
Rubya : A Tool for Generating Rules
for Incremental Maintenance of RDF Views

Vânia M.P. Vidal1, Marco A. Casanova2, Valéria M. Pequeno3(B),
Narciso Arruda1, Diego Sá1, and José M. Monteiro1

1 Federal University of Ceará, Fortaleza, CE, Brazil
{vvidal,narciso,diego,jmmfilho}@lia.ufc.br

2 Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
casanova@inf.puc-rio.br

3 INESC-ID Lisbon, Porto Salvo, Portugal
vmp@inesc-id.pt

Abstract. We present Rubya, a tool that automatically generates the
RDF view defined on top of relational data and all rules required for the
incremental maintenance of the RDF view. Our approach relies on the
designer to specify a mapping between the relational schema and a target
ontology and results in a specification of how to represent relational
schema concepts in terms of RDF classes and properties of the designers
choice. Based on this mapping, the rules for incrementally maintenance
of the RDF view are generated.

Keywords: RDF view maintenance · RDB-to-RDF · Linked data

1 Introduction

The Linked Data initiative [1] promotes the publication of previously isolated
databases as interlinked RDF triple sets, creating a global scale dataspace known
as the Web of Data. Since large volume of data is stored in relational data, mak-
ing relational databases accessible to the Web of Data has special significance.

A general way to publish relational data in RDF format is to create RDF
views of the relational data. The contents of views can be materialized to improve
query performance and data availability. However, to be useful, a materialized
view must be continuously maintained to reflect dynamic source updates.

In this demo, we show a framework named RUBYA (Rules by assertion),
based on rules, for the incremental maintenance of external RDF views defined
on top of relational data. Rubya has two main functionalities: (1) the generation
of mappings between the relational schema and a target ontology; and (2) the
generation of the rules required for the incremental maintenance of the view,
based on the mapping initially generated. In Sect. 2, we further detail the Rubya
tool.

The demo video is available at http://tiny.cc/rubya. First, the video shows,
with the help of a real-world application, the process of defining the RDF view
c© Springer International Publishing Switzerland 2015
F. Gandon et al. (Eds.): ESWC 2015, LNCS 9341, pp. 169–174, 2015.
DOI: 10.1007/978-3-319-25639-9 33

http://tiny.cc/rubya


170 V.M.P. Vidal et al.

and generating the maintenance rules with Rubya. Then, it shows some practical
examples of using the rules for incremental maintenance of a materialized RDF
view. For more information see http://www.arida.ufc.br/ivmf/.

2 Generating Rules with Rubya

Figure 1 depicts the main components of the framework. Briefly, the administra-
tor of a relational database, using Rubya, should create RDF views and define a
set of rules using Rubya - Fig. 1(a). These rules are responsible for: (i) computing
the view maintenance statements necessary to maintain a materialized view V
with respect to base updates; and (ii) sending the view maintenance statements
to the view controller of V - Fig. 1(b). The rules can be implemented using trig-
gers. Hence, no middleware system is required. The view controller for the RDF
view has the following functionality: (i) receives the view maintenance updates
from the RDB server and (ii) applies the updates to the view accordingly.

Fig. 1. Suggested framework.

The process of defining the RDF view and generating the maintenance rules
with Rubya consists of three steps:

STEP 1 (Mapping specification): Using the correspondence assertions editor
of Rubya, the user loads the source and target schema and then he can draw
Correspondence Assertions (CAs) to specify the mapping between the target
RDF schema and the source relational schema. The demo video shows how the
CA Editor helps the user graphically to define CAs.

A CA can be: (i) a class correspondence assertion (CCA), which matches
a class and a relation schema; (ii) an object property correspondence assertion
(OCA), which matches an object property with paths (list of foreign keys) of a
relation schema; or (iii) a datatype property correspondence assertion (DCA),
which matches a datatype property with attributes or paths of a relation schema.

http://www.arida.ufc.br/ivmf/


Rubya: A Tool for Generating Rules for Maintenance of RDF Views 171

CAs have a simple syntax and semantics and yet suffice to capture most of the
subtleties of mapping relational schemas into RDF schemas. Figure 2 shows some
examples of correspondence assertions between the relational schema ISWC REL
and the ontology CONF OWL. CCA1 matches the class foaf:Person with the
relation Persons. We refer the reader to [7] for the details and motivation of the
mapping formalism.

Fig. 2. CONF OWL and ISWC REL schemas and some examples of CAs.

STEP 2 (RDF view creation): The GRVS module automatically generates
the RDF view schema, which is induced by the CAs defined in Step 1. The
vocabulary of the RDF view schema contains all the elements of the target RDF
schema that match an element of the source relational schema.

STEP 3 (Rule generation): The GVMR module automatically generates the
set of rules required to maintain the RDF view defined in Step 2. The process
of generating the rules for a view V consists of the following steps: (a) Obtain,
based on the CAs of V, the set of all relations in the relational schema that
are relevant to V. (b) For each relation R that is relevant to V, three rules are
generated to account for insertions, deletions and updates on R.

Two procedures, GVU INSERTonR and GVU DELETEonR, are automati-
cally generated, at view definition time, based on the CAs of V that are relevant
to R. Note that an update is treated as a deletion followed by an insertion, as
usual. GVU INSERTonR takes as input a tuple rnew inserted in R and returns
the updates necessary to maintain the view V. GVU DELETEonR takes as
input a tuple rold deleted from R and returns the updates necessary to maintain
the view V. In [7], we present the algorithms that compile GVU INSERTonR
and GVU DELETEonR based on the CAs of V that are relevant to R.

Once the rules are created, they are used to incrementally maintain the mate-
rialized RDF view. For example, Fig. 3 shows the process to update a RDF view
when an insertion occurs on the relation Papers. When an insertion occurs on



172 V.M.P. Vidal et al.

Fig. 3. Using the rules generated by Rubya when insertions occurs on Papers.

Papers, a corresponding trigger is fired. The trigger computes the view main-
tenance statements U, and sends it to the view controller. The view controller
computes the view updates U*, and applies it to the view state.

Rubya was developed in Java. Actually, we use Oracle as the relational data-
base system and Fuseki as RDF store. However, we can easily adapt Rubya for
other relational database system and RDF store. Jena [2] is used for communi-
cation with Fuseki.

3 Related Work

There is significant work on reusing relational data in terms of RDF (see a survey
in [5,6]). Karma [4], for example, is a tool to semi-automatically create mapping
from a source to a target ontology. In our tool, the user defines mappings between
a source and a target ontology using a GUI. The novelty of our proposal is that
we generate rules to maintain the RDF views.

[3] proposes the R3M tool in order to maintain RDF views over RDF data-
bases. In that work, there is not any difference between the structure of the
view and the data source, i.e., the RDF view contains a subset of classes and
properties of the data source. In this case, direct mappings are used to match
the elements of the view and the data source and the process of the view main-
tenance is very simple. Our approach differs from [3] mainly in two aspects: (1)
our data source are relational databases, while the above papers is RDF data-
bases; (2) our tool deals with more complex types of mappings. For example, our
tool can deal with situations such as, in the relational database the attributes
firstName and lastName be mapped to the property foaf:name. We also can deal
with mappings when the RDF view describes a property which the data source
does not include, although the source can express it through a path which it
possess. For example, consider the schemas in Fig. 2. The property skos:subject
can be mapped to the path of Papers that includes the foreign keys fk Paper and
fk Topics. For these cases involving complex mappings, simple view maintenance



Rubya: A Tool for Generating Rules for Maintenance of RDF Views 173

approaches are not a solution, and other approaches are necessary in order to
correctly translate updates from the data source into updates in the RDF view.

4 Conclusions

In this paper, we present Rubya, a tool for incremental maintenance of external
RDF views defined on top of relational data. More details about the theoretical
fundaments and algorithms used in Rubya can be found in [7]. A preliminary
version of Rubya was presented, as poster, in [8].

Our approach is very effective for an externally maintained view because:
the view maintenance rules are defined at view definition time; no access to
the materialized view is required to compute the view maintenance statements
propagated by the rules; and the application of the view maintenance statements
by the view controller does not require any additional queries over the data
source to maintain the view. This is important when the view is maintained
externally [7], because accessing a remote data source may be too slow.

The use of rules is therefore an effective solution for the incremental main-
tenance of external views. However, creating rules that correctly maintain an
RDF view can be a complex process, which calls for tools that automate the
rule generation process, as Rubya does.

Acknowledgments. This work was partly funded by FCT with references UID/
CEC/50021/2013 and EXCL/EEI-ESS/0257/2012 (DataStorm) and grants SFRH/
BPD/76024/2011; by CNPq, under grants 442338/2014-7 and 303332/2013-1; and by
FAPERJ, under grant E-26/201.337/2014.

References

1. Berners-Lee, T.: Design issues: Linked data (2006). http://www.w3.org/
DesignIssues/LinkedData.html

2. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: WWW Alt 2004, pp.
74–83. ACM, New York (2004)

3. Deng, Y., Hung, E., Subrahmanian, V.: Maintaining RDF views. Technical
report CS-TR-4612 (UMIACS-TR-2004-54), University of Maryland Institute for
Advanced Computer Studies (2004)

4. Knoblock, C.A., et al.: Semi-automatically mapping structured sources into the
semantic web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V.
(eds.) ESWC 2012. LNCS, vol. 7295, pp. 375–390. Springer, Heidelberg (2012)

5. Michel, F., Montagnat, J., Faron-Zucker, C.: A survey of RDB to RDF translation
approaches and tools. Research report, I3S (2014)

6. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the seman-
tic web: a survey. Semant. Web J. 3(2), 169–209 (2012)

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html


174 V.M.P. Vidal et al.

7. Vidal, V.M.P., Casanova, M.A., Cardoso, D.S.: Incremental maintenance of RDF
views of relational data. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bel-
lahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol.
8185, pp. 572–587. Springer, Heidelberg (2013)

8. Vidal, V.M.P., Casanova, M.A., Monteiro, J.M., Arruda Jr., N.M., Cardoso, D.S.,
Pequeno, V.M.: A framework for incremental maintenance of RDF views of rela-
tional data. In: ISWC 2014 Posters & Demonstrations Track, pp. 321–324 (2014)


	Rubya: A Tool for Generating Rules for Incremental Maintenance of RDF Views
	1 Introduction
	2 Generating Rules with Rubya
	3 Related Work
	4 Conclusions
	References


