QueryVOWL: Visual Composition
of SPARQL Queries

Florian Haag(g), Steffen Lohmann, Stephan Siek, and Thomas Ertl

Institute for Visualization and Interactive Systems, University of Stuttgart,
Universitatsstrale 38, 70569 Stuttgart, Germany
{florian.haag,steffen.lohmann,thomas.ertl}@vis.uni-stuttgart.de

Abstract. In order to make SPARQL queries more accessible to users,
we have developed the visual query language QueryVOWL. It defines
SPARQL mappings for graphical elements of the ontology visualization
VOWL. In this demo, we present a web-based prototype that supports
the creation, modification, and evaluation of QueryVOWL graphs. Based
on the selected SPARQL endpoint, it provides suggestions for extending
the query, and retrieves IRIs and literals according to the selections in
the QueryVOWL graph. In contrast to related work, SPARQL queries
can be created entirely with visual elements.

Keywords: Visual querying - Query VOWL - VOWL - SPARQL - RDF -
OWL - Visualization - Linked data - Semantic web

1 Introduction

As an increasing amount of Linked Data is becoming available, various visual
concepts for specifying search queries on that data have been proposed. While
some of them focus on visualizing the Boolean connections between filter crite-
ria [4,7], others represent the structure of the object graph [3,6,11,12]. Examples
from the latter group reflect the basic idea of queries specified in SPARQL, and
the visualizations are often syntactically close to textual SPARQL queries. For
instance, they explicitly show variable names or textual filter expressions.

We have developed QueryVOWL, a graph-based visual query language for
SPARQL endpoints. QueryVOWL reuses graphical elements of VOWL, the
Visual Notation for OWL Ontologies [9], and defines SPARQL mappings for
them. We strive for expressing query restrictions in a way that does not require
any knowledge of SPARQL and aim to reduce the learning effort by reusing ele-
ments that users of ontologies might already know from VOWL. Furthermore,
we decided to reuse VOWL, as empirical results indicate that it is comparatively
intuitive and understandable, also and especially to lay users [9].

In this demo, we present a web-based prototype of a visual query system that
allows for the composition of queries in the Query VOWL notation and retrieves
results from a SPARQL endpoint. At ESWC 2015, we will demonstrate the idea
and functionality of QueryVOWL by creating several SPARQL queries with the
prototype. A more in-depth description of the Query VOWL visual language and
its SPARQL mappings has been presented at a workshop [5].

© Springer International Publishing Switzerland 2015
F. Gandon et al. (Eds.): ESWC 2015, LNCS 9341, pp. 62-66, 2015.
DOI: 10.1007/978-3-319-25639-9_12

QueryVOWL: Visual Composition of SPARQL Queries 63

2 QueryVOWL

VOWL, the Visual Notation for OWL Ontologies, provides a set of visual ele-
ments that represent concepts and components defined in OWL ontologies [9].
The meaning of the shapes, colors, labels, and combinations thereof is defined in
a specification document [10], which maps graphical features to OWL constructs.

For QueryVOWL, we have redefined the graphical elements used in VOWL
by mapping them to SPARQL fragments, while still conceptually adhering to
the original definitions of the elements with respect to OWL. Moreover, we have
slightly extended some of the visual elements to introduce interactive function-
ality that assists in the creation of SPARQL queries.

We developed a web-based prototype of QueryVOWL that implements the
main elements of the visual query language. It is based on open web standards
(HTML, JavaScript, CSS, SVG) and integrates some JavaScript libraries, most
importantly D3 [2] for the visualization of the QueryVOWL graph. Figurel
depicts a screenshot of the prototype, showing an exemplary Query VOWL graph
created on the DBpedia dataset [1].

The QueryVOWL concept focuses on a selected element—a class node, a
literal node, or a property label-—chosen by the user for retrieving results. In
the exemplary query of Fig.1, a user is looking for specific cars restricted by

e e e

& - € [vowlvisualdataweb.org/queryvowl/* 7| =

QueryVOWL x LY

beta 0.1.1 Caching: = DBpedia Selection Details

Add Property to Selection

@ -

altematemodes
Domain:
government type
application
Damain:
country country
nge:
foundation place
nge:
automobile platform
Range: Autamable
-automobi.. P
designer manufacturer A
body style
Range

production start year

XMLSchem. @ Svtin
>="19500101" Ranae: Lieral

Showing 1 to 82 of 82 entries

Fecerali.

birth place

Results Selection Alternatives
€0,

5@ maw \
€0

e Audi TT

e Cadillac Acecwood

e NSU Ro 80

e Porsche 911 classic

Fig. 1. Web-based implementation of QueryVOWL visualizing an exemplary query.

64 F. Haag et al.

several attributes. The queries are automatically generated from the Query-
VOWL graphs and sent to a SPARQL endpoint of choice in order to retrieve
results. Listing 1 shows the SPARQL query generated by the prototype for the
class Automobile selected in Fig. 1.

Listing 1. SPARQL query resulting from the QueryVOWL graph shown in Fig. 1.

1 SELECT ?Nodel

2 WHERE {

3 ?Nodel a <http://dbpedia.org/ontology/Automobile>.

4 ?Nodel <http://dbpedia.org/property/manufacturer> ?Node2.

5 ?Node2 <http://dbpedia.org/ontology/foundationPlace> 7Node4.
6 ?Node4 <http://dbpedia.org/ontology/country> ?Node6.

7 ?Node3 <http://dbpedia.org/property/birthPlace> ?Node5.

8 ?Node5 <http://dbpedia.org/ontology/country> ?Node6.

9 ?Node6 a <http://dbpedia.org/ontology/Country>.

10 ?Node6 <http://dbpedia.org/ontology/governmentType>

11 <http://dbpedia.org/resource/Federalism>.

12 ?Nodel <http://dbpedia.org/property/designer> ?Node3.

13 ?Nodel <http://dbpedia.org/ontology/productionStartYear> ?Node7.

14 FILTER(?Node7 >="19500101"""<http://www.w3.0rg/2001/XMLSchema#gYear>).
15 FILTER (datatype (?Node7) = <http://www.w3.org/2001/XMLSchema#gYear>).
16}

The prototype can be used to create various kinds of SPARQL queries, and
it can be applied to any RDF dataset that provides a SPARQL endpoint. The
user interface of the prototype consists of three views—the main view, a sidebar,
and a result list—which are described in the following.!

2.1 Main View

The main view contains the drag-and-drop enabled QueryVOWL visualization,
using SVG graphics similar to the WebVOWL implementation [8]. Like in Web-
VOWL, long class labels are abbreviated, but the full label is always available
as a tooltip. If no label is set for an element, the last part of its IRI is used.
Interactive spots on the visual elements react to hovering, clicking, and dragging.
For each class node, the number of individuals that match this class is displayed.
Upon any change to the graph, the numbers of affected classes are re-requested
from the SPARQL endpoint and updated.

Apart from the QueryVOWL visualization, the main view features icons for
directly inserting graph elements (currently, only for class nodes), as well as a
search box equipped with auto-completion. The search box serves for finding
specific entities in the dataset, such as classes or individuals, by their name, and
inserting them into the QueryVOWL graph. It can also be used to directly input
IRIs and add the corresponding element, should a user wish to copy and paste
an IRI from another source.

! The prototype and a video are available at http://queryvowl.visualdataweb.org.

http://queryvowl.visualdataweb.org

QueryVOWL: Visual Composition of SPARQL Queries 65

2.2 Sidebar

The sidebar is divided into three lists organized in an accordion widget. All the
information shown in the lists is retrieved by means of SPARQL queries, which
are processed in the background once the selection in the QueryVOWL graph
changes.

The first list provides details about the selected element, which always includes
a hyperlink to its IRI and some additional literal values if the selected element
is an individual. The second list suggests properties that might be added to the
selected class or individual in order to extend the query (cf. Fig.1). The proper-
ties are all linked to the selected element in the accessed RDF data, so that the
suggestions assist the users in defining restrictions that make it less likely that
no results are returned. The third list suggests elements that might be used as a
replacement for the currently selected element. For classes and individuals, other
classes are listed that might be appropriate replacements; other properties are
listed when a property is selected. These suggestions are again retrieved based
on the modeled QueryVOWL graph and on how the elements are used in the
RDF data. For the convenience of the user, the suggestions are also available
in dropdown lists accessible directly on the QueryVOWL elements of the main
view.

2.3 Result List

The result list shows the labels of all individuals that are valid replacements for
the selected class node, along with hyperlinks to their IRIs. In other words, all
individuals that match the focused property restrictions (i.e., the corresponding
RDF subgraph) are displayed in the result list. Similar to the functionality of
the sidebar, classes in the main view can be replaced by individuals from the
result list to further restrict the QueryVOWL graph.

Moreover, the textual SPARQL query used to retrieve the individuals of the
result list can be displayed and copied. This enables expert users to first create a
SPARQL query visually with QueryVOWL and then edit it textually according
to their needs.

2.4 Data Retrieval

The QueryVOWL prototype generates SPARQL queries like the one shown in
Listing 1. We integrated an optional cache module, as the response time for
complex queries may be noticeable on some endpoints. In addition, the cache
module helps reduce the workload and resource use of those endpoints. Recently
sent SPARQL queries and their results are stored in the cache, and the remote
SPARQL endpoint is only accessed for non-cached queries.

In order to recognize equivalent but differently written SPARQL queries, the
queries are normalized in the cache module. For this purpose, the graph patterns
are brought into a specified order and names of variables are substituted based
on a fixed scheme. This normalization is invisible to the caller of the module, as
the original variable names are replaced in the returned result.

66 F. Haag et al.

3 Conclusion

QueryVOWL supports the construction of SPARQL queries without the need
to input any structured text. Once set up on a SPARQL endpoint, no particu-
lar RDF knowledge is required to use the approach. Since QueryVOWL reuses
visual elements of the ontology notation VOWL, we expect it to be especially
comprehensible to users who have previously come in touch with VOWL. How-
ever, it may also be easily understandable to people who never used VOWL
before. This is at least indicated by the results of a preliminary user study we
conducted to evaluate QueryVOWL [5].

The presented prototype demonstrates how the QueryVOWL concept can
be used in practice for the visual composition of SPARQL queries. Currently, it
does not support all envisioned graphical elements of QueryVOWL, but we plan
to advance it in the future and to provide more options and features. Moreover,
the QueryVOWL concept may be extended by adding enhanced capabilities for
comparing literals, and for improved support of logical combinations of filter
criteria to visually form conjunctions and disjunctions, among others.

References

1. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: DBpedia—a crystallization point for the web of data. Web Semant.
7(3), 154-165 (2009)

2. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.
Visual Comput. Graphics 17(12), 2301-2309 (2011)

3. Groppe, J., Groppe, S., Schleifer, A.: Visual query system for analyzing social
semantic web. In: WWW 2011, pp. 217-220. ACM (2011)

4. Haag, F., Lohmann, S., Ertl, T.: SparqlFilterFlow: SPARQL query composition
for everyone. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) ESWC Satellite Events 2014. LNCS, vol. 8798, pp. 362-367.
Springer, Heidelberg (2014)

5. Haag, F., Lohmann, S., Siek, S., Ertl, T.: Visual querying of linked data with
QueryVOWL. In: HSWI 2015. CEUR-WS (2015) (To appear)

6. Heim, P., Ziegler, J., Lohmann, S.: gFacet: a browser for the web of data. In:
IMC-SSW 2008, vol. 417, pp. 49-58. CEUR-WS (2008)

7. Jarrar, M., Dikaiakos, M.D.: MashQL: a query-by-diagram topping SPARQL. In:
ONISW 2008, pp. 89-96. ACM (2008)

8. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visual-
ization of ontologies. In: Lambrix, P., Hyvonen, E., Blomqvist, E., Presutti, V.,
Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKWA 2014 Satellite Events.
LNCS, vol. 8982, pp. 154-158. Springer, Heidelberg (2015)

9. Lohmann, S., Negru, S., Haag, F., Ertl, T.: VOWL 2: user-oriented visualization of
ontologies. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvonen, E. (eds.) EKAW
2014. LNCS, vol. 8876, pp. 266-281. Springer, Heidelberg (2014)

10. Negru, S., Lohmann, S., Haag, F.: VOWL: visual notation for OWL ontologies
(2014). http://purl.org/vowl/

11. OpenLink: iSPARQL. http://oat.openlinksw.com/isparql/

12. Russell, A., Smart, P., Braines, D., Shadbolt, N.: NITELIGHT: a graphical tool
for semantic query construction. In: SWUI 2008, vol. 543. CEUR-WS (2008)

http://purl.org/vowl/
http://oat.openlinksw.com/isparql/

	QueryVOWL: Visual Composition of SPARQL Queries
	1 Introduction
	2 QueryVOWL
	2.1 Main View
	2.2 Sidebar
	2.3 Result List
	2.4 Data Retrieval

	3 Conclusion
	References

