other nodes, and then
recovers unseen entries by matrix completion, (C) each node makes use of its local kernel
matrix together with recovered remote information to create its own SVM predictor.

In the following, we first introduce two decompositions of kernel matrices that
enable us to approximate an original full-feature kernel matrix with separated
kernels corresponding to local and remote features. Then we discuss the idea
of matrix completion, a new observation of support vectors, and generalization
error bounds of our method. Our description focuses on SVM classifiers, however
it can be generalized to other kernel-based methods. We denote the Euclidean
norm of vectors by ‖ · ‖ and the cardinality of a finite set A by |A| throughout
the paper.

Kernel Matrix Completion for Learning 95

2 Decomposition of Kernel Matrices

Consider local feature storages represented as nodes n = 1, 2, . . . , N in a net-
work, where each node stores its features in a vector xi[n] of length pn. Here
i is an index for examples, i = 1, 2, . . . , m, and we assume that all nodes can
observe the same examples (but through different set of features) and their
label y1, . . . , ym. For simplicity, we allow for communication between any pair
of nodes. Then the collection of all features can be written as a single vector
xi = (xi[1]T ,xi[2]T , . . . ,xi[N]T)T of length p :=

∑N
n=1 pn (this vector is never

created in our method).

2.1 Support Vector Machines

The dual formulation of the SVM, in a form where a bias term is augmented in
a weight vector, is described as follows [13],

min
0≤α≤C1

1
2
αT Qα − 1T α, (1)

where α is a vector of length m, 1 := (1, 1, . . . , 1)T , y := (y1, y2, . . . , ym)T , and
C > 0 is a given constant. The m × m matrix Q is a scaled kernel matrix, that
is, Q := YKY for a positive semidefinite kernel matrix K, where Y := diag(y)
is the diagonal matrix with labels from y. A typical SVM is built with Kij =
〈φ(xi), φ(xj)〉, where xi and xj are “full” feature vectors and φ : �p → H is a
map from the space of feature vectors to a Hilbert space [18].

2.2 Schur and MKL Kernels

Our goal is to build an SVM for each local feature storage node in a network,
as if we have accessed all features but without explicitly doing so. This becomes
possible by the observations we introduce here, about how to decompose the
original kernel matrices into parts corresponding to local and remote features.

The construction is surprisingly simple. For instance, the expression of the
Gaussian kernel [18] can be rewritten as follows,

(Schur Kernel) [K]ij = e−γ‖xi−xj‖ =
N∏

n=1

e−γ‖xi[n]−xj [n]‖2

= e−γ‖xi[n]−xj [n]‖2

︸ ︷︷ ︸
[Sn]ij : local for node n

∏

n′ �=n

e−γ‖xi[n
′]−xj [n

′]‖2

︸ ︷︷ ︸
[S−n]ij : remote for node n

. (2)

Here γ > 0 is a given parameter. As we can see, the Gaussian kernel matrix
can be decomposed into a matrix Sn created using only the features stored in a
node n, and another matrix S−n that captures information about features not
in the node n. Since this kernel matrix is written as an elementwise product of

96 S. Lee and C. Pölitz

matrices, known as the Schur (or Hadamard) product, we rename this kernel as
the Schur kernel to distinguish itself from local Gaussian kernels such as Sn.

We also consider another type of kernels constructed by a simple linear com-
bination of multiple local Gaussian kernels. This kernel typically appears in the
multiple kernel learning [9] scenarios, so we name it as the MKL kernel. This
kernel is obviously decomposable:

(MKL Kernel) [K]ij =
1
N

N∑

n=1

e−γn‖xi[n]−xj [n]‖2

=
1
N

e−γn‖xi[n]−xj [n]‖2

︸ ︷︷ ︸
[Mn]ij : local for node n

+
1
N

∑

n′ �=n

e−γn′ ‖xi[n
′]−xj [n

′]‖2

︸ ︷︷ ︸
[M−n]ij : remote for node n

.

(3)

Similarly to the previous case, this kernel is decomposed into a local (Mn) and
a remote M−n parts. Compared to the Schur kernel, the MKL kernel requires to
specify N positive kernel parameters γ1, γ2, . . . , γN , rather than a single para-
meter γ > 0. Despite of this potential inconvenience, MKL kernels have an
advantage that we can reduce the size of kernel matrices and therefore speed up
the process of matrix completion as discussed later in Sect. 3.3.

3 Recovery of Unseen Kernel Elements

In our model, each node n creates a matrix Sn or Mn depending on the type
of kernel it use (Schur or MKL), from only locally stored features. Also, each
node n creates an empty matrix for S−n or M−n, in which each element is just
a product (Schur) or a sum (MKL) of “local” kernel matrices stored in the other
nodes, where only a few of these entries are observed by the node n by uniform
random sampling.

3.1 Sampling

The key elements in our sampling strategy are that (i) the size of sample should
be minimized to reduce communication cost, and at the same time (ii) the sample
size should be large enough to guarantee the recovery of unseen entries with
accuracy. As we see later, the theory of matrix completion make it possible to
achieve both goals, surprisingly enough, with simple uniform random sampling.

For a node n, we denote the index pair set of observed entries of remote
kernel matrices (“local” in the other nodes) by

Ωn ⊂ {(i, j) : 1 ≤ i, j ≤ m},

Kernel Matrix Completion for Learning 97

where the pairs (i, j) are chosen uniformly at random1. Then, all the other nodes
n′ transfer the entries of their local kernel matrix corresponding to Ωn, i.e.,

Node n ←−
{

[Sn′]Ωn
(Schur)

[Mn′]Ωn
(MKL)

}

←− Node n′.

This requires that the sample index pair set Ωn should be known to all nodes2,
which can be done once by exchanging such information when a pier recognizes
other piers in a network. Or, we can fix all sets Ωn for n = 1, 2, . . . , N the same,
so that no exchange will be necessary if the set is pre-determined.

Given Ωn, the communication cost of this type of transfer will be O((N −
1)|Ω|), if a node n is connected to all the other nodes. As discussed later, matrix
completion requires the size Ωn relatively small, O(m log6 m), to guarantee a
perfect recovery in high probability.

When a node n receives the information, it stores the entries to the corre-
sponding storage as follows (left: Schur, right: MKL):

[S−n]Ωn
=

∏

n′ �=n

[Sn′]Ωn
, [M−n]Ωn

=
∑

n′ �=n

[Mn′]Ωn
.

The next step is to recover the unobserved entries in the matrix S−n or M−n.

3.2 Low-Rank Matrix Completion with Kernel Constraints

To recover the full matrix of S−n or M−n from few observed entries indexed
by Ωn, we use the low-rank matrix completion [17]. Some modifications are
required, however, to deal with the constraints that S−n or M−n should be a
valid kernel matrix. In particular, S−n and 1

N−1M−n must be symmetric and
positive semi-definite matrices to satisfy the Mercer’s theorem [18].

To describe a formal framework for matrix completion, suppose that X ∈
�m×m is a matrix we wish to recover, and that the observed entries of X (cor-
responding to a sample index pair set Ωn) are stored in a data matrix D so that
DΩn

= [S−n]Ωn
for Schur kernels or D = [M−n]Ωn

for MKL kernels. Matrix
completion recovers the full matrix of X as a solution of the following convex
optimization problem [17],

min
X∈�m×m

∑

(i,j)∈Ωn

(Xij − Dij)2 + λ‖X‖∗, ‖X‖∗ :=
m∑

k=1

σk(X),

where ‖X‖∗ is called the nuclear norm of X, which is the summation of singular
values σk(X) of X and penalizes the rank of X in effect. When the rank of X is r,
then the nuclear norm simplifies to the expression [16,17],

‖X‖∗ = min
X=LRT

1
2
‖L‖2F +

1
2
‖R‖2F ,

1 We require Ωn to be symmetric, that is, if (i, j) ∈ Ωn then (j, i) ∈ Ωn, and also the
values corresponding to the entries are the same.

2 Not actual values, but the positions to be sampled from.

98 S. Lee and C. Pölitz

where L and R are m × r matrices, and ‖A‖F :=
(∑

ij A2
ij

)1/2

is the Frobenius
norm of a matrix A. Using this property, the above optimization can be rewritten
for rank-r matrix completion,

min
L,R∈�m×r

∑

(i,j)∈Ωn

(Li·RT
j· − Dij)2 +

λ

2
‖L‖2F +

λ

2
‖R‖2F . (4)

A solution of this optimization can be obtained using the jellyfish algorithm [17]
for example, which is a highly parallel incremental gradient descent algorithm
using the fact that the gradient of the objective function depends on row vectors
Li· and Rj· and therefore updates of iterates can be distributed for the pairs
(i, j) in Ωn.

Projection to the Mercer Kernel Space. The outcome X∗ = L∗(R∗)T of
low-rank matrix completion (4) may not be a valid Mercer kernel matrix. To
make it a valid one, we project X∗ to the space of Mercer kernels [18], which is
a convex set K of symmetric positive semidefinite rank-r matrices in our case,

K := {X : X � 0, XT = X, rank(X) = r} = {ZZT : Z ∈ �m×r}.

Here X � 0 means that X is a positive semi-definite matrix which satisfies
wT Xw ≥ 0 for any w ∈ �m. The last equality implies that an element X ∈ K
must have the form ZZT for an m × r matrix Z, which can be easily verified
using the eigen-decomposition [21] of symmetric X.

To project X∗ = L∗(R∗)T onto K, we use a simple projection for which a
closed-form solution exists (derivable from the optimality conditions),

Z∗ = arg min
Z∈�m×r

1
2
‖Z − L∗‖2F +

1
2
‖Z − R∗‖2F , Z∗ =

L∗ + R∗

2
. (5)

The next result shows that the gap between a recovered matrix from matrix
completion L∗(R∗)T and a valid kernel matrix obtained after projection Z∗(Z∗)T

is bounded and becomes small whenever L∗ ≈ R∗, which is indeed likely to
happen since we require that the sample index pair set Ω is symmetric.

Lemma 1. The distance between Z∗(Z∗)T and L∗(R∗)T is bounded as follows,

‖Z∗(Z∗)T − L∗(R∗)T ‖F ≤ ‖L∗ − R∗‖F

4
+

‖L∗(R∗)T − R∗(L∗)T ‖F

2
.

Proof. The result follows from the definition of Z∗ and the triangle inequality.

After training SVMs, we apply the same technique for new test examples to
build a test kernel matrix. This usually involves a smaller matrix completion
problem corresponding to the support vectors and test examples.

Kernel Matrix Completion for Learning 99

3.3 Reduction with MKL Kernels Using Support Vectors

The matrix completion optimization (4) for recovering full kernel matrices
involves m2 variables, and therefore it requires more computational resource for
larger m. It turns out that we can work on a smaller number of variables than
m2, using a property we discovered for support vectors (SVs) in case of the MKL
kernel. To remind, a support vector is an example indexed by i ∈ {1, 2, . . . ,m}
for which the optimal solution α∗

i of the SVM problem (1) is strictly positive.
Let us consider a “full-information” SVM problem with the MKL kernel built

with accessing all features, and its set of SVs S∗,

α∗ := arg min
0≤α≤C1

1

2
αTY

[
1

N

N∑
n=1

Mn

]
Yα − 1T α, S∗ := {i : 1 ≤ i ≤ m, [α∗]i > 0}.

And, we also consider the corresponding “local” SVM problems and their SV
sets for each node n, n = 1, 2, . . . , N ,

α∗
n := arg min

0≤α≤C1

1
2
αT Y[Mn]Yα − 1T α, S∗

n := {i : 1 ≤ i ≤ m, [α∗
n]i > 0}.

The number of SVs, |S∗|, is often much smaller than the total number of
examples m, and it is well known that an SVM predictor is fully determined by
the SVs [18]. Therefore, if we estimate S∗ without too much cost, then we can
focus on variables corresponding to S∗ for recovery in matrix completion rather
than considering all m2 variables. Our next theorem shows that an estimation of
S∗ is possible without solving the full-information problem, simply by the union
of local SV sets (the proof is in Appendix).

Theorem 1. The support vector sets of the full-information and local SVM
problems above with the MKL kernel satisfy

S∗ ⊆
N⋃

n=1

S∗
n.

Using the theorem, matrix completion (4) can be solved more efficiently with
| ∪n S∗

n|2 variables. In our experiments, the number was much smaller than m2:
the ratio | ∪n S∗

n|2/m2 was in the range of 0.31 ∼ 0.98, where in the half of the
cases the ratio was below 0.5.

4 Matrix Recovery and Classification Error Bounds

To decide the size of the sample index set Ω, it is important to understand
when a (perfect) recovery of unseen matrix elements is possible from only a
few observed entries. It is also closely related how well an SVM trained with a
recovered kernel matrix will perform in classification, compared to the case of
using full-information kernel matrices.

100 S. Lee and C. Pölitz

4.1 Conditions for Matrix Recovery

The technique of matrix completion guarantees the perfect recovery of a partially
observed matrix with high probability, under a certain condition called the strong
incoherence property [4].

To describe this property, we define a parameter μ > 0 as follows. Suppose
that we try to recover all unseen entries of a matrix D ∈ �m×m from a few
observed entries Dij , (i, j) ∈ Ω. The rank of D is assumed to be r, so that the
reduced singular value decomposition of D can be written as,

D = UΣVT , UT U = I, VT V = I,

where U ∈ �m×r and V ∈ �m×r contain the left and right singular vectors of D
that constitute orthonormal bases of the range space of D and DT , respectively
(if D is symmetric then U = V), and Σ ∈ �r×r is a diagonal matrix with
singular values. Then the orthogonal projection onto the range space of D and
DT can be described as PU = UUT and PV = VVT , resp. Using these, we
define two parameters μ1 > 0 and μ2 > 0 such that

max
i,j

max
{∣

∣
∣[PU]ij − r

m
χi=j

∣
∣
∣ ,

∣
∣
∣[PV]ij − r

m
χi=j

∣
∣
∣
}

≤ μ1

√
r

m
(6)

where χi=j is an indicator function returning 1 if i = j and 0 otherwise, and,

max
i,j

|[UVT]ij | ≤ μ2

√
r

m
. (7)

Finally, the parameter μ > 0 is defined simply as

μ := max{μ1, μ2},

and we say D satisfies the strong incoherence property when μ is small (i.e., μ =
O(

√
log m)). Conceptually speaking, small values of μ indicate that observing an

element in D provides good information about the other elements in the same
row and column, since its information is “dissolved” into many components of
singular vectors and so are the other elements.

The next theorem states that when the rank r or the incoherence parameter
μ of a matrix D we want to recover is small, then exact recovery via matrix
completion (4) is possible with high probability with only a small number of
observed entries.

Theorem 2 (Candès and Plan [5]). Let D ∈ �m×m a matrix with rank r ∈
(0,m] and a strong incoherence parameter μ > 0. If the number of observed
entries from D satisfies

|Ω| ≥ Cμ2mr log6 m

for some constants C > 0, then the minimizer of the matrix completion prob-
lem (4) is unique and equal to the original full matrix D with probability at least
1 − m−3.

Kernel Matrix Completion for Learning 101

4.2 Classification Error Bounds for Using Estimated Kernels

When |Ω| is sufficiently large, then two factors can contribute to differences
between the original and the estimated kernel matrices: (i) the noise in observed
entries corresponding to Ω (note that Theorem 2 is for noise-free cases) and (ii)
the gap induced by a projection onto the cone of symmetric positive semidefinite
matrices (Lemma 1). Let us define the recovery error ε due to noise for elements
corresponding to Ω as follows,

ε :=
∑

(i,j)∈Ωn

(L∗
i·(R

∗
j·)

T − Dij)2.

Using this, the gap between an original kernel matrix K and an estimated one
K̃ can be stated as follows (for the case of the MKL kernel),

Δ := ‖K − K̃‖F ≤ ‖K − L∗(R∗)T ‖F
︸ ︷︷ ︸

=δ1

+ ‖L∗(R∗)T − Z∗(Z∗)T ‖F
︸ ︷︷ ︸

=δ2

, (8)

where the two terms on the right are bounded respectively as follows,

δ1 ≤ 2ε
[
2
√

(1 + 2m2/|Ω|) m + 1
]
, (due to [5, Theorem 7])

δ2 ≤ ‖L∗ − R∗‖F /4 + ‖L∗(R∗)T − R∗(L∗)T ‖F /2 (due to Lemma 1).

For simplicity we do not discuss the case of Schur kernels here since the first
term in the right-hand side of (8) becomes quite complicated.

To show a classification error bound using an estimate kernel matrix K̃, we
use a result from Nguyen et al. [15] that if a kernel K is universal on the input
space [19] as the Gaussian kernels, the error coefficient EK approaches the Bayes
error in probability, that is,

EK =
1
m

1T α∗
K → inf

f∈F
P(y �= f(x)),

where α∗
K is the optimal solution of an SVM (1) using K, and F is an arbitrary

family of measurable functions that contains the optimal Bayes classifier. This
implies that the classification error of using an estimate kernel matrix K̃ can
be characterized by the distance between E

˜K and EK, as we state in the next
theorem (the proof is in Appendix):

Theorem 3. Suppose that K̃ is an MKL (3) kernel matrix constructed with
remote kernel information recovered by matrix completion (4) with a sufficiently
large sample index set Ω satisfying the condition of Theorem 2 and projec-
tion (5), where errors identified by δ1 and δ2 as above. Then, with very high
probability, the classification error of using K̃ instead of the full-information
MKL kernel K is bounded by

|E
˜K − EK| ≤ C

λ1(Q)
(δ1 + δ2),

where C is a parameter for the SVM, and λ1(Q) is the smallest eigenvalue of
Q = YKY, Y = diag(y).

102 S. Lee and C. Pölitz

Note that when observations are made without noise, then δ1 = 0 with
probability at least 1 − m−3 by Theorem 2. Also, δ2 is expected to be small due
to our symmetry construction of Ω, in which case L∗ ≈ R∗. Moreover, we often
specify C = C ′/m for some C ′ > 0, and therefore if 1/λ1(Q) = o(m), that is,
limm→∞

o(m)
m = 0, then the term C/λ1(Q) becomes small as m increases.

5 Experiments

For experiments, we used five benchmark data sets from the UCI machine learn-
ing repository [1], summarized in Table 1, and also their subset composed of 5000
training and 5000 test examples (denoted by 5k/5k) to study characteristics of
algorithms under various circumstances.

We have implemented our algorithm as open-source in C++, based on the
jellyfish code3 [17] for matrix completion, and svmlight4 [8] for solving
SVMs. Our implementation makes use of the union SVs set theorem (Theo-
rem 1) for the MKL approach to reduce kernel completion time, but not for
Schur since the theorem does not apply for this case.

Table 1. Data sets and their training parameters. Different values of C were used for
the full data sets (column C) and smaller 5k/5k sets (column C (5k/5k)).

Name m (train) Test p C C (5k/5k) γ

ADULT 40701 8141 124 10 10 0.001

MNIST 58100 11900 784 0.1 1162 0.01

CCAT 89702 11574 47237 100 156 1.0

IJCNN 113352 28339 22 1 2200 1.0

COVTYPE 464809 116203 54 10 10 1.0

For all experiments, we split the original input feature vectors into subvectors
of almost equal lengths, one for each node of N = 3 nodes (for 5k/5k sets) and
N = 10 nodes (for full data sets). The tuning parameters C and γ were deter-
mined by cross validation for the full sets, and the C values for the 5k/5k subsets
were determined by independent validation subsets, both with svmlight. The
results of svmlight were included for a comparison to a non-distributed SVM
training. Following [12], the local Gaussian kernel parameters for MKL were
adjusted to γn = p

pn
≈ Nγ for a given γ, so that γn‖xi[n] − xj [n]‖ will have the

same order of magnitude O(γp) as γ‖xi − xj‖.

3 Available for download at http://hazy.cs.wisc.edu/hazy/victor/jellyfish/.
4 Available at http://svmlight.joachims.org/.

http://hazy.cs.wisc.edu/hazy/victor/jellyfish/
http://svmlight.joachims.org/

Kernel Matrix Completion for Learning 103

5.1 Characteristics of Kernel Matrices

The first set of experiments is to verify that how well kernel matrices fit for
matrix completion. For this, we computed the two types of full kernel matrices,
Schur (2) and MKL (3), accessing all features of the small 5k/5k subsets of the
five UCI data sets (in this case the Schur kernel is simply the Gaussian kernel).

The important characteristics of the kernel matrices with respect to matrix
completion are its rank (r) and coherence parameters μ1 and μ2 defined in (6)
and (7). When these values are small, then Theorem 2 tells that we only need
small number of observations for perfect matrix completion with high probability.

Table 2 summarizes these characteristics. Clearly, the rank (numerically effec-
tive rank, with eigenvalues larger than a threshold of 0.01) and coherence values
were small in cases of ADULT, IJCNN, and COVTYPE compared to the other data
sets, and the conditions were improved when the MKL kernel was used compared
to the Schur kernel. So it was expected that matrix completion would perform
better for these three data sets compared to the rest, MNIST and CCAT, for a fixed
size of the sample index set |Ω|.

Table 2. The density, rank r, and coherence parameters μ1 and μ2 defined in (6)
and (7) of kernel matrices. Effective numbers of ranks are shown, which correspond to
eigenvalues larger than a threshold (0.01). Smaller rank and coherence parameters are
better for matrix completion.

Schur MKL

Density r μ1 μ2 Density r μ2 μ2

ADULT 1.0 789 25.7 24.4 1.0 222 12.0 5.5

MNIST 1.0 4782 68.1 68.5 1.0 4568 66.6 66.2

CCAT 1.0 4984 69.6 70.6 1.0 4982 69.6 70.6

IJCNN 1.0 1516 37.2 37.8 1.0 698 25.1 6.6

COVTYPE 1.0 1423 35.9 35.8 1.0 424 19.3 2.7

5.2 The Effect of Sampling Size

Next, we have used the 5k/5k data sets to investigate how the prediction per-
formance of SVMs changed over several difference sizes of the sample index set
Ω. We define the sampling ratio as

Sampling Ratio := |Ω|/(m2),

where the value of m is 5000 in this experiment. We compared the prediction
performance of using Schur and MKL to that of svmlight.

Figure 2 illustrates the test accuracy values for five sampling ratios in up to
10%. The statistics are over N = 3 nodes and over random selections of Ω.
The performance on ADULT, IJCNN, and COVTYPE was close to that of svmlight,

104 S. Lee and C. Pölitz

Table 3. Test prediction performance on full data sets (mean and standard deviation).
Two sampling ratios (2 % and 10 %) are tried for our method. The svmlight results
are from using the classical Gaussian kernels with matching parameters. | ∪n S∗

n|2/m2

is the fraction of the reduced number of variables compared to m2.

MKL asset svmlight

| ∪n S∗
n|2/m2 2 % 10 %

ADULT 0.37 81.4±1.00 84.2±0.18 80.0±0.02 84.9

MNIST 0.98 78.9±1.69 87.0±0.20 88.9±0.39 98.9

CCAT 0.71 87.2±1.00 92.0±0.35 73.7±1.00 95.8

IJCNN 0.31 96.0±0.35 96.5±0.23 90.9±0.88 99.3

and it kept increasing with the growth of |Ω|. This behavior was expected in
the previous section as their kernel matrices had good conditions for matrix
completion. On the other hand, the performance on MNIST and CCAT was far
inferior to that of svmlight, as also expected.

The bottom-right corner of Fig. 2 shows the concentration of eigenvalue spec-
trum in the five kernel matrices. The height of each box represents the magnitude
of the corresponding normalized eigenvalue, so that the height a stack of boxes
represents the proportion of entire spectrum concentrated in the top 10 eigen-
values. The plot shows that 90% of the spectrum in ADULT is concentrated in the
top 10 eigenvalues, indicating that its kernel matrix has a very small numerically
effective rank. This gives one explanation why our method performs as good as
svmlight for the case of ADULT.

Comparing Schur to MKL, both showed similar prediction performance. How-
ever, higher concentration of the eigen spectrum of MKL indicated that it would
make a good alternative to Schur, also considering the extra saving with MKL
discussed in Sect. 3.3.

5.3 Performance on Full Data Sets

In the last experiment, we used the full data sets for comparing our method
to one of the closely related approaches, asset [12]. Since asset admits only
MKL-type kernels, we have omitted the Schur kernel in comparison. Among the
several versions of asset in [12], we used the “Separate” version with central
optimization. COVTYPE was excluded due to runtime issues of svmlight.

The results are in Table 3. The second column shows the ratio between a
union SV set and an entire training set. The square of these numbers indicates
the saving we have achieved by the union SVs trick, for example the size of matrix
is reduced to 37% of the original size for ADULT. The saving was substantial for
ADULT and IJCNN. In terms of prediction performance, we have achieved test
accuracy approaching to that of svmlight (within 1% point (ADULT), 3.8%
points (CCAT), and 2.8% points (IJCNN) on average) with 10 % sampling ratio,
except for the case of MNIST where the gap was significantly larger (11.9%): this

Kernel Matrix Completion for Learning 105

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.02 0.04 0.06 0.08 0.1

T
es

t A
cc

ur
ac

y
(%

)

Sampling Ratio (|Ω|/(m2))

ADULT

Multiplicative
Additive

SVMlight

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.02 0.04 0.06 0.08 0.1
Sampling Ratio (|Ω|/(m2))

MNIST

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.02 0.04 0.06 0.08 0.1

T
es

t A
cc

ur
ac

y
(%

)

Sampling Ratio (|Ω|/(m2))

CCAT

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.02 0.04 0.06 0.08 0.1
Sampling Ratio (|Ω|/(m2))

IJCNN

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.02 0.04 0.06 0.08 0.1

T
es

t A
cc

ur
ac

y
(%

)

Sampling Ratio (|Ω|/(m2))

COVTYPE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ADU MNI CCA IJC COV

R
at

io

Top 10 Eig (SINGLE)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ADU MNI CCA IJC COV

Top 10 Eig (COMPOSITE)

Fig. 2. Prediction accuracy on test sets for 5k/5k subsets of the five UCI data sets,
over different sampling ratios in kernel completion. The average and standard deviation
over multiple trials with random Ω and N = 3 nodes are shown. The bottom-right
plot illustrates the proportion of the entire eigen-spectrum concentrated in the top ten
eigenvalues.

result was consistent to the discussion in Sects. 5.1 and 5.2. Our method (with
10 % sampling) also outperformed asset (by 4.2%, 18.3%, and 5.6% on average
for ADULT, CCAT, and IJCNN respectively) except for the case of MNIST with a
small but not negligible margin (1.9%). We conjecture that the approximation of
kernel mapping in asset have fitted particularly well for MNIST, but it remains
to be investigated.

106 S. Lee and C. Pölitz

6 Conclusions

We have proposed a simple framework for learning nearly consensus SVMs for
scenarios where features are stored in a distributed manner. Our method makes
use of decompositions of kernels, together with kernel matrix completion to
recover unobserved entries of remote kernel matrices. The resulting SVMs per-
formed well with relatively small numbers of sampled entries, but under certain
conditions. A newly discovered property of support vectors also helped us further
reduce computation cost in matrix completion.

Several aspects of our method remain to be investigated further. First, dif-
ferent types of kernels may involve different types of decomposition, with new
characteristics in terms of matrix completion. Second, although parameters of
SVMs and kernels can be tuned using small aggregated data, it would be desir-
able to tune parameters locally, or to consider entirely parameter-free alterna-
tives if possible. Also, despite the benefits of the MKL kernel, it requires more
kernel parameters to be specified compared to the Schur kernel. Therefore when
the budget for parameter tuning is limited, Schur would be preferred to MKL.
Finally, it would be worthwhile to analyze the characteristics of the suggested
algorithm in real communication systems to make it more practical, considering
non-uniform communication cost on non-symmetric networks.

Acknowledgements. The authors acknowledge the support of Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing
Information by Resource-Constrained Analysis”, projects A1 and C1.

Appendix

Proof of Theorem 1

Let us consider an index i ∈ S∗ of an SV of the global SVM problem, such that
[α∗]i > 0. Suppose that the ith component of the gradient of all local SVM
problems at α∗ is strictly positive, that is,

[YMnYα∗ − 1]i > 0, ∀n ∈ {1, 2, . . . , N}. (9)

Let us look into the optimality condition of the global SVM, regarding the ith
component of the optimizer α∗. From the KKT conditions, we have

1
N

N∑

n=1

[YMnYα∗ − 1]i − [p∗]i + [q∗]i = 0, [p∗]i[α∗]i = 0, [q∗]i[C1 − α∗]i =0,

where p∗ ∈ �m
+ and q∗ ∈ �m

+ are the Lagrange multipliers for the constraints
α ≥ 0 and α ≤ C1, respectively. Then [α∗]i > 0 implies [p∗]i = 0, and therefore

1
N

N∑

n=1

[YMnYα∗ − 1]i + [q∗]i = 0.

Kernel Matrix Completion for Learning 107

If (9) is true, then we have a contradiction here since the first term above becomes
strictly positive, where the second term satisfies [q∗]i ≥ 0, and therefore the
equality cannot hold. This implies that there exists at least one node n for
which the condition in (9) is not satisfied, that is, [YMnYα∗ − 1]i ≤ 0. This
means that if we search for the local SVM solution at the node n starting from
α∗, we must increase the value of the ith component from [α∗]i to reach the
minimizer [α∗

n]i of this local SVM problem, since otherwise we will increase the
objective function value. That is,

[α∗
n]i ≥ [α∗]i > 0.

This implies that the index i also becomes an SV of at least one local SVM
problem. Therefore, i ∈ ∪N

n=1S
∗
n, which implies the claim.

Proof of Theorem 3

From the definition of the error coefficient and the Cauchy-Schwarz inequality,
we have

|E
˜K − EK| =

1
m

1T (α∗
˜K

− α∗
K) ≤ 1√

m
‖α∗
˜K

− α∗
K‖2. (10)

On the other hand, from the optimality conditions of (1) with K and K̃,

(α∗
˜K

− α∗
K)T (Qα∗

K − 1) ≥ 0, (α∗
K − α∗

˜K
)T (Q̃α∗

˜K
− 1) ≥ 0,

and adding them up gives

(α∗
˜K

− α∗
K)T (Qα∗

K − Q̃α∗
˜K
) ≥ 0.

This implies that (the idea is from [15]),

(α∗
˜K

− α∗
K)T (Q − Q̃)α∗

˜K
≥ (α∗

˜K
− α∗

K)T Q(α∗
˜K

− α∗
K).

From (α∗
˜K

−α∗
K)T (Q−Q̃)α∗

˜K
≤ ‖α∗

˜K
−α∗

K‖2‖Q−Q̃‖2‖α∗
˜K
‖2 (Cauchy-Schwarz

and the definition of operator norms) and (α∗
˜K
−α∗

K)T Q(α∗
˜K
−α∗

K) ≥ λ1(Q)‖α∗
˜K

− α∗
K‖22 (properties of the Rayleigh quotient; λ1(Q) is the smallest eigenvalue

of Q), the above inequality leads to (with ‖α∗
˜K
‖2 ≤ C

√
m),

‖α∗
˜K

− α∗
K‖2 ≤ C

√
m

λ1(Q)
‖Q − Q̃‖2.

From (10), the facts that Q = YKY for Y = diag(y), ‖AB‖2 ≤ ‖A‖2‖B‖2,
and ‖A‖2 ≤ ‖A‖F , and finally by (8), we have the claim,

|E
˜K − EK| ≤ C

λ1(Q)
‖Q − Q̃‖2 =

C

λ1(Q)
‖K − K̃‖F ≤ C

λ1(Q)
(δ1 + δ2).

108 S. Lee and C. Pölitz

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.
ics.uci.edu/ml

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pp. 144–152 (1992)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

4. Candes, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix com-
pletion. IEEE Trans. Inf. Theor. 56(5), 2053–2080 (2010)

5. Candes, E., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936
(2010)

6. Crammer, K., Dredze, M., Pereira, F.: Confidence-weighted linear classification for
natural language processing. J. Mach. Learn. Res. 13, 1891–1926 (2012)

7. Forero, P.A., Cano, A., Giannakis, G.B.: Consensus-based distributed support vec-
tor machines. J. Mach. Learn. Res. 11, 1663–1707 (2010)

8. Joachims, T.: Making large-scale support vector machine learning practical. In:
Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support
Vector Learning, chap. 11, pp. 169–184. MIT Press, Cambridge (1999)

9. Lanckriet, G., Cristianini, N., Bartlett, P., E.G., L., Jordan, M.: Learning the kernel
matrix with semidefinite programming. In: Proceedings of the 19th International
Conference on Machine Learning (2002)

10. Lee, S., Bockermann, C.: Scalable stochastic gradient descent with improved con-
fidence. In: Big Learning - Algorithms, Systems, and Tools for Learning at Scale,
NIPS Workshop (2011)

11. Lee, S., Pölitz, C.: Kernel completion for learning consensus support vector
machines in bandwidth-limited sensor networks. In: International Conference on
Pattern Recognition Applications and Methods (2014)

12. Lee, S., Stolpe, M., Morik, K.: Separable approximate optimization of support
vector machines for distributed sensing. In: De Bie, T., Cristianini, N., Flach,
P.A. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 387–402. Springer,
Heidelberg (2012)

13. Mangasarian, O.L., Musicant, D.R.: Lagrangian support vector machines. J. Mach.
Learn. Res. 1, 161–177 (2001)

14. Morik, K., Bhaduri, K., Kargupta, H.: Introduction to data mining for sustainabil-
ity. Data Min. Knowl. Disc. 24(2), 311–324 (2012)

15. Huang, L., Huang, L., Joseph, A.D., Joseph, A.D., Nguyen, X.L., Nguyen, X.L.:
Support vector machines, data reduction, and approximate kernel matrices. In:
Goethals, B., Goethals, B., Daelemans, W., Daelemans, W., Morik, K., Morik, K.
(eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 137–153. Springer,
Heidelberg (2008)

16. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

17. Recht, B., Ré, C.: Parallel stochastic gradient algorithms for large-scale matrix
completion. Technical report, University of Wisconsin-Madison, April 2011

18. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Kernel Matrix Completion for Learning 109

19. Steinwart, I.: On the influence of the kernel on the consistency of support vector
machines. J. Mach. Learn. Res. 2, 67–93 (2002)

20. Stolpe, M., Bhaduri, K., Das, K., Morik, K.: Anomaly detection in vertically par-
titioned data by distributed core vector machines. In: Nijssen, S., Železný, F.,
Blockeel, H., Kersting, K. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190,
pp. 321–336. Springer, Heidelberg (2013)

21. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

	Kernel Matrix Completion for Learning Nearly Consensus Support Vector Machines
	1 Introduction
	2 Decomposition of Kernel Matrices
	2.1 Support Vector Machines
	2.2 Schur and MKL Kernels

	3 Recovery of Unseen Kernel Elements
	3.1 Sampling
	3.2 Low-Rank Matrix Completion with Kernel Constraints
	3.3 Reduction with MKL Kernels Using Support Vectors

	4 Matrix Recovery and Classification Error Bounds
	4.1 Conditions for Matrix Recovery
	4.2 Classification Error Bounds for Using Estimated Kernels

	5 Experiments
	5.1 Characteristics of Kernel Matrices
	5.2 The Effect of Sampling Size
	5.3 Performance on Full Data Sets

	6 Conclusions
	References

