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Abstract. This paper deals with computational aspects of attack trees,
more precisely, evaluating the expected adversarial utility in the failure-
free game, where the adversary is allowed to re-run failed atomic attacks
an unlimited number of times. It has been shown by Buldas and Lenin
that exact evaluation of this utility is an NP-complete problem, so a com-
putationally feasible approximation is needed. In this paper we consider a
genetic approach for this challenge. Since genetic algorithms depend on a
number of non-trivial parameters, we face a multi-objective optimization
problem and we consider several heuristic criteria to solve it.

1 Introduction

Hierarchical methods for security assessment have been used for several decades
already. Called fault trees and applied to analyze general security-critical systems
in early 1980-s [1], they were adjusted for information systems and called threat
logic trees by Weiss in 1991 [2]. In the late 1990-s, the method was popularized
by Schneier under the name attack trees [3].

There are several ways attack trees can be used in security assessment. The
simplest way is purely descriptional. Such an approach is limited only to quali-
tative assessment of security. Based on such an assessment, it is difficult to talk
about optimal level of security or return of security investments. Already the
first descriptions of attack trees introduced computational aspects [2,3]. The
framework for a sound formal model for such computations was introduced in
2005 by Mauw and Oostdijk [4].

Most of the earlier studies focus on the analysis of a single parameter only.
A substantial step forward was taken by Buldas et al. [5] who introduced the idea
of game-theoretic modeling of the adversarial decision making process based on
several interconnected parameters like the cost, risks and penalties associated
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with different atomic attacks. Their approach was later refined by Jürgenson
and Willemson [6] to achieve compliance with Mauw-Oostdijk framework [7].
However, increase in the model precision was accompanied by significant drop in
computational efficiency. To compensate for that, a genetic algorithm approach
was proposed by Jürgenson and Willemson [8]. It was later shown by Lenin,
Willemson and Sari that this approach is flexible enough to allow extensions like
attacker models [9].

Buldas and Stepanenko [10] introduced the upper bound ideology by point-
ing out that in order to verify the security of the system, it is not necessary to
compute the exact adversarial utility but only upper bounds. Buldas and Lenin
further improved the fully adaptive model by eliminating the force failure states
and suggested the new model called the failure-free model [11]. The model more
closely followed the upper bounds ideology originally introduced by Buldas et al.
[10] and turned out to be computationally somewhat easier to analyze. It has
been shown that finding the optimal strategy is (still) an NP-complete problem,
hence looking for a good heuristic approximation is an important goal. Addition-
ally, one of the goals of the paper is to find empirical evidence for the rational
choice of the parameters of the genetic algorithm.

The paper has the following structure. First, Sect. 2 defines the required
terms. Section 3 presents and evaluates our genetic algorithms. These algorithms
are improved with adaptiveness in Sect. 4. Finally, Sect. 5 draws some conclu-
sions.

2 Definitions

Let X = {X1,X2, . . . ,Xn} be the set of all possible atomic attacks and F be a
monotone Boolean function corresponding to the considered attack tree.

Definition 1 (Attack Suite). Attack suite σ ⊆ X is a set of atomic attacks
which have been chosen by the adversary to be launched and used to try to achieve
the attacker’s goal. Also known as individual.

Definition 2 (Satisfying Attack Suite). A satisfying attack suite σ evaluates
F to true when all the atomic attacks from the attack suite σ have been evaluated
to true. Also known as live individual.

Definition 3 (Satisfiability Game). By a satisfiability game we mean a single-
player game in which the player’s goal is to satisfy a monotone Boolean function
F (x1, x2, . . . , xk) by picking variables xi one at a time and assigning xi = 1.
Each time the player picks the variable xi he pays some amount of expenses Ei,
which is modeled as a random variable. With a certain probability pi the move
xi succeeds. The game ends when the condition F ≡ 1 is satisfied and the player
wins the prize P ∈ R, or when the condition F ≡ 0 is satisfied, meaning the loss
of the game, or when the player stops playing. Thus we can define three common
types of games:
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1. SAT Game Without Repetitions - the type of a game where a player can
perform a move only once.

2. SAT Game With Repetitions - the type of a game where a player can re-run
failed moves an arbitrary number of times.

3. Failure-Free SAT Game - the type of a game in which all success probabilities
are equal to 1. It has been shown that any game with repetitions is equivalent
to a failure-free game [11, Thm. 5].

3 Genetic Approximations for the Failure-Free
Satisfiability Games

The whole family of satisfiability games tries to maximize expected adversarial
profit by solving an optimization problem: given a monotone Boolean function
F(x1, x2, . . . , xn) optimize the utility function U(xi1 , xi2 , . . . , xin) over the set
of all satisfying assignments fulfilling a set of model-specific conditions (in some
specific cases). The models for the SAT games without move repetitions and the
failure-free SAT games differ only by their corresponding utility functions, as in
both cases the order in which atomic attacks are launched by an adversary is
irrelevant. On the contrary, models for SAT games with repetitions (e.g. [12])
consider strategic adversarial behavior in the case of which the order in which the
atomic attacks are launched does matter. In this paper we focus on the genetic
approximations suitable to be applied to the SAT games without repetitions, as
well as the failure-free SAT games. The suggested algorithm is practically vali-
dated by the example of the computational model for the failure-free SAT game.

3.1 Genetic Algorithm (GA)

A genetic algorithm is typically characterized by the set of the following parame-
ters: a genetic representation of chromosomes or individuals (feasible solutions
for the optimization problem), a population of encoded solutions, fitness func-
tion which evaluates the optimality of the solutions, genetic operators (selection,
crossover, mutation) that generate a new population from the existing one, and
control parameters (population size, crossover rate, mutation rate, condition
under which the reproduction process terminates).

The reproduction process, as well as the condition, under which reproduction
terminates is identical to the one described in [9]. We refer the readers to this
paper for further details. An individual is any feasible solution to the considered
optimization problem. Thus, for the SAT games a solution is any of the satisfy-
ing attack suites. We have chosen linear binary representation of individuals to
facilitate the robustness of the crossover and mutation operations. The algorithm
used to generate individuals is shown in Algorithm 1.

We allow duplicate entries to be present in the population for the sake of
maintaining genetic variation and keep the population size constant throughout
the reproduction process. It is well known in the field of genetic algorithms that
genetic variation directly influences the chances of premature convergence – thus
increasing genetic variation in the population is one of the design goals.
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Algorithm 1: Recursive individual generation algorithm
Data: The root of a propositional directed acyclic graph (PDAG) representing

a monotone Boolean function. An empty individual with all bits set to 0.
Result: Live individual.

if the root is a leaf then
get the index of the leaf;
set corresponding individual’s bit to 1;

end
else if the root is an AND node then

forall children of the root do
recursive call: child considered as root parameter;

end
end
else if the root is an OR node then

choose at least one child;
forall chosen children do

recursive call: child considered as root parameter;
end

end

The choice of the population size is important – too small population does
not contain enough genetic variation to maintain the exploration capabilities, too
big population already contains enough genetic variation to efficiently explore
the search space and only results in the performance overhead in the crossover
operator. This means that there exists an optimal population size corresponding
to the minimal population size capable of producing the best result. Thus the
optimal size of the population sets the lower bound of reasonable choice for the
population size and the upper bound is solely based on performance consider-
ations – what is the reasonable time the analysts would agree to wait for the
analysis to produce the result. If the population size is suboptimal, there is a
high risk to converge to suboptimal solutions and if the population is bigger
than the optimal size it does not add anything, except for the increase in the
time required to run the analysis. If the optimal population in some certain case
is k% of the size of the attack tree (the number of leaves in an attack tree),
then any population size greater than k% and capable of producing the result
in reasonable time, would suit to be used for analysis.

All the following computations were made with PC/Intel Core i5-4590 CPU
@ 3.30 GHz, 8 GB RAM, Windows 8.1 (64 bit) operating system. Figure 1 on the
left demonstrates the effect of the population size on the result in the case of a
single attack tree. Measurements were taken for the attack tree with 100 leaves
using uniform crossover operator and mutation rate 0.1.

We have conducted experiments on the set of attack trees of different sizes
(ranging from 10 to 100 leaves with steps of size 3) and observed that there is no
obvious relation between the size of the analyzed tree and the optimal population
size. Apart from the size of the tree, the optimal population size might depend
on, at the very least, the structure of the tree itself. Measurements were taken
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Fig. 1. Optimal population size
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Fig. 2. Reasonable choice for pop-
ulation size

with the same crossover operator and mutation rate. Figure 2 shows how many
trees (%) from the conducted experiment the considered population size would
fit. It can be seen that, in general, the population size equal to 180 % of the size
of the tree would fit every considered attack tree. The population size 200 %,
chosen by Jürgenson and Willemson in [8] for their ApproxTree model, was a
reasonable choice.

Lenin, Willemson and Sari have shown that the crossover operations take
90–99% of the time required to run the analysis [9]. Figure 3 shows the time
measurement for the suggested GA, depending on the size of the population.

The fitness function is the model-specific utility function for the correspond-
ing type of the security game. For further details we refer the reader to the
detailed descriptions of the security games [7–11].
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The power of GA arises from crossover which causes randomized but still
structured exchange of genetic material between individuals in assumption that
‘good’ individuals will produce even better ones. The crossover rate controls
the probability at which individuals are subjected to crossover. Individuals, not
subjected to crossover, remain unmodified. The higher the crossover rate is,
the quicker the new solutions get introduced into the population. At the same
time, chances increase for the solutions to get disrupted faster than selection
can exploit them. The selection operator selects individuals for crossing and
its role is to direct the search towards promising solutions. We have chosen to
disable parent selection entirely thus defaulting to crossing every individual with
every other individual in the population (crossover rate equal to 1), as scalable
selection pressure comes along with the selection mechanisms after reproduction.

Notable crossover techniques include the single-point, the two-point, and the
uniform crossover types. Figures 4 and 5 demonstrate the differences between the
convergence speeds resulting from using various crossover operators. It can be
seen that the considered crossover operators do not have any major differences
nor effect on the convergence speed of the GA.
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Fig. 4. Uniform crossover compared to
single point crossover
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Fig. 5. Uniform crossover compared to
two point crossover

Our choice fell upon using the uniform crossover – this enables a more
exploratory approach to crossover than the traditional exploitative approach,
resulting in a more complete exploration of the search space with maintaining
the exchange of good information. The algorithm for the crossover operator is
shown in Algorithm 2.

The role of the mutation operator is to restore lost or unexplored genetic
material into the population thus increasing the genetic variance and preventing
premature convergence to suboptimal solutions. The mutation rate controls the
rate at which ‘genes’ are subjected to mutation. High levels of mutation rate
turn GA into a random search algorithm, while too low levels of mutation rates
are unable to restore genetic material efficiently enough, thus the algorithm risks
converging to suboptimal solutions. Typically the mutation rate is kept rather
small, in the range 0.005 − 0.05.

In our implementation of the genetic algorithm, the mutation operator is
a part of the crossover operation, mutating the genes, having same value in
the corresponding positions in both parent individuals. The uniform crossover
randomly picks corresponding bits in the parent individuals to be used in the
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Algorithm 2: The uniform crossover operation
Data: The population of individuals represented as a sorted set.
Result: The population with new added individuals, created during the

crossover operation.

initialize a new set of individuals;
forall individual i in the population do

forall individual j different from i do
new individual := the result of cross operation between individuals i
and j ;
if new individual is alive then

add the new individual to the set of new individuals;
end

end
end
add the set of new individuals to the population;

new individual, and thus in the case bits are different, this already provides
sufficient genetic variation. However, in the case when bits have the same value
this yields just a single choice and in order to increase the genetic variation
(compared to its parents) we mutate just these bits. Figure 6 demonstrates the
mutation rate effect on the utility function for the case of a specific attack tree
with 100-leaves with initial population of 50 individuals. It shows that when
the mutation rate exceeds value 0.1 GA turns into a random search algorithm,
thus it is reasonable to keep the mutation rate rather small. We have conducted
similar experiments on a larger set of attack trees and the results have shown
that the optimal value for the mutation rate is not necessarily small – in some
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cases the optimal mutation rate was 0.6 or even higher. This means that the
optimal value for the mutation rate cannot be set from the very beginning –
it highly depends on the structure of the fitness landscape. However, it is still
reasonable to follow the general rule of thumb to keep the mutation rate small,
assuming that this should work for the majority of the cases.

It is important to determine the practical applicability boundaries for the
suggested method. By practical applicability we mean the maximal size of the
attack tree, which the computational method is capable of analyzing in reason-
able time set to two hours. Extrapolating the time consumption curve in Fig. 7
we have come to a conclusion that theoretically the suggested GA is capable of
analyzing attack trees containing up to 800 leaves in reasonable time. This is a
major advancement compared to the ApproxTree model [8] which would take
more than 900 hours to complete such a task.

The execution time complexity estimations for GA are outlined in Table 1.
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Fig. 7. GA execution time

Table 1. GA execution time complexity estimations

Case Approximation polynomial R2 coefficient

Worst 1.68 · 10−5n3 − 0.003n2 + 0.7015n− 23.03 0.99

Average 1.41 · 10−5n3 − 0.001n2 + 0.25n− 8.81 0.99

Best 1.26 · 10−5n3 + 1.62 · 10−5n2 + 0.047n− 2.55 0.99

For comparison, the execution time complexity of the ApproxTree model [8]
was estimated to be O(n4), where n is the number of leaves in the attack tree.
This difference comes from the fact that ApproxTree runs for a fixed number of
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generations, whereas the computations presented in this paper run until local
convergence, as well as the fact that the utility function used in ApproxTree is
considerably more complex compared to the corresponding utility function used
in the Failure-Free model.

4 Adaptive Genetic Algorithm (AGA)

We compare the genetic algorithm suggested in Sect. 3 to the adaptive genetic
approach described in [13]. The authors suggest to adaptively vary the values
of crossover and mutation rates, depending on the fitness values of the solu-
tions in the population. High fitness solutions are ‘protected’ and solutions with
subaverage fitness are totally disrupted. It was suggested to detect whether the
algorithm is converging to an optimum by evaluating the difference between the
maximal and the average fitness values in the population fmax− f̄ which is likely
to be less for the population which is converging to an optimum solution than for
a population scattered across the solution space. Thus the corresponding values
of the mutation and crossover rates are increased when the algorithm is con-
verging to an optimum and decreased when the population gets too scattered.
The authors concluded that the performance of AGA is in general superior to
the performance of GA but varies considerably from problem to problem. In this
paper we apply the suggested method to the problem of the security games.

In the case of the adaptive genetic algorithm, the crossover and mutation rate
parameters are assigned their initial values and are changed adaptively during
the runtime of the algorithm and the only parameter which remains fixed is
the population size. Similarly to the GA there exists an optimal population size
corresponding to the minimal population size capable of producing the maximal
result. Figure 8 shows the result corresponding to the computations using various
population sizes in the experiment setup similar to the one for GA. In the case
of GA the maximal value was stable with the increase in the population size,
however in the case of AGA some fluctuations are present. Figure 9 shows how
many trees (%) from the conducted experiment the considered population size
would fit. It can be seen that, in general, the population size equal to 200 % of the
size of the tree would fit every considered attack tree. Based on these observations
we can say that AGA seems to be more robust, but less stable, compared to GA
and requires bigger population sizes in order to produce optimal results for the
majority of the cases.

Similarly to the GA, we estimate the maximal size of the attack tree which
AGA is capable of analyzing within reasonable timeframe set to two hours.
Extrapolating the time consumption curve with the most extreme values trimmed
out in Fig. 10 we have come to a conclusion that theoretically AGA is capable
of analyzing attack trees containing up to 26000 leaves in reasonable timeframe,
which is approximately 32 times more efficient compared to GA.

The execution time complexity estimations for AGA are outlined in Table 2.
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Table 2. AGA execution time complexity estimations

Case Approximation polynomial R2 coefficient

Worst 3.985x3 − 0.0001x2 + 0.0358x− 1.1970 0.90

Average 3.5731x3 − 0.0001x2 + 0.0267x− 0.8786 0.94

Best 3.1892x3 − 0.0001x2 + 0.0192x− 0.6115 0.96

5 Conclusions

This paper addressed the problem of efficient approximation of attack tree eval-
uation of the failure-free game. We considered the genetic approach to approxi-
mation, since it is known to have worked on similar problems previously. How-
ever, genetic algorithms depend on various loosely connected parameters (e.g.
crossover and mutation operators and their corresponding rates). Selecting them
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all simultaneously is a non-trivial task requiring a dedicated assessment effort
for each particular problem type. The current paper presents the first system-
atic study of GA parameter optimization for the attack tree evaluation. We have
conducted a series of experiments and collected heuristic evidence for optimal
parameter selection.

The second contribution of the paper is the application of adaptive genetic
algorithms (AGA) to the problem domain of attack tree computations. It turns
out that AGA converges generally faster than GA and provides similar level of
accuracy, but with the price of potentially larger population sizes. Since usually
there are no major technical obstacles to increasing the population, we conclude
that AGA should be preferred to plain GA in the considered application domain.
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