Distributed Linked Data Business
Communication Networks:
The LUCID Endpoint

Sebastian Tramp' ™), Ruben Navarro Piris!, Timofey Ermilov!,
Niklas Petersen?, Marvin Frommhold!, and Séren Auer®

1 eccenca GmbH, Hainstr. 8, 04109 Leipzig, Germany
{sebastian.tramp,ruben.navarro.piris,timofey.ermilov}@eccenca.com
2 Enterprise Information Systems (EIS) at the Institute for Applied Computer
Science at University of Bonn, Rémerstr. 164, 53117 Bonn, Germany
petersen@cs.uni-bonn.de

3 Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS),

Schloss Birlinghoven, 53757 Sankt Augustin, Germany
soeren.auer@Qiais.fraunhofer.de

Abstract. With the LUCID Endpoint, we demonstrate how companies
can utilize Linked Data technology to provide major data items for their
business partners in a timely manner, machine readable and with open
and extensible schemata. The main idea is to provide a Linked Data
infrastructure which enables all partners to fetch, as well as to clone
and to synchronize datasets from other partners over the network. This
concept allows for building of networks of business partners much like
as social network but in a distributed manner. It furthermore provides a
technical infrastructure for business communication acts such as supply
chain communication or master data management.

1 The LUCID Endpoint

The LUCID endpoint! provides the necessary technology stack to manage and
publish Linked Data, as well as to consume Linked Data from other LUCID
endpoints.

This includes authentication and authorization mechanisms to guarantee that
data consumers access only the data that the endpoint owner explicitly allows.
To ensure consumer authentication, OAuth2 [6] is used. Access control rules can
be defined on a named graph level.

Once a local graph was modified, the endpoint will notify its subscribers by
sending the latest change sets for inclusion?. An example of this approach is
depicted in Fig.1. By sending only the modifications instead of the complete

! Which is based on the eccenca Linked Data Suite Backend.

2 The overall process is compatible with the PubSubHubbub working draft v0.4 [4].
The specification of a more general architecture for this kind of distributed semantic
social networks is available as [8].

© Springer International Publishing Switzerland 2015

F. Gandon et al. (Eds.): ESWC 2015, LNCS 9341, pp. 154-158, 2015.
DOI: 10.1007/978-3-319-25639-9_30

Distributed Linked Data Business Communication Networks 155
dataset A dataset B
(4) (clone)

y 7

= | S
< > B >
(2)[_> - LUCID

dataset A

endpoint B
[) y
D! (1) EI (3)
e

Yo

dataset A dataset C

(4) (clone)
data manager LUCID
endpoint A A O
= | O
—)
I
LUCID
endpoint C

Fig. 1. The LUCID endpoint data management and publication process consists of the
following steps: (1) modification of a dataset over SPARQL or a GUI (2) update of
the dataset as well as revisioning (3) publication of the updates to all subscribers (4)
application of the changes to the cloned datasets on subscriber site (5) user notification

new dataset, subscribers can easily recognize the changed triples without the
need for calculation of expensive data diffs itself. Subscriber endpoints can then
apply those modifications to their local dataset clones automatically. In order
to describe these dataset changes, a vocabulary and exchange format is needed,
which we will explain in the next section.

2 The Eccenca Revision Vocabulary

In order to both keep track of the modifications on the local quad store and notify
subscribers of it about those modifications, we developed the eccenca Revision
Vocabulary®. This vocabulary is modelled using OWL (OWL 2 DL profile) and
extends as well as reuses several concepts of the PROV-O ontology [7].

Unlike other approaches, such as [1], which try to describe changes on higher
semantic levels, our approach is based on triple (or rather quad) changes, where
each revision or modification event (called commit) contains a diff representing
the changed (either inserted and/or deleted) quads. This simple model enables
applications to rebuild and revert each commit as well as to merge diverted
evolution branches as explained in [3].

3 The eccenca Revision Vocabulary is available at https://vocab.eccenca.com/
revision/.

https://vocab.eccenca.com/revision/
https://vocab.eccenca.com/revision/

156 S. Tramp et al.

Our data modelling approach is build on top of the one proposed in [5], but
instead of holding separate revision histories for each revisioned named graph,
our approach keeps a unified revision history on any number of named graphs.
This enables applications to track revisions across different graphs or for the
whole quad store.

Figure 2 illustrates the main parts of the vocabulary: The Commit class defines
an instantaneous event containing a set of graph revisions. This class contains
also the meta data associated to this event such as author, date and commit
message. Revisions (modelled as the Revision class) refer each to a specific
named graph which was changed. Changes in an RDF store are defined either as
triple insertions (deltaInsertion) or deletions (deltaDeletions) inline with
the approach in [2].

Further work to support branching, commit signing and blank nodes is in
progress.

@prefix : <https://vocab.eccenca.com/revision/>.
[prov:Entity] [prov:Agent] [prov:Activity @prefix rdfs: org/2000/01/rdf-schema#>.
@prefix prov: org/ns/prov#>.
1 @prefix ex: <http://example.com/>.
- { ex:CommitA a :Commit ;
commltAutho: :commitAuthor avarroPiris ;
0.. prov:atTime 12T13:37:00+01:00" ;
. 0..2 :commitMessage "change label and add commit" ;
Commit :previousCommit ex 2
N N . . :hasRevision ex:Re A1, ex:RevisionA2 .
commitMessage : xsd:string previousCommit
prov:atTime : xsd:dateTime ex:RevisionAl a :Revis ;
0.* :hasRevisionGraph ex aphX ;
:deltalnsert <insertA> ;
1 :deltaDelete <deleteA> .

hasRevision

ex:RevisionA2 a :Revis
:hasRevisionGraph :NamedGraphY ;
:deltaDelete <insertB> .

deltalnsertion 1 ision

*

hasRevisionGraph N
<insertA> { ex:AResource rdfs:label "foo". }
<deleteA> { ex:AResource rdfs:label "bar". }
<insertB> { ex:AResource rdfs:comment "my comment". }

NamedGraph

deltaDeletion

Fig. 2. LUCID revision vocabulary & example commit instance

3 Demonstration Use-Case: Master Data Management

Our setup for the demonstration of the LUCID endpoint deploys a very basic but
pressing use case in business to business communication: master data manage-
ment. Enterprise master data is the single source of basic business information
used across all enterprise systems, applications and processes for an entire enter-
prise. This includes resources such as persons, company sites and subsidiaries as
well as contact details.

Our proposed demo consists of the following parts:

— Publishing of master data datasets with a browser based user interface:
A LUCID endpoint provides a dataset for each account. The account owner

Distributed Linked Data Business Communication Networks 157

is free to upload any data to this dataset. All resources from the dataset
namespace are available as Linked Data and enabled for publish/subscribe as
well as OAuth (in case the dataset is non-public). In addition to the generic
access via SPARQL, the user can utilize a master data management appli-
cation. This single page JavaScript application allows for creation of master
data resources such as company subsidiaries and contact details. The RDF
data model for these resources is based on the master data model from Odette
International, a collaboration platform for the automotive supply chain.
Versioning of the dataset changes on the SPARQL endpoint backend: All
changes to the user dataset are logged as part of the internal LUCID endpoint
triple store. The changed triples are calculated directly by the SPARQL query
processor and added to the versioning store.

Subscription to datasets of another LUCID endpoint by employing the dataset
URL: All resources which are Linked Data accessible, are enabled for pub-
lish/subscribe activities as well. The user interface is able to manage sub-
scriptions to other endpoints as well as to provide a preview for the incoming
data.

A publish/subscribe mechanism which uses commit push notifications based
on the eccenca revision vocabulary described in Sect.2: For each resource, a
change log dataset is available, which provides the last Commit information.
In addition to that, notifications with these Commit information as payload
are pushed to all subscribers in case of a change. The subscribing endpoint
adds the incoming data to its dataset clone as well as hold the change log in
order to provide versioning information to the user.

Add data and subscribe to changes

Step 1: subscription URL.

htg/e12-demo eccenca com/brox/id m

NO SUDS| g,,; 5. check data and povido context

bpox ?rox IT-Solutions GmbH .

07022015

Wolfsburg: Biro
Lessing St 12,1234 Wofsburg Ger

9 An der Breten Wiese 5, 30625, Hannover, oe

SAVEDATA

V2.0,020.4067149b-dirty

¥20.0:209067149b-dirty

Fig. 3. Screenshots of the master data management user interface: (left) Any user can
subscribe to changes of other datasets by employing the subscription URL provided
by the publisher. After committing the subscription process, the current version of the
data model is fetched with an HTTP Linked Data request. (right) The publisher of a
dataset is able to create its company master data which includes sites, contacts and
other structures by using the master data manager. The master data manager is a
browser-based user interface to an OAuth2 [6] enabled SPARQL endpoint.

158 S. Tramp et al.

Figure 3 depicts two screenshots of the master data management user inter-
face which lies on top of the versioning and OAuth2 enabled SPARQL endpoint?.

Acknowledgement. This work was partly supported by a grant from the German
Federal Ministry of Education and Research (BMBF) in the IKT 2020 funding pro-
gramme (GA no. 01IS14019) for the LUCID Project (http://lucid-project.org).

References

1. Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge bases.
In: Proceedings of Ershov Memorial Conference (2006)

2. Berners-lee, T., Connolly, D.: Delta: an ontology for the distribution of differ-
ences between RDF graphs. Technical report, W3C (2004). http://www.w3.org/
Designlssues/Incs04 /Diff.pdf

3. Cassidy, S., Ballantine, J.: Version control for RDF triple stores. In: Filipe, J.,
Shishkov, B., Helfert, M. (eds.) Proceedings of the Second International Conference
on Software and Data Technologies, ICSOFT 2007, ISDM/EHST/DC, 22-25 July
2007, Barcelona, Spain, pp. 5-12. INSTICC Press (2007)

4. Fitzpatrick, B., Slatkin, B., Atkins, M., Genestoux, J.: PubSubHubbub Core
0.4. Working draft, PubSubHubbub W3C Community Group (2013). https://
pubsubhubbub.googlecode.com/git /pubsubhubbub-core-0.4.html

5. Graube, M., Hensel, S., Urbas, L.: R43ples: revisions for triples - an approach for
version control in the semantic web. In: Knuth, M., Kontokostas, D., Sack, H. (eds.)
Proceedings of the 1st Workshop on Linked Data Quality Co-located with 10th
International Conference on Semantic Systems, LDQ@QSEMANTICS 2014, 2nd Sep-
tember 2014, Leipzig, Germany, vol. 1215. CEUR Workshop Proceedings. CEUR-
WS.org (2014)

6. Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749, IETF, October
2012. https://tools.ietf.org/html/rfc6749

7. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo,
D., Soiland-Reyes, S., Zednik, S., Zhao, J.: PROV-O: The PROV Ontology. W3C
Recommendation, W3C, April 2013. http://www.w3.org/TR/prov-o/

8. Tramp, S., Frischmuth, P., Ermilov, T., Shekarpour, S., Auer, S.: An architecture
of a distributed semantic social network. Semant. Web 5(1), 77-95 (2014)

* An annotated demonstration video is available at http://downloads.eccenca.com/
2015/03/13/eswc2015-1ucid-demo.mp4.

http://lucid-project.org
http://www.w3.org/DesignIssues/lncs04/Diff.pdf
http://www.w3.org/DesignIssues/lncs04/Diff.pdf
https://pubsubhubbub.googlecode.com/git/pubsubhubbub-core-0.4.html
https://pubsubhubbub.googlecode.com/git/pubsubhubbub-core-0.4.html
https://tools.ietf.org/html/rfc6749
http://www.w3.org/TR/prov-o/
http://downloads.eccenca.com/2015/03/13/eswc2015-lucid-demo.mp4
http://downloads.eccenca.com/2015/03/13/eswc2015-lucid-demo.mp4

	Distributed Linked Data Business Communication Networks: The LUCID Endpoint
	1 The LUCID Endpoint
	2 The Eccenca Revision Vocabulary
	3 Demonstration Use-Case: Master Data Management
	References

