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Abstract

Recently, social phenomena have received a lot of attention not only
from social scientists, but also from physicists, mathematicians and com-
puter scientists, in the emerging interdisciplinary field of complex system
science. Opinion dynamics is one of the processes studied, since opin-
ions are the drivers of human behaviour, and play a crucial role in many
global challenges that our complex world and societies are facing: global
financial crises, global pandemics, growth of cities, urbanisation and mi-
gration patterns, and last but not least important, climate change and
environmental sustainability and protection. Opinion formation is a com-
plex process affected by the interplay of different elements, including the
individual predisposition, the influence of positive and negative peer in-
teraction (social networks playing a crucial role in this respect), the infor-
mation each individual is exposed to, and many others. Several models
inspired from those in use in physics have been developed to encompass
many of these elements, and to allow for the identification of the mech-
anisms involved in the opinion formation process and the understanding
of their role, with the practical aim of simulating opinion formation and
spreading under various conditions. These modelling schemes range from
binary simple models such as the voter model, to multi-dimensional con-
tinuous approaches. Here, we provide a review of recent methods, focusing



on models employing both peer interaction and external information, and
emphasising the role that less studied mechanisms, such as disagreement,
has in driving the opinion dynamics. Due to the important role that exter-
nal information (mainly in the form of mass media broadcast) can have in
enhancing awareness of social issues, a special emphasis will be devoted
to study different forms it can take, investigating their effectiveness in
driving the opinion formation at the population level. The review shows
that, although a large number of approaches exist, some mechanisms such
as the effect of multiple external information sources could largely benefit
from further studies. Additionally, model validation with real data, which
are starting to become available, is still largely lacking and should in our
opinion be the main ambition of future investigations.

1 Introduction

The discovery of quantitative laws in the collective properties of a large
number of people, as revealed for example by birth and death rates or
crime statistics, was one of the factors pushing for the development of a
science of statistics in the 19th century. It let many scientists and philoso-
phers to call for some quantitative understanding on how such precise reg-
ularities arise out of the apparently erratic behaviour of single individuals.
Hobbes, Laplace, Comte, Stuart Mill and many others shared, to a differ-
ent extent, this line of thought [I]. Also, Majorana in his famous tenth
article [2, 3] pointed out the value of statistical laws for social sciences.
Nevertheless, it is only in the past few years that the idea of approaching
society in a quantitative way has changed from a philosophical declara-
tion of principles to a concrete research effort involving a critical mass of
scientists, above all physicists. The availability of new large databases as
well as the appearance of brand new social phenomena (mostly related to
the Internet world) have been instrumental for this change.

In social phenomena the basic constituents are humans, i.e., complex
individuals who interact with a limited number of peers, usually negligible
compared to the total number of people in the system. In spite of that,
human societies are characterized by stunning global regularities [4]. We
find transitions from disorder to order, like the spontaneous formation of a
common language/culture or the emergence of consensus about a specific
issue and there are examples of scaling and universality as well. These
macroscopic phenomena naturally call for a statistical physics approach
to social behaviour, i.e., the attempt to understand regularities at large
scale as collective effects of the interaction among single individuals.

Human behaviour is governed by many aspects, related to social con-
text, culture, law and other factors. Opinions and believes are at the
basis of behaviour, and can be seen as the internal state of individuals
that drives a certain action. We hold opinions about virtually everything
surrounding us, hence understanding opinion formation and evolution is
key to explaining human choices. Opinion formation is a complex process
depending on the information that we collect from peers or other external
sources, among which mass media are certainly the most predominant.
Hence, understanding how these different forces interact can give insight



into how complex non-trivial collective human behaviour emerges and
how well formulated information may drive individuals toward a virtuous
behaviour.

In the context of sustainability challenges, the cumulative sum of peo-
ple’s individual actions has an impact both on the local environment (e.g.,
local air or water quality, noise disturbance, local biodiversity, etc.) and
at the global level (e.g., climate change, use of resources, etc.). It is thus
important to shed light on the mechanisms through which citizens aware-
ness of environmental issues can be enhanced, and this is in turn tightly
related to the way citizens perceive their urban environment. In this
perspective, models of opinion dynamics can be applied to investigate
mechanisms driving citizens’ environmental awareness. Very important
in this sense is the effect of the information citizens are exposed to [3],
both coming from mass media and from more personalized information,
expressly tailored on individuals. It is then crucial to consider different
modelling approaches to opinion dynamics in order to have a clear outline
of the state of the art and to learn from their principles.

Traditionally studied by social science, formation of opinions, as well
as other social processes, have become increasingly appealing to scien-
tists from other fields [6]. A large amount of work is concentrated in
building models of opinion dynamics, using tools borrowed from physics,
mathematics and computer science. Typically, such models consider a
finite number of connected agents each possessing opinions as variables,
either discrete or continuous, and build rules to explain opinion changes,
resulting from interactions either with peers or other sources. Although
assumptions and simplifications are made in building such models, they
have proven very useful in explaining many aspects of opinion formation,
such as agreement, cluster formation, transitions between order (consen-
sus) and disorder (fragmentation). These models can help to give insights
on the dynamics of the opinion formation process and eventually to make
predictions that can be tested and backed up by real data, in a virtuous
loop where results from modelling and experiments can be integrated and
can be used to open and shed light on new questions.

In the following, we provide a review of opinion dynamics models by
classifying them according to the presence or not of external information,
that is a mechanism mimicking a sort of mass media broadcast. In Sec.
no information is present, while in Sec. [3|the external information is taken
into account as an immutable agent participating in the dynamics. Each
of the above sections are further split according to the effective form of
the opinion, which can be modelled either as a one dimensional vector
or as a multidimensional vector. As a further classification, the vectors
representing agent opinions can be either discrete, i.e., their components
can assume a finite number of states, or continuous, i.e., with values in
the domain of real numbers. A separate section, Sec. is dedicated
to a quick review of models coping with the formation and respect of
social norms, a subject tightly connected to environmental issues and
sustainability.

This work is by no means intended as an exhaustive review of meth-
ods, although efforts have been made to include as many contributions as
possible.



2 Existing models of opinion dynamics
and extensions

One of the first and most popular models adapted to opinion dynamics
from physics [7, 8] is the Ising model [9]. This can be though as an ex-
tremely simplified agent based model. In agent based models, individuals
are considered as independent agents that communicate each other and
update their opinions according to a limited set of fixed rules. The inter-
action between agents may be carried on pairwise or in groups. Agents
are connected by an underlying graph defining the topology of the system
and the interactions are usually between nearest neighbours. Agents are
endowed with opinions, that may be represented as a variable, or a set
of variables, i.e. represented by a vector with given components, discrete,
i.e. that can assume a set of predefined values, or continuous.

In the Ising model, each agent has one opinion represented as a spin,
that can be up or down, determining a choice between two options. Spin
couplings represent peer interactions and external information is the mag-
netic field. This may appear too reductive, thinking about the complexity
of a person and of each individual position. Everyday life, however, in-
dicates that people are sometimes confronted with a limited number of
positions on a specific issue, which often are as few as two: right/left,
Windows/Linux, buying/selling, etc. Further, despite its simplicity, this
model is particularly attractive since it foresees a phase transition from
an ordered to a disordered phase, related to the strength of the spins
interaction (inverse temperature in the physics language).

Although an interesting approach, the Ising model can be too simple
to interestingly account for the complexity of each individual position and
of individuals interactions. Hence, in the last decade, many other models
have been designed (an extensive earlier review of these can be found in
[6]). The aim of these chapter is to present some of these models and a
selection of their latest developments.

2.1 One-dimensional models
2.1.1 Discrete opinions

The voter model

The voter model is one of the simplest models of opinion dynamics,
originally introduced to analyse competition of species [10]. The model
has then been attracting a large amount of attention in the field of opinion
dynamics, and its name stems from its application to electoral competi-
tions [I1]. In this model, each agent in a population of N holds one of two
discrete opinions, s = +£1, similar to the Ising model mentioned above.
Agents are connected by an underlying graph defining the topology of
the system. At each time step, a random agent i is selected along with
one of its neighbours j and the agent takes the opinion of the neighbour.
Thus, while spins in the Ising model try to align with the majority of
their neighbours, voter dynamics involve one neighbour only, hence the
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Figure 1: Basic voter model interaction. Suppose that in the dynamical evo-
lution of the model, which considers an interaction between an agent and one
of its neighbours chosen at random, the agent number 1 was selected in the
configuration of the left part of the figure. With probability 3/4 it will remain
with a positive opinion since three of its neighbours have a positive opinion (the
agents 2, 3, and 4), while with probability 1/4 it will change it since one of its
neighbours has a negative opinion (the agent 5). In the example, the final state
on the right refers to this latter event.

majority does not play a direct role, but is felt indirectly through peer in-
teraction. This difference in the updating rule is reflected in the patterns
generated in two-dimensional lattices (Fig. , where domains of agents
with the same opinion grow but interfaces between different domains are
very rough, unlike usual coarsening systems [12]. A generalized frame-
work that encompasses different variations of voter dynamics has been
introduced recently in [13].

The voter model dynamics has been extensively studied when people
are modelled as vertices in a d-dimensional hyper-cubic lattice. When
considering a finite system, for any dimension d of the lattice, the voter
dynamics leads to one of the two possible consensus states: each agent
with the same opinion s = 1 or s = —1. The probability or reaching
one or the other state depends on the initial state of the population.
More interestingly, in an infinite system, a consensus state is reached
only for dimensions d < 2 [I5]. The time needed for a finite system to
reach consensus is Tn ~ N2 for d = 1, Ty ~ NIn N for d = 2, while
Tn ~ N for d > 2. Many generalization of the plain voter model can
be considered. For instance, a level of confidence can be introduced for
each opinion, determining the probability for an agent to change it. The
confident voter model, where confidence is added to the agent state as a
binary variable, converges to confident consensus in a time that grows as
In N on a complete graph, after crossing a mixed state of unsure agents
[16]. On a lattice, however, consensus time grows as a power law in N,
with some configurations crossing a long-lived striped state.

The voter model in two dimension, with temperature, has been applied
to explain opinion change in financial markets [I7]. The temperature (a



Figure 2: Evolution of a two-dimensional voter model starting from a circle
(top) or a fully disordered configuration (bottom). The white and black colours
represent the positive and negative opinions respectively. From the top panel
we can see how the black area remains practically constant during the dynamics
and the original circular shape is destroyed. In physics, this signals a lack of
surface tension. From [I4].

type of noise) is associated to the nervousness of agents (fear). Through
a feedback between the status of the entire agent population (market
imbalance) and the temperature, nervousness becomes an evolving feature
of the system. This passes through two types of metastable states, either
long-lived striped configurations or shorter mean-field like states.

A recent development involves using power-law intervals between inter-
actions [I8], as opposed to the nearest neighbours or exponential interval
distribution in the original model. The analysis is performed on differ-
ent network topologies, i.e. ring, complete graphs and regular random
graphs. In general, power-law intervals slow down the convergence time,
with small, if no differences, seen for the complete graphs, medium for
regular random graphs and large for the ring. The same slowing down of
dynamics is shown for update probabilities inversely proportional to the
time since the last change of state or interaction, which in the end lead
also to power-law inter-event time distributions [19, 20]. However, de-
pending on how the probabilities are defined, so called ‘endogenous’ and
‘exogenous’ rules, full consensus can be reached or not, respectively.

In [21], the voter model is analysed on random networks, where links
are rearranged in an adaptive manner, based on agent similarity (links
with agents not sharing the opinion are dropped in favor of new connec-
tions to individuals having the same opinion). They show analytically
that in finite systems consensus can be reached, while in infinite systems
metastable states can persist for an infinitely long time. A different anal-
ysis on a directed adaptive network has been proposed in [22] where link
directionality is shown to induce an early fragmentation in the population.

A non-linear extension of the model is introduced in [23]. This allows



agents to select their opinion based on their neighbours using a parameter
a which controls the herding effect, i.e., the inclination of individuals to
behave collectively as a whole. The probability that an agent adopts
opinion +1 is .
P(+1) = (1)
where n4 (n_) is the number of neighbours holding an opinion +1 (—1).
For o« = 1 the original voter model is retrieved, while for large o a model
similar to the majority rule (next paragraph) is obtained. Convergence
time is analysed depending on «, and it is shown that a minimum is ob-
tained for moderate values of a. For extremely low values, large clusters
form slowly, while for very large values, large opinion clusters take long to
merge. This indicates that in order to accelerate consensus, the local ma-
jority opinion should not be strictly followed, but this should be followed
in a moderate way. The optimal o decreases with system size. This holds
for a few network types analysed, i.e. regular lattices, Erdos-Renyi random
graphs, scale-free and small-world networks. For the complex networks,
the minimum « is also shown to increase with the network connectivity
(average degree of the nodes).

Several other studies of non-linear dependence of an agent’s opinion on
the neighbours exist [24] [25]. The introduction of ‘contrarians’ has been
studied in [25], with three types of stable states obtained: (1) coexistence
of the two opinions with equal fractions, (2) adoption of one opinion by
contrarians and the other by the rest of the agents or (3) a limit cycle.
Zealots have been shown to prevent consensus or robust majorities even
when they are in small proportion [26], with a Gaussian distribution of
the magnetization of the system when a small equal number of zealots are
added for each opinion.

In [27], the voter model with popularity bias is analysed. Here, the
probability of a node to choose a particular state is not only based on the
states of the neighbours, but also on their connectivity. The system is
shown to reach consensus in a time T ~ [In N]?, faster than the original
voter model. When confidence is introduced, i.e. the probability of a state
depends also on the current state of the agent, convergence to unanimity
is slower. Irreversibility is also analysed, by making state +1 fixed, i.e.
once agents reach this opinion they remain in that state. This is shown
to converge to consensus on opinion +1 in logarithmic time.

Various other generalizations of the model have been proposed in the
last years. An extension to three opinions has been developed in [2§],
where a third ‘centrist’ opinion (0) was introduced, as standing in the
middle of the two ‘extreme’ opinions 1. Transitions from an extreme
to the neutral opinion are governed by a parameter ¢ measuring the bias
towards extremism, with interactions between extremists impossible (con-
strained voter model). The authors show that polarization is favored for
q > 0, however there is always a finite probability for consensus, while in
the case of ¢ < 0 consensus is more probable. Addition of centrist zealots
(centrists who preserve their opinion) changes the system behaviour in
that a large fraction of centrist zealots generates consensus on the neu-
tral opinion [29]. A small zealot fraction leads to mixed populations,
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where centrists coexist with either both extremist types (when the two
are equally persuasive) or with the most persuasive one.

Strategic voting introduced in the three-state voter model [30] can re-
produce patterns seen in real voting data, where two parties have similar
votes and compete for the majority while the third party remains a minor-
ity over years. Stochastic effects can, however, interchange one majority
party with the minority one, on a time scale growing exponentially with
the size of the population, which has also been observed in real elections.

Kinetic interaction rules for the three state model (with states o; €
+1,0) have been analysed in [31], where agents were influenced by two
terms, a self conviction term and a peer effect term:

Oi(t + 1) = CiOi(t) + uijoj(t) (2)

Peer interactions could be positive or negative (u;; € £1) while convic-
tions could be positive, negative or missing (C; € £1,0). The probability
distributions for these values determined the point of a transition between
an ordered and a disordered state, with negative interactions leading to
increased disorder. Real valued convictions that controlled which of the
two peers will take the other’s opinion and conviction were introduced
in [32]. Noise was added to the system in the form of an instantaneous
adoption of opinion 0 by an agent in the neighbourhood of the interact-
ing pair, with probability p. Stationary states were obtained for all noise
levels, with one of the 1 opinions disappearing and the other coexisting
with the null opinion (undecided). Very high noise led to states where
most agents were undecided, while consensus states were only obtained in
the noiseless case (p = 0). An external effect was also introduced, which
affected again the neighbourhood of the interacting pair. This was shown
to decrease the number of undecided agents in the population. Also, a
large strength of the external effect was shown to decrease its success.
The voter model with arbitrary number of options was also analysed
on co-evolving networks [33]. An agent could either convince a neighbour
of their opinion or disconnect and rewire to another agent. This rewiring
was performed in a preferential manner, i.e. agents close in the network
and flexible towards one another were selected more often. The proba-
bility distribution determining how often an agent accepted the other’s
opinion accounted for the ‘social environment’, while preferential rewiring
for ‘social clustering’. Depending on the flexibility of the social environ-
ment, two system states were observed. A flexible society evolved to a
large connected component of agents sharing the same opinion (‘hege-
monic consensus’), with a small-world network structure. An inflexible
society resulted in multiple components disconnected from the others, a
so called ‘segregated consensus’. Within each component, agents shared
the same opinion, which could be different from the other components.

The majority rule (MR) model
The MR model was first proposed to describe public debates [34].

Agents take discrete opinions +1 and can interact with all other agents
(complete graph). At each time step a group of r agents is selected ran-
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Figure 3: Majority Rule model. The majority opinion inside a discussion group
(here of size five) is taken by all agents.

domly and they all take the majority opinion within the group, as exem-
plified in Fig. The group size can be fixed or taken at each time step
from a specific distribution. If r is odd, then the majority opinion is al-
ways defined, however if r is even there could be tied situations. To select
a prevailing opinion in this case, one possibility is to introduce a bias in
favor of one opinion, say +1. This idea is inspired by the concept of social
inertia [35]. The MR model with opinion bias was originally applied to
describe hierarchical voting in society [36 37, [38], 39] with the discussion
recently extended to three discrete choices for hierarchical voting [40].

If we define p% to be the initial fraction of agents with the opinion
+1, and we allow the system to evolve, all agents will have opinion +1
(=1) if p§ > pe (P} < pe). If 7 is odd, pe(r) = 1/2, due to the symmetry
of the two opinions. If r is even, p. < 1/2, i.e., the favored opinion will
eventually be adopted by the entire population, even if initially shared by
a minority of agents. To reach the consensus, the number of updates per
agent scales like log N [41]. Under power-law noise, the system relaxes
in a state with constant magnetization if the noise amplitude is under
a threshold, while for higher amplitude the magnetization tends to zero
[42].

A full review of extensions and application of the MR model can be
found in [43]. Recent extensions have been used to explain results of public
debates on different issues such as global warming, evolution theory, HIN1
pandemic [44]. These include two types of agents, floater and inflexible,
where inflexible agents do not change their opinion. It is shown that, for
the case where not enough scientific data is available, the inflexible agents
are those that drive the result of the debate. Hence, a strategy for winning
a debate is the acquisition of as many inflexible agents as possible. Also,
the analyses indicate that a fair discourse in a public debate will most
likely lead to losing, while exaggerated claims are very useful for winning.
Similar results are presented in [45], where contrarians, i.e. agents who
take the minority opinion of a group, are also introduced. The effect of
introducing both contrarians and inflexible agents is discussed in [46], and
results from the previous studies confirmed.

The same issue of public debates has been analysed with a different
variation of the model [47]. Here, collective beliefs are introduced as an



individual bias to select one or the other opinion, in case of a tie in voting.
Here only pair interactions are analysed. The study shows that collective
beliefs are very important in determining the results of the debate, and
again, a winning strategy is acquiring inflexible agents, which may mean
using overstated or exaggerated statements. A similar model has been
also applied to explain the formation of bubble crashes in the financial
market [48]. Agents decide to sell or buy depending on the majority rule
and the collective beliefs in case of tie. The model shows that it is the
collective beliefs that determine a discrepancy between the real and the
market value of an asset, which in turn generates crashes. If the collective
beliefs are balanced, or ties do not appear (by using odd-sized groups),
these crashes do not appear.

Two model extensions with independent agents and collective opin-
ions have been introduced in [49]. Here, the MR model is applied with
probability 1 — ¢, while with probability ¢ the agent either chooses one
random option (extension 1) or follows the collective opinion (model 2).
The authors show that, in both cases, there exists a threshold for ¢ under
which complete consensus is obtained.

The majority rule model has been analytically studied on hypergraphs,
with a version entitled ‘spatial majority rule model’ [50]. Hyperedges
consisting of n vertices were used to define social groups. Agents on a
hyperedge simultaneously changed their opinion to that of the majority
on the same hyperedge, while ties resulted in adoption of opinion +1.
The system was shown to converge to a majority of +1 for n even and to
cluster for n odd, even with an infinite number of hyperedges.

A model sharing similarities to the MR model above is the non-consensus
opinion (NCO) model and its extensions [5I]. These introduce the self
opinion in the majority rule, with or without a weight, and the system is
shown to achieve stable states where the two competing opinions coexist,
on different network types, including coupled networks.

An application of a similar model, entitled majority vote model, to
model tax evasion dynamics is presented in [52] [53]. Here, +1 represents
and honest individual, while —1 an individual evading tax. Individuals
change their opinion with a probability which depends on the average of
all of their neighbours:

| .
P(‘flip’) = 3 1 —0i(1 — 2q) sign( Z on) 3)
neN (i)

Here, o0; is the current opinion of agent ¢, N(¢) is the set of neighbours of
i, while g is a noise parameter. In the model an audit procedure is also
introduced. When an agent chooses to evade taxes, a punishment is im-
posed with probability p, consisting in forcing the agent to be honest for
a number of k population updates. Different network topologies are anal-
ysed: square lattice, Barabasi-Albert and Honisch-Stauffer. Numerical
results show that without punishment, tax evasion fluctuates, reaching at
times very high levels. The introduction of audit, even at very low levels,
is shown to reduce drastically the percentage of agents choosing to avoid
tax. Similar results had been obtained previously using the Ising model
[54).
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The majority vote model has also been analysed with heterogeneous
agents [55], i.e. the parameter ¢ above is replaced by g¢;, characteristic to
each agent. These new parameters are drawn randomly at the beginning
of the simulations from an interval [0, ¢]. Critical exponents are estimated
using both analytic and numerical tools.

Social impact and the Sznajd model

Interactions and opinion formation, with their complex underlying fea-
tures, have been long analysed by social scientists, and theories devised
to explain them. One example is social impact theory [56], which states
that the impact of a group of people on an individual depends mainly on
three factors: their number, their distance and their strength. A first ap-
plication of this theory to build a dynamical model of opinion formation
has been introduced in [57, 58]. This uses cellular automata to model
individuals which hold one of two opinion values o; = +1. They are
placed within a network, which accounts for the spatial factor, i.e. the
distance d between individuals. Individual strength is represented by two
variables: persuasiveness (how much is an agent able to influence another)
and supportiveness (how much an agent supports the opinion they hold in
their neighbourhood). Social impact on individual ¢ is then computed as
a weighted sum of the persuasiveness of other agents holding a different
opinion and the supportiveness of agents holding the same opinion :

X : 0
J J J

Here d;; is the distance between agents ¢ and j (which can be defined
depending on the network type used), g() is a decreasing function of d;;
and t() is a strength scaling function. Thus, the updating rule for opinion
of agent i is:

o; = —sign(o:I; + h) (5)

where h is a noise factor. The model was shown to lead to spatially
localized opinion clusters, where minority clusters are facilitated by the
existence of strong individuals supporting the weaker ones. This holds for
a variety of social network topologies: fully connected graph, hierarchical
networks, strongly diluted networks and Euclidean space.

Another recent model employing the theory of social impact is the
Sznajd model [59]. This is a variant of spin model, on a one dimensional
lattice, that takes into account the fact that a group of individuals with
the same opinion can influence their neighbours more than one single in-
dividual. The proximity factor is also taken into account, by considering
neighbouring agents on the lattice. However, the strength of individuals, a
third factor mentioned in the theory of social impact, is not present. Each
agent has an opinion o; = +1. At each time step, a pair of neighbour-
ing agents is selected and, if their opinion coincides, all their neighbours
take that opinion. Otherwise, the neighbours take contrasting opinions
(Fig. . The model has been shown to converge to one of the two agreeing
stationary states, depending on the initial density of up-spins (transition

11
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Figure 4: Sznajd model. A pair of neighbouring agents with the same opinion
convince all their neighbours (top), while they have no influence if they disagree
(bottom).

at 50% density). Versions on a two dimensional lattice have also been
studied, with four neighbours (a plaquette) having to agree in order to
influence their other 8 neighbours [60]. Extensions to a third option (cen-
trist/indifferent) have been also studied [61], [62].

A different extension is the introduction of “social temperature” [63].
Here the original rules of the Sznajd model are applied with probability
p, i.e. all neighbours take the opinion value of the plaquette, in case they
agree. With probability 1 — p the agents take the opposite value than
dictated by the original Sznajd rules. This results in disagreement by
some individuals who choose to be or not to be contrarians at each update.
Importantly, disagreement is not a fixed attribute of the individuals, but
varies in time. It was shown that over a critical threshold for p, the
behaviour of the original model is conserved, i.e. all individuals agree
to one opinion. Under this threshold the system remains in a disordered
state with magnetization (defined as Zf;l 0i/N) close to 0.

A recent study of disagreement in the Sznajd model in one dimension is
[64], where conformist (agreement) and anti-conformist (disagreement) re-
actions appear. Specifically, the model is introduced a parameter p which
defines the probability that, when two neighbours hold the same opinion,
a third neighbour, that previously held the same opinion, will take the
opposite position. If the third neighbour did not share the opinion of the
initial pair, then they take that opinion, as in the original Sznajd model.
It is shown that for low anti-conformity, consensus can be reached, and
spontaneous shifts in the entire population between +1 appear. On the
other hand, high anti-conformity results in oscillations of the magneti-
zation level around 0, without reaching £1. The same model has been
applied on complete graphs [65]. Here, it was shown (both numerically
and analytically) that the reorientations for low anti-conformism (p) ap-
pear now between two magnetization states pmm instead of +1.

Agent independence (as opposed to disagreement) is studied in [66].
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Independence means that a neighbouring agent can choose not to follow
an agreeing plaquette, with probability p. In this case, they can flip their
opinion with probability f, described as agent flexibility. The model is
analysed on one and two-dimensional lattices and on a complete graph.
Independence is shown to favor coexistence of the two opinions in the
society, with the majority being larger for small independence levels (p).

The Sznajd model with reputation, on a 2-D lattice, has been also anal-
ysed [67], where each agent has a reputation value associated. The agent
plaquette can influence the neighbours, with probability p, only if they
agree and they have an average reputation larger than the neighbours.
Reputations also evolve, i.e. they increase if the plaquette influences a
neighbour and decrease otherwise. The model is shown to lose the phase
transition for p < p. ~ 0.69, when some agents preserve a non-majoritary
opinion.

An analysis of the Sznajd model on an Erdos-Renyi random graph
with enhanced clustering is presented in [68], where the model is shown
to not reach full consensus, unlike the original model. The connection of
a modified version of the model, which includes bounded confidence and
multiple discrete opinions, with graph theory is discussed in [69].

The model has been also included in a study of two competing pro-
cesses, one following Sznajd and the other Voter dynamics [(0]. Agents
are connected by a Watts-Strogatz small-world network, and can be in
two states, either S or D. At each time step, a random agent is selected.
If it is in state S, it turns a random neighbour from state D to state S. If it
is in state D, with probability p select another random neighbour in state
D, if it exists, and turn all of their neighbours into state D as well. The
system is shown to switch between full consensus on S to full consensus
on D depending on p, when the clustering coefficient is low. However as
the clustering coefficient increases, the opinion S is facilitated.

The g-voter model

In [71] the non-linear g-voter model is introduced, as a generalization of
discrete opinion models. Here, N individuals in a fully connected network,
hold an opinion 1. At each time step, a set of g neighbours are chosen
and, if they agree, they influence one neighbour chosen at random, i.e. this
agent copies the opinion of the group. If the group does not agree, the
agent flips its opinion with probability . The voter and Sznajd models
and many of their extensions are special cases of this more recent model.
Analytic results for ¢ < 3 validate the numerical results obtained for the
special case models, with transitions from a ordered phase (small €) to
a disordered one (large €). For ¢ > 3, a new type of transition between
the two phases appears, which consist of passing through an intermediate
regime where the final state depends on the initial condition. The model
has been also studied on heterogeneous mean field and random regular
networks [72], where the intermediate regime is shown to disappear in the
case q > 3, behaviour qualitatively similar to that obtained on a lattice.

In [73] the g-voter model is analysed for non-conformity and anti-
conformity with the aim to compare the two types of dynamics. Non-
conformity implies that some agents, regardless of what the influencing
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group’s opinion is, will decide to flip their opinion with probability p.
Anti-conformity means that some agents will not follow the opinion of the
group, but the opposite one, with probability p. The comparison shows
important difference between the two types of dynamics, although they
appear to be very similar. In the case of anti-conformism, the critical
value p. for the order-disorder phase transition is shown to increase with
q, while for non-conformism, this decreases with gq.

Other approaches

Binary opinions have been analysed on interdependent networks [74].
Two networks were considered, each corresponding to one party running
for elections. Agents were part of both networks, and chose whether to
vote for one of the two parties or none based on interactions on the two
different networks. A simulated annealing algorithm was used to minimize
the value of a Hamiltonian that counted the conflicting connections in both
networks. The method showed that the most connected network wins the
elections, however a small minority of committed agents can reverse the
outcome.

2.1.2 Continuous opinions

Deffuant-Weisbuch

The Deffuant-Weisbuch model [75] uses a continuous opinion space,
where each individual out of a population of N can take an opinion value
z; € [-1,1]. Two individuals interact if their opinions are close enough,
ie. |z; —xj| < d, with d a bounded confidence parameter. In this case,
they get closer to one another by an amount determined by the difference
between them and a convergence parameter p:

zi = xi + px; — i) (6)

The population was shown to display convergence to one or more clusters
(c) depending on the value of the bounded confidence parameter (c ~ | 5]
[76]). Parameters p and N (population size) determine the convergence
speed and the width of the distribution of final opinions. A feature typical
to the clusters obtained by this model is the emergence of small extreme
clusters [77].

The Deffuant-Weisbuch model has received a lot of attention in the
literature (see [78] for a previous review), with several recent analysis and
extensions. For instance, [79] discusses heterogeneous and adaptive confi-
dence thresholds on 2D lattices, while in [80] the model has been extended
to include disagreement in order to better describe the Social Judgment
Theory [81, [82]. In [83], analytical results are provided, showing that
in the limit of time ¢ — oo, the population forms a set of clusters too
far apart to interact, at a distance larger than d, after which agents in
individual clusters converge to the cluster’s barycentre. When N — oo,
the opinion evolution is shown to be equivalent to a nonlinear Markov
process, which proves the “propagation of chaos” for the system. This
means that, as the system becomes infinite in size, an opinion evolves
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under the influence of opinions selected independently from the opinion
process, at a rate given by the limit of the rate at which agents interact in
the finite system. The initial condition and noise (‘free will’) were shown
to have large effects on the number of clusters obtained [84]. Specifically,
segregated initial conditions were shown to have difficulties achieving con-
sensus, while initial cohesion resulted in convergence to one cluster. This
effect can be partially removed by noise.

The original model is based on agreement dynamics, i.e. if individuals
are too different, they do not interact. However, disagreement dynamics
are well known to appear in real situations [85]. Hence, in [86], partial
contrarians were included, which are agents that can disagree (i.e. change
their opinion in the opposite direction) with individuals that think differ-
ently. The society is mixed with the two types of agents, and it is shown
that dynamics change depending on the amount of individuals that can
disagree. Depending on the value of the bounded confidence parameter,
one, two or more clusters can be observed, similar to the original Deffuant-
Weisbuch, but bifurcation patterns are different. For a large number of
contrarians, the number of clusters decreases as the confidence increases,
but clusters become more different. For a smaller number of contrarians,
on the other hand, clusters also become closer when they are fewer. This
shows that contrarians favor a more determined fragmentation, i.e. not
only the number of clusters, but also the distance between clusters in-
creases. Also, the new type of agents increases the time required to reach
a final frozen state. A similar approach can be found in [87], where the
2-D Deffuant model with disagreement is analysed, and shown to favor ex-
tremist clusters. The model with partial contrarians presented in [86] has
also been extended to include opinion leaders [88]. These were represented
as individuals with high connectivity and fixed opinion, while the rest of
the individuals were connected by a small-world network. Depending on
the bounded confidence (tolerance) of the leaders, their connectivity and
opinion, different patterns were shown to emerge in the system. While
for a society without contrarians, tolerant leaders are more successful, in
a society with contrarians this model suggests that intolerant leaders are
better able to impose their views.

Noise or opinion drift has been also analysed for this model. Ear-
lier studies introduced noise as the possibility of an agent to switch to
a random opinion, with a certain probability [89]. This resulted in a
transition between a disordered state, for larger noise, to formation of
opinion clusters. These clusters however differed from the original model
in that opinions included was not exactly the same, but a spread was
visible. Also, in certain situations, spontaneous transitions between dif-
ferent cluster configurations were observed. Similar results were reported
by [90], where interactions were slightly changed so that an individual can
influence more neighbours at a time. The study [9I] allows individuals
to change their opinion in an interval centred around the previous one,
instead of the entire possible range. This type of dynamics is addressed
as diffusion here. The width of the diffusion interval determines how the
system behaves, with a low diffusion favoring consensus, with a cluster
which changes its centre of mass due to continuous oscillations. Large dif-
fusion produces clusters and fluctuation patterns similar to the previous
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studies.

A different extension of the model is to consider the bounded con-
fidence parameter as an attribute of the individuals, hence different for
each. In [92] heterogeneous bounds of confidence are shown to enhance
the chance for consensus, since close-minded individuals can be influenced
by the more open-minded ones (this extension has been also applied to the
Hegselmann-Krause model described in the next section). On the same
lines, [93] devises a method of computing the bounded confidence thresh-
old based on the current individual opinion, to obtain less confidence for
extremists:

dizl—a\xﬂ, (7)

where a controls the tolerance rate. The update rule is also changed so
that extremists change their opinion less:

T :.'Ei—|—di($j —%;)/2 (8)

Additionally, the social network is determined at the beginning depending
on how extreme are individual opinions (extremists interact only with
similar individuals, while moderated individuals can interact with a wider
range, based on a segregation parameter 3). Under these new conditions,
it is shown that opinions converge to one large cluster when « is very
small or g8 is very large, with some small coexisting extreme clusters,
while pluralism is conserved only when extremist clusters are connected
enough to continue to communicate to others (large o and ).

Further, in [94] an analysis of the Deffuant-Weisbuch model on scale
free directed social networks is presented, and the average number of final
opinions is shown to be larger, when compared to undirected networks,
for high bounded confidence parameter d and smaller for low d. Also, an
analysis on an adaptive network is presented in [95].

The Deffuant model with bias has been analysed in [96], in a setting
reaching for consensus. The bias has been introduced in the interaction
rule, where changes in individuals were larger towards the bias. Also,
an hierarchical interaction structure was imposed, by adding a second
stage to the classical Deffuant model: once clusters are stable, each of
them defines a representative, and these interact further with no bounded
confidence imposed. This approach always leads to consensus, and it was
shown that the effect of strong biases is reduced by using the hierarchical
consensus, compared to the original dynamics. For lower bias however it
was shown to be detrimental.

Coupling of this model with a public goods game has been studied
in [97]. Here, the ‘Tragedy of commons’ game has been enhanced by a
social interaction component. Specifically, after each round of the game,
a random agent interacts with a neighbour using the update rule of the
Deffuant model, if the neighbour had at least the same payoff in the last
round. The opinion value so obtained represents the probability that
each agent chooses one of the two possible strategies in the next round
(cooperate or defect). The authors show that cooperation can be increased
by adding the social component, and that the system behaviour does not
change with the social network topology.
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The Hegselmann-Krause (HK) model

A similar model to that presented in the previous section is the HK
model [08]. Opinions take values in a continuous interval, and bounded
confidence limits the interaction of agent ¢ holding opinion z; to neigh-
bours with opinions in [z; — €,z; + €], where ¢ is the uncertainty. The
update rule, however, differs, so that agents interact with all compatible
neighbours at the same time:

Zj=|wi(t)—xj(t)\<e a;jz;(t)

zi(t+1) = ; 9)

Zj:\.’zi(t)—mj(t)\<e Qij

where a;; is the adjacency matrix of the graph. So, agent i takes the aver-
age opinion of its compatible neighbours. Hence, this model is more suit-
able to model situations like formal meetings, where interaction appears
in large groups, while Deffuant is better suited for pairwise interaction
within large populations.

The model has been proven to converge in polynomial time, with at
least a quadratic number of steps required [99]. It is completely defined
by the bounden confidence parameter €, facilitating its analysis. The
agent population groups into clusters as the system evolves, similar to the
Deffuant model, with the number of final opinion clusters decreasing if €
increases. For e above some threshold €., there can only be one cluster.
The convergence to one cluster can be very slow due to appearance of
isolated individuals in the middle of the opinion spectrum. Recently, an in-
depth analysis of clustering patterns, depending on € has been performed
[100], and it was shown that there are genuine dynamical phase transitions
between k and k + 1 clusters, and that around critical values of €, the
dynamics slows down. The similarities and differences between the HK
and the Deffuant method in the previous section have been discussed in
[77, [T0T], by formulating the two systems as Markov Chains. This meant
considering the distribution of an infinite population of agents on a finite
number of opinion classes. The cluster patterns of the two models have
been proven to be intrinsic to the dynamics, and the fixed points identical
for the two models.

A further study on the clustering patterns [102] proved analytically
that the population in the HK model with real opinions (not restricted
to interval [0,1], but to [0,L]) and € = 1 converges always to clusters that
are at distance larger than 1, and provided calculation of lower bounds
of inter-cluster distance both for finite size and a continuum of agents.
The continuum version of the model considers individuals indexed by the
real interval I = [0, 1], which have opinions in interval [0, L]. Hence, for
a € [0,1], z¢(a) € [0, L] is the opinion of individual o at time ¢. Defining
Cy = {(o, B) € I*/|x(a) — z(B)| < 1}, the update rule becomes:

Jo (0 pyec,, ©(B)dB

fﬂt(&,ﬁ)ecxt dB

mt+1(a) = (10)

Proofs are given that during convergence, there is always a finite density of
individuals between two clusters, which indicates that the model can never
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converge to an unstable equilibrium. This model is shown to be the limit of
the original HK model, as the population size goes to infinity. Recently,
the same authors have proved similar behaviour for a continuous-time
symmetric version of the model, with both discrete and a continuum of
agents [103].

Additionally, in [I04], an analysis of the interaction network is per-
formed. This is dynamic in the HK model, and evolves with the agent
opinions, to reach a steady state where the network converges to a fixed
topology, as demonstrated by [104]. A different approach of devising an-
alytical results for this model is by looking at the evolution of the distri-
bution of opinions in the population, i.e. Eulerian HK model [105].

The heterogeneous version of the model, i.e. where the bounds € are
different for different agents, is analysed in [I06] and shown to display
pseudo-stable configurations, where part of the population is static. This
model is compared with another version employing bounded influence
instead of bounded confidence. Bounded influence states that an indi-
vidual 7 is affected by an individual j if 4 is in the influence area of j,
i.e., (Jzs — zi| < €;). This system was shown to converge faster that the
original version.

Other models

Apart from the above mentioned models, several other agent-based ap-
proaches have been introduced, which share similarities with the Deffuant
and Hegselmann-Krause models. In [107] a model of continuous opin-
ions, balancing individualization versus social integration, with adaptive
noise, is introduced. Depending on the noise and individualization levels,
three states of the population can be obtained: consensus, individualism
or preserved pluralism.

A different agent based modelling approach is [108], where the effect
of social influence on the wisdom of crowds is analysed. The concept of
wisdom of crowds means that the aggregated opinion of a group is closer
to the truth than individual agent opinions. In this model, agents hold
one continuous opinion on an issue, and interaction is modeled as the
effect of the average opinion of peers. Simulation results show that the
effect of social influence depends on the initial condition. Specifically, if
the initial individual opinions are far from the truth, interaction has a
beneficial effect, however, if they start close to the truth, social influence
results in a decrease of the wisdom of crowds.

In [109], a continuous opinion model with Poissonian interaction inter-
vals and stubborn agents is introduced. These agents do not change their
opinion. The model was shown to generate continuous opinion fluctuation
and disagreement in the population, i.e. consensus is never reached.

Biased assimilation is analysed in [I1I0], building upon a continuous
opinion model where agents update their opinion by performing a weighted
average over their neighbours. Biased assimilation means that agents tend
to reinforce/extremize their opinion when shown inconclusive information
about an issue. This was introduced in the model by adding a further term
in the weighting procedure which depends on the current opinion of the
agent. The authors show analytically that, although the model without
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biased assimilation does not produce polarization, even when homophily
is introduced through the weights, the introduction of the new component
allows for polarization to be observed.

An approach different from those presented until now uses the Ku-
ramoto model of coupled oscillators to describe opinion formation [ITT].
Two types of oscillators are considered, corresponding to agents which
agree or disagree to others. Disagreeing oscillators are negatively coupled
to the mean field. The paper shows that, even when oscillators have the
same frequency, the introduction of disagreement leads to appearance of
opposite clusters, travelling waves or complete incoherence.

Models based on kinetic exchange have also been proposed for opinion
dynamics [112] [TT3]. Here an agent holds a continuous opinion z; € [—1,1]
and a conviction A; € [0,1]. Upon interaction, two agents ¢ and j change
their opinions depending on their own and the peer’s conviction:

i‘i(t + 1) = )\ll’z(t) + EAjl’j(f) (11)

xj(t —+ 1) = Ajtl’j(t) —+ EI)\i:Z‘i(t) (12)
For the heterogeneous case (A; < A), the model was shown to display
breaking of symmetry for A > \. = 2/3. That is, for values under ., the
system maintains an average opinion of 0, while over that, the average
opinion is non null. Detailed analytic studies followed in [114] [115].
The kinetic model has been extended to differentiate between a per-
son’s conviction (A;) and their ability to influence others (u;) [I16]. Hence
the update rule becomes

zi(t +1) = Xiwi(t) + ep;z; (1) (13)

The model was shown to display the same symmetry breaking with a
boundary set by A = 14 &. Several other extensions have been recently
proposed, such as introduction of positive and negative interactions (dis-
agreement with probability p) [I15], or of bounded confidence [117].

The information accumulation system (IAS) model uses the concepts
of volatility (A) and diffusivity (w) for opinion dynamics [II8]. The opin-
ion o; stands in interval [—1, 1] and evolves as

o = (1= Ao+ 3 wol(1—[o!]) (14)

JEN;

with N; the set of neighbours of . The model has been employed to
analyse a system of two communities connected by inter-community links,
which start with two different opinions on a subject [I18]. The question is
under what circumstances the two communities can converge to the same
opinion. The maximum ratio between inter- and intra-community links
for which the two communities do not show consensus is analysed, and
shown to increase as the intra-community connectivity increases. This
means that although general connectivity might increase, that does not
mean the two communities will converge to one opinion, since the increase
in inter-community links should be higher for consensus to emerge.
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2.1.3 Hybrid models
The CODA model

Continuous Opinions and Discrete Actions (CODA) are used to model
the degree of acquiring a certain discrete opinion. The original model
[119] considered two opinions +1 and -1. Individuals are represented
on a square lattice by a continuous probability p; showing the extent of
agreement to opinion +1 (with 1 — p; corresponding to -1). Based on this,
the choice of the discrete opinion o; is made, using a hard threshold:

o; = sign (p; — 1/2). (15)

Individuals see only the discrete opinions of others, o;, and change the
corresponding p; based on their neighbours, using a Bayesian update rule,
which favors agreement to the neighbours. This maintains the discrete
public dynamics, and introduces both a means to quantify the extent of
adhesion to one opinion and a memory effect (individuals do not jump
directly from -1 to +1, but change their opinions continuously). The
model is applied both to the Voter model of interaction, i.e. one agent
interacts with one neighbour at each step, and to the Sznajd model, i.e.
two neighbouring agents influence the rest of their neighbours. For both
cases, the emergence of extremism even in societies of individuals that
start with mild opinions at the beginning is shown. Relatively stable
domains are formed within the population, which exhibit small changes
after they are established. Disagreement dynamics are introduced in the
model in [120], by considering part of the population as contrarians (
they always disagree with their peers). This has been shown to reduce
agreement in the population, but at the same time to discourage extremist
opinions, compared to the original model.

The model was also analysed under the assumption of migration in
social networks [I21], where each individual is allowed to change position,
a mechanism shown to reduce the amount of extremism observed, yielding
one cluster in the end. Further, in [122], a third opinion is introduced,
either as ‘undecided’ (if p; is close to 1/2) or a real alternative (usage
of three probability values, p;, ¢;, r;, for the three available options). In
the first case, a decrease in the amount of mild opinions is observed, but
at the same time the level of extremism (the maximum absolute value
of p;) decreases. In the second case, there are two different analyses
performed. When the third opinion is considered independent (i), the
level of agreement is similar between the three options, with extremists
for each. Here, for simplification, a set of assumptions about symmetry
between the choices are made. When the third choice is a transition
between the initial two (ii), a higher number of individuals adhering to
the middle option is seen.

An additional analysis [I123] consisted of making agents also aware of
the possible effect they have on the others, and discusses also the relation
to other models in the literature. The concept of ‘trust’ was introduced
also [124], with agents holding an array with the probabilities that the oth-
ers are trustworthy. These probabilities evolve in time, and the system
was shown to reach either agreement (for higher trust) or polarization.
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This study also showed that agreement is reached faster than polariza-
tion. In [I25], the observation range of agents is increased and so called
‘clustered early adopters’ are introduced (i.e. neighbours holding the same
opinion), however are shown to not have a better chance of imposing their
opinion compared to randomly spread adopters.

The CODA model has been applied to the study of the adoption of
theories in the scientific world [126], where agents could support a the-
ory or another with certain probabilities. Also, ‘experimentalists’ were
defined as agents who not interact only with peers, but can also receive
information from ‘Nature’ (an interpretation of an external information
source). A fraction 7 of the scientific world is made of experimentalists,
and the model indicates that if 7 is small it is difficult to convince the
scientific world of the validity of a theory even if indicated by experiments,
unless retirement is also integrated into the model (older agents are re-
placed with new ones with moderate opinions). Also, the small-world case
was analysed and shown to increase the adoption of the correct theory.

2.2 Multi-dimensional models

2.2.1 Discrete opinions
The Axelrod model

The Axelrod model for culture dynamics [I27] has been introduced
to model culture formation based on two principles, the preference of
individuals to interact with similar peers (homophily) and the increase in
similarity after an interaction appears (also termed social influence). The
culture of an individual in a population of NV is modeled by F' variables
(o1,...,0r). Each of these can assume q discrete values, oy =0,1,...,¢—
1. The variables are called cultural features and ¢ is the number of the
possible traits per feature. They model the different “beliefs, attitudes
and behaviour” of individuals. Two individuals ¢ and j interact based on
their position (interact with neighbours) and their corresponding overlap:

1 E

05 = T D o0 () (16)
f=1

where 0;; is Kronecker’s delta. The value of o0;; is the probability to

interact: one of the features with different traits (o (z) # o7(j)) is selected

and of(j) = os(i) is set. Otherwise nothing happens. So, interaction

brings individuals closer together and is more likely for similar individuals,

becoming impossible for individuals sharing no trait.

From a finite random initial population, the system evolves to one of
many possible absorbing states. These can be of two types: either an or-
dered state, where all individuals share the same traits (¢”" possible states)
or a frozen state where multiple cultural regions coexist. The number of
possible traits ¢ in the initial population determines which of the two types
of final states is obtained [128]. When g is small, individuals share many
traits so interaction and thus increasing similarity is facilitated, leading
to consensus. For larger ¢, consensus is not reached because of a lim-
ited number of shared initial traits, which results in limited interaction
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Figure 5: Axelrod model. Behaviour of the order parameter (S,,..)/L? vs. ¢
for three different system sizes and F' = 10. In the inset the same quantity is
reported for F' = 2. From [12§].

and formation of cultural domains unable to grow. On regular lattices,
the phase transition between the two types of states appears at a critical
value ¢., depending on F' (Fig. [5]).

This model has been widely analysed after its introduction, and here
we present the more recent investigations. Although most studies were
numerical, some analytical proofs were provided in [129], where it is shown
that for FF = ¢ = 2 the majority of the population forms one cluster,
while a partial proof for the fact that, if ¢ > F', the population remains
fragmented, is provided. Also, [130] show that for the unidimensional case,
the system fixates when F' < cq where e~ ¢ = ¢. Here, fixation means that
the state of each individual is updated a finite number of times, until the
system freezes. A similar model, designed as a generalization of the models
employing homophily and influence, was introduced in [I3I]. Here it is
shown analytically that in a system where all individuals can interact, all
initial conditions lead to convergence to a stable state (invariant). In [132],
the dependence of the number of cultural clusters on the lattice area (A =
L?, where L is the dimension of the lattice ) was analysed. They show
that when F' > 3 and ¢ < ¢., a strange non-monotonic relation between
the number of clusters and A exists. Specifically, the number of coexisting
clusters decreases beyond a certain threshold of the area, in contrast with
well known results for species-area relaxation, where the number of species
increases with A. Outside these parameter values, however, the expected
culture-area relaxation is observed. This is described by a curve that
is steep at first (i.e. the number of clusters increases linearly with A)
and then flattens when the maximum number of possible clusters (qF ) is
reached.
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Figure 6: Example of population evolution for the Axelrod model (bottom row)
and the version with surface tension (top row). From [I33].

A recent extension [I33] introduced a slight modification in the up-
dating rule, by choosing always an interacting pair of agents instead of
random neighbours. This was shown to introduce surface tension in the
model, resulting in metastable states for certain parameter values. Fig-
ure [6] compares the dynamics of the original and surface tension Axelrod
models.

Studies of the effect of cultural drift (external noise, i.e. some times
agents choose to change one opinion randomly) [134] showed that even
a very small noise rate leads the system to agreement, while large noise
favors fragmentation of cultures. Similar results were found in [135], where
an additional analysis of interaction noise (i.e. the probability to interact
is modified by a small §) showed small effects on the phase transition, but
a reduction of relaxation times.

Disagreement dynamics have also been introduced [136], using a hard
threshold for the overlap, under which individuals disagree. Disagreement
causes individuals to change a common opinion on an issue, i.e. decrease
their overlap. Two different versions of this model have been developed,
one where all individuals can agree or disagree, and one where a fraction
of individuals always agrees. In both cases, disagreement dynamics are
shown to favor culture fragmentation.

In [I37], committed individuals were introduced. These are individuals
that do not change the opinion on one of the F issues. They are introduced
as a fraction p of the whole population. Also, the social network evolves.
The original Axelrod dynamics are changed. At each time step, an indi-
vidual 7 is selected, and one of their neighbours j. If 0;; < ¢, a newly
defined model parameter, Axelrod dynamics are followed, otherwise, the
link between node ¢ and j is removed and a random node is linked to .
The change in consensus time due to the introduction of committed indi-
viduals is analysed. For p = 0, consensus time grows exponentially with
N, showing that rewiring impedes consensus in the population. When
p > 0, consensus time is decreased. For p < p. ~ 0.1, the exponen-
tial dependence is conserved, while for p > p., this becomes logarithmic
in N. This shows that the introduction of committed individuals favors
consensus in the population.
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A study of the model on scale-free networks was presented in [138].
This analyses individuals both at “microscopic” - individual feature value
- and “macroscopic” level - entire vector of features. The aim is to study
how cluster composition changes when moving between the two levels.
They show that even when many individual features are common in the
population, the global culture is still fragmented.

In [I39], an application of the model to election data is presented, us-
ing a model version with only two possible discrete opinion values. Good
similarity to election data is exhibited by the model during the transient
stage of the dynamics, i.e. before opinions stabilize, when the vote distri-
bution for each party follows the same scaling observed in real data.

2.2.2 Continuous opinions

‘Cultures’ in the sense of the Axelrod model can be represented with
continuous variables by extending continuous models like the HK to vec-
torial opinions (with K components). Hence each position in the vector of
opinions refers to a different issue. Bounded confidence dynamics lead to
formation of clusters similarly to the one dimensional opinions, as shown
in [I40] for two dimensions.

A different approach is presented in [I41]. Here, the different vec-
tor elements are not independent, like in the previous models, but they
are constrained to sum to unity. In this way, the different values could
represent probabilities of choosing an opinion out of multiple possibilities
on the same issue, or could model a resource allocation problem. The
model applies bounded confidence, by using the Euclidean distance be-
tween two individuals (d;;). Two model versions are analysed, following
Deffuant-Weisbuch and Hegselmann-Krause dynamics. For the former,
individuals interact if d;; < e, when one of the peers takes the opinion
given by the average between itself and the neighbour. Updating rules
similar to the original Hegselmann-Krause model are also defined. The
model is shown to converge to one or more clusters depending on £ and
K. When the number of options K increases, the model is shown to ob-
tain better agreement (large maximal component), but at the same time
a larger number of small separate clusters. Also, when ¢ increases above
a threshold, the population converges to one opinion. This threshold de-
creases with K. A comparison of this approach to that of considering the
K elements independent is provided in [I42]. In the independent case,
agreement is not facilitated by an increase in K.

In [143], continuous opinions are applied to model individuals’ opinion
about others and themselves, i.e. each individual holds a set of N opinions.
An analysis of vanity and opinion propagation is performed, under the
idea that opinions from highly valued individuals propagate more easily.
For large vanity, individuals cluster in groups where they have a high
opinion of themselves and other group members, and low opinions of peers
external to their group. If vanity is lower, then some individuals gain high
reputation, while most of the population have a low one. Situations with
one or two agents dominating the others are exposed.

A different approach using continuous opinions and affinities between
individuals is presented in [I44]. Each individual holds a real opinion
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z; € [0,1] plus a set of affinities to all other agents, i.e. a real vector o; €
[0,1]¥71. These are updated simultaneously during agent interaction.
The bounded confidence concept from the Deffuant model is maintained,
but the definition is changed to accommodate for affinity values between
individuals. Specifically, even if the opinion of two agents are not close
enough, if their affinity is high, then they can still interact. Affinities, on
the other hand, decrease if individuals hold diverging opinion and increase
when their positions are close. The update rules are thus:

1
aitt =af - 5(132 — a1 (ody) (17)

aﬁjl = aj; + af;(1 — af;)Ta (2] — z%) (18)
where I'1 (o) = [tanh(B1(a — ac)) + 1] and Iz(z) = — tanh(Ba2(|z| — d))
are two activating functions that tend to step function when ; and B2
are large enough. Parameters d and «. are the confidence thresholds,
i.e. affinity values increase if opinions are closer than d, while individuals
interact if their affinity is larger than a.. The model starts with random
opinions and affinities, and is allowed to relax to a stable state. Affinities
are then interpreted in terms of a weighted social network, with a;; the
weight of the link between agents 7 and j. The authors show that the

network obtained display small-world properties and weak ties.

2.3 Modelling norms

Modelling norm compliance is closely related to opinion dynamics. Norms
are rules enforced within society and sometimes also by law. A person can
have an opinion about a norm, in the sense discussed until now, however
norm compliance relates more to final behaviour, compared to opinions
only. Opinions are in general indicative of behaviour, however there are
cases when actions are taken in spite of contrary opinions, due to social or
external pressure. Hence there are several factors to be taken into account
when trying to model norm emergence, respect and violations. These
start from internal predispositions and opinions, and extend to imitation
of peers and, unlike pure opinion dynamics, to responses to some form of
punishment.

Several agent-based approaches for building models for norm emer-
gence and violation have appeared, many of which have a base in Game
Theory. Cooperation is viewed as compliance to a norm, and defecting
means norm violation. Agents hold a state that defines their strategy or
probability to choose one, and change this in an attempt to maximize
an utility function. This function includes different costs, punishments,
rewards, etc. States are also changed based on the behaviour adopted
by peers. The game theoretic literature contains many such approaches,
while other hybrid agent based models have appeared recently. We give
here a few recent examples of such models, to give a general idea of various
approaches following these lines.

A recent example agent-based model of norms [I45] shows norm evolu-
tion and coexistence in a population. Individual behaviour is represented
by a continuous variable (representing the degree of adherence to a norm
or another) and evolves based on in- and out-group interactions. Agents
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tend to be more similar to their in-group and more distant from their
out-group, while being also reluctant to change behaviour. Specifically,
dynamics are determined by the objective of maximizing a utility func-
tion, which includes the difference between agents and out-group, the
similarity between them and in-group, and the closeness between their
own behaviour at time ¢ and ¢ + 1 (punishment for lack of persistence).
Simulation results show that when the out-group is small, the population
reaches consensus to a mild behaviour, for a medium out-group several
clusters form, while a large out-group results in clusters where the two ex-
treme behaviours are acquired. This approach is very similar to opinion
dynamics models, but adds the existence of punishment and the usage of
the utility function.

In [146], a population of K individuals is divided into four types (four
possible behaviours): cooperators, defectors, moralists (cooperators that
punish with a cost) and immoralists (defectors that punish). Agents
change their behaviour in time, based on spatial interaction with their
neighbours, i.e. they have a larger probability p to imitate their neighbour
if this has a payoff P, larger that their own (Ps) - so called ‘replicator’

dynamics :
1

~ T+ oxpl(Pr - PO/

The spatial effect gives an advantage to moralists, which prevail in the
population, so the social norm eventually wins, with the moralists shown
to profit from the presence of immoralists and defectors.

Ignorance about norm compliance levels is discussed in [I47]. The
question is whether hidden norm violations can enhance or not norm
compliance in general. The model includes a population of agents and
an inspector agency. Agents can choose to violate or adhere to a norm,
and how much effort they put in concealing a violation, while the in-
spector agency decides how much to invest in inspections. The chosen
behaviour is derived from the publicly known number of violations plus
a belief of how many undetected violations there are (a suspicion level).
Various means of defining the choice and other parameters of the model
are explored. The main results show that when norms are enforced by
peers, ignorance reduces norm violations. However if enforcement is per-
formed by a third party inspector, who receives awards depending on the
violations discovered and punished, then ignorance actually increases the
number of violations in the population. The opposite effect is explained
by the competition between inspectors and agents.

Recently, a study of collective behaviour [148] looks at critical mass self
reinforcing dynamics and how these affect stability. Willingness to partic-
ipate in collective behaviour is similar to complying with a certain norm,
and defines a certain agent behaviour. Here, critical mass systems are
employed, where the incentive to participate increases with the number
of participants (self-reinforcement). Free-riders are however still allowed,
generating a so called ‘weak’ self-reinforcement: after a certain participa-
tion level is reached, some agents might decide not to participate, since the
collective behaviour is already established (incentives peak out before the
collective behaviour reaches the entire population). Although in general
full participation is aimed for, the authors show, using a simple threshold

p (19)
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model, that weak self-reinforcement has the advantage of greater stability
(resilience to perturbations), generating larger participation in the long
run.

A similar approach to look at norms in a public-goods setup [149]
showed the appearance of so called diversity-induced resonance in an agent
based model. The model considers ‘conditional cooperation’, a concept
similar to self reinforcing dynamics, where the willingness of a user to
follow a norm increases with the mass of followers. Sanctions are intro-
duced to represent social pressure, which depend on the number of agents
violating the norm and an individual ‘sensitivity’ to this pressure. This
creates diversity in the population. Additionally, the norm changes in
time, by changing the effect of the social pressure. A utility function is
defined using all these components plus the cost of cooperating and the
gain from the public goods. Agents need to maximize their gain, using
evolutionary dynamics. Two approaches are analysed, the replicator dy-
namics with noise and logit dynamics (compare the payoff for the two
possible behaviours). The results show that indeed, norm compliance lev-
els are maximized for a certain level of diversity. Similarly, an optimal
range of noise levels exists, to maximise norm compliance.

In [150], cooperation is analysed in an interactive population in a pris-
oner dilemma setting. A heterogeneous model is employed, including as-
pects of the non-linear voter model (Section [2.1.1). The strategy chosen
by an agent at each time step depends not only on the previous payoff, but
also on social interactions (social herding): agents would also take into
account the fraction of cooperators in their neighbourhoods. The social
effect was shown to facilitate the adoption of cooperation as a strategy,
i.e. norm compliance.

A different agent based model for norm compliance has been intro-
duced in [I51l 152]. Here agents hold a state variable determining their
behaviour, i.e. a probability to respect or not a norm o;(t), that evolves
in time. Each agent has a natural predisposition to respect a norm (p;),
and this is also the initial state. However, at each time step, agents inter-
act in groups, randomly selected from all agents, and change their state
depending on several factors. All agents tend to relax to their natural
predisposition, respond to social forces (getting closer to the states of the
others in the group) and can be punished (with probability p) in case
they do not respect the norm, which makes them increase their respective
o;(t). In this model, no measure of payoff is used, as opposed to previous
methods. Punishment is shown to increase the level of adherence to the
norm, effect whose extent depends on the time scale at which the state
relaxes to the natural predisposition. A ‘pack effect’ is also introduced,
where agents feel the punishment less if their group behaves the same as
them. This is shown to slightly decrease the levels of norm adherence.

Norms in social (peer) production systems have been analysed in a
general framework of calibration for social models [I53]. The emergence
of such norms has been shown using a model calibrated with data from
Wikipedia online communities. This links the process of norm emergence
to population dynamics. Beliefs are modeled similarly to the Deffuant
model, using continuous variables and bounded confidence. However, here
we find two types of agents: users and pages. Users interact only with
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pages using Deffuant rules, i.e. by simulating the editing process, and in
this way get an idea of the beliefs of other users. This interaction changes
the state of the page and of the user. A second type of interaction is
included, to model sanctions: only pages change their state, meaning that
vandalism is removed with no effect on the user making the correction.
The user population changes in time, with new users joining and old
users retiring. Similarly, pages are created at a certain rate, and the
selection of pages by users is performed based on their popularity. Indirect
inference was shown to be suitable for fitting model parameters with the
experimental data from the online community.

3 Effect of external information on opin-
ion dynamics

The models we reviewed so far apply to situations in which consensus
spreads or tries to spread among populations according to peer mutual
interactions. There is no reservoir, to use a term coined in physics, with
which or against which the population interacts. This limitation can be
justified in few special cases, as for instance the spreading of dialects or
regional behavioural habits, where the external pressure pushed on in-
dividuals comes from the interactions among the individuals themselves.
On the other hand, we are nowadays bombarded by a huge amount of ex-
ternal information, “external” meaning here that such information comes
from other sources than word of mouth. We live in a world where the
mass media play a fundamental role. In order to understand whether it
is feasible to achieve whatever behavioural changes in the population in
response to given stimuli, we must consider models in which there is an
external source of information. Some efforts in this direction have been
made by the scientific community so far, however approaches are still lim-
ited to only a few of the models presented in the previous section. In the
following paragraphs, we review the state of the art of opinion dynamics
modelling with external sources of information.

3.1 One dimensional opinion

Discrete opinions

The effect of mass media has been studied for the Sznajd model on a
square lattice [I54], by introduction of an external agent (media, having
value e.g. +1). If four neighbours agree, then all their other neighbours
switch to their opinion. If they do not then the neighbours take the media
opinion with probability p. It was shown that the final state (either all
spins up or down) depends on both the initial density of up-spins and
on the value of p. The larger p, the smaller the initial density of up-
spins has to be to ensure full agreement to the media. For p 2 0.18, the
population always converges to the value of the information. In [I55],
an extension of Sznajd to three opinion states was applied to the mobile
telecommunication market in Poland. The effect of media is introduced,
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i.e. an individual accepts the plaquette opinion with probability p, or the
influence from media with probability 1 — p. Media is represented as a
set of probabilities to choose one of the options. The authors found that
for low advertising, small companies are taken over by larger ones, as it
happens in reality.

External information with accuracy was studied for a binary opinion
model in [156]. Here, the two opinion options are not equivalent and
external information could take, at different time steps, one value with
probability p > 0.5 (the true or the most beneficial opinion) or the other
value with probability 1—p. At each time step a random agent was chosen
to interact with this information. If the opinion of the agent was different,
then it would be updated only if a fraction of the neighbours larger than a
threshold 7 held the same opinion as that of the external information. The
system was shown to reach consensus to information only for intermediate
values of 7, with mixed populations with fluctuations obtained for small
7, while for large 7 the population froze in the initial state.

Non equivalent binary opinions were also investigated in [I57], where
agents hold either opinion 1 or 2, the second being the right one. Indi-
viduals update their opinions based on small group interactions where a
poll decides whether to change or not. In this poll, the higher value of
one opinion counts, and a weight is used for the self opinion (conviction).
With probability P, agents can, instead of interacting with peers, interact
with a so called ‘monitor’ which forces them to adopt opinion 2. This is
one way of introducing external effects, where the persuasion of the ex-
ternal field is infinite. A different way is using a set of static individuals
(educated group) that follow the same interacting rules as normal agents
when spreading their opinion, but do not change their state. The two
options are shown to increase adoption of the right option, however the
educated group was less efficient than monitors.

Continuous opinions

Effects of external information on the dynamics of the Deffuant model
have been also investigated [76]. All individuals are exposed to an exter-
nal source of information O, which promotes a specific opinion. Every T
generations, the entire population interacts with the information. These
interactions follow the same rules as with other individuals: the opinion is
updated only if the bounded confidence condition is met (see Equation @
for details). Experiments were performed with g = 0.5. Dynamics were
shown to depend on the value of the information, on 7" and on the pa-
rameter d from the original model. If the confidence is large enough so
that the information can reach all individuals, the population converges
to this. On the other hand, if confidence is extremely small, it is shown
that full agreement with the information can be never reached. If neither
of this applies, two types of dynamics are observed:

(i) In the case of extreme information (close to 0 or 1) and low confi-
dence, T has to be in a fixed interval for the complete agreement to
information to appear. Outside this interval, some individuals move
away from the information forming an additional cluster. This shows

29



that for extreme information to be efficient in a close-minded popu-
lation, individuals need to be exposed to information often enough,
but also need to interact to each other.

(ii) In case of mild information or large confidence, complete agreement
is found only when T is larger than a threshold. This shows that
individuals that do not access the information directly (because the
confidence threshold is not met) can be influenced only if a large
number of peer interactions are allowed before re-exposure to infor-
mation. When the population does not converge to the information,
still, large fractions of individuals form a cluster around the infor-
mation value (minimum value over 0.5).

Another approach to analyzing the effects of mass media in an ex-
tension of the Deffuant model is [B], where, each generation, individuals
interact with an external information z; modulated by a parameter ¢, the
information strength:

T = xi + pedi(zr — x), (20)

where d; is defined as in Equation . For mild information (low €),
individual opinions move towards the value of x;, however for strong in-
formation, an increasing number of antagonistic clusters emerge. This
shows that aggressive media campaigns are risky and might result in the
population not acquiring the information.

A different model similar to Deffuant’s considers both disagreement
and effects of mass media (external information) [I58]. Here, disagree-
ment is included as an attribute w;; € {—1,+1} of the link between two
individuals (some couples always agree, others always disagree), and opin-
ions take values in interval [0, 1]. The interaction causes a change in the
opinion value based on the type of link:

T =T + uwij(mj — mz) (21)

Additionally, an external information source is considered, applied to all
individuals after a specific number of updates. The introduction of repul-
sive links was shown to favor consensus with the external information.

In [I59)], truth seekers are introduced into the Hegselmann-Krause
model, i.e. individuals that take into account the value of the truth 7.
This can be interpreted as individuals who interact with experts, and
is similar to the interaction to an external source of information. The
opinion of an individual, upon interaction to a peer, changes as

xi(t + 1) =o;T + (1 — az)fl(x(t)) (22)

where f;(x(t)) is the right term in Equation @D, while a represents the
disposition of individuals to seek the truth (which can be seen as the
strength of the information). It is important to notice that the effect of
the truth is not based on bounded confidence, i.e. it affects individuals
with a # 0 regardless of their opinions. Results show that even for small
a (0.1) for all individuals, or if at least for half of the population « # 0,
the population converges to the truth, provided the truth is not extreme.
If the truth is extreme (close to £1), and not all agents have a # 0, some
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individuals remain far from truth. Large values of & may result in more
individuals with o = 0 to stay away from truth, which means that too
strong information may have a disadvantageous effect. A further analysis
of the model with truth seekers is presented in [I60], where it is proven
analytically that all truth seekers (individuals with a # 0) converge to
the truth, even if there are agents that do not seek the truth.

Multiple interacting mass-media sources for the Deffuant model are
analysed in [I6I]. Here, agents are placed on a scale-free network and
media sources on a complete network. Agents interact with others and
the media using Deffuant dynamics. A media source interacts with the
others by choosing, among its neighbours, the most successful one and
getting closer to it in the Deffuant sense. Competition between media
sources is also introduced by allowing disagreement between competing
media sources. The system is shown to display stable clusters of different
opinions. Additionally, media competition appears to favor fragmentation
in the population.

3.2 Multi-dimensional opinion

Discrete opinions

The effect of mass media or propaganda for the Axelrod model has
been widely studied, by introducing an external agent (information source,
field) that can interact with the individuals in the population. One ap-
proach is to introduce a parameter p that defines the probability that, at
each time step, an agent interacts with the information instead of a peer
[162, [163] 164, [165]. In this case, it was shown that, surprisingly, a large
probability to interact with the information actually increases fragmenta-
tion instead of favoring agreement. However, this could be explained by
the fact that increasing the frequency of interaction to the external agent
decreases the possibility of agents to interact between themselves. Hence
there is an interdependence between peer and field interactions. This,
coupled with the fact that, at the beginning, some individuals cannot in-
teract with the information (low overlap), causes an isolation of these and
creation of additional clusters.

In the above cited approaches, the external information was indepen-
dent of the state of the population and never changed. Several other ways
of defining external information were also analysed in [162] [166] 167],
where so called global and local endogenous fields were considered, on
a two dimensional lattice. These were computed as the statistical mode
of opinions either over the entire population (global) or over the neigh-
bourhood of each agent (local), and accounted for endogenous cultural
influences. These fields were also shown to facilitate segregation in the
population, for large p, while for low p, cohesion and alignment to the
information was observed. Quantitative differences between the types
information were uncovered, with local information sources promoting
uniformity in the population. Furthermore, an analysis of two separate
populations, where each is influenced by a the global field of the other,
has shown complex behaviour [I67], where sometimes one population did
align to the information from the others, but also could completely reject
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it or form a large rejecting minority.

Several methods trying to overcome the interdependency between peer
and field interactions, in the quest for induced agreement, have also ap-
peared. For example, [168] add a set of “effective features” to the indi-
viduals, i.e. additional values in the state vector, that are considered to
be always equal to the information (mimicking in this way the way me-
dia is designed to target a social group). This causes the overlap with
the information to be always non-zero, and leads to better agreement to
it. Similarly, in [169], a different definition of overlap to the mass media
was used, again non-null for all individuals. A different approach can be
seen in [I70]. Here, the so called “social influence” is used, where indi-
viduals are affected by all neighbours (including the mass media, with a
certain probability defined by its strength), using a procedure similar to
voting. Again, this method increases the number of agents adhering to
the external information with the increase in the media strength. Several
other model extensions have been analysed, trying to combine the effect
of media with noise and social network structure [170] 169, 171, [172].

Continuous opinions

In [I73], a Deffuant-like model in two dimensions, with two conflict-
ing opinions (zj, x7), was studied under the effect of external influence
from media and experts, on a scale-free social network. The model was
applied to opinions on welfare and security. Results showed that when
the media message is false, peer interaction can help the population es-
cape the message, only if the media does not reach more than 60% of the
individuals.

A different approach to modelling continuous vectorial opinions has
been introduced for a complete graph in [I74] and later for different
topologies [I75], including disagreement and external information. Here,
opinions are represented by an element in the simplex in K — 1 dimen-
sions, ¥ = [p1,p2,...,PK], similar to [I4I]. This can be interpreted ei-
ther as an opinion on a resource allocation problem or as the probabil-
ity to choose between K discrete options. The model includes complex
interactions, based on a similarity measure defined as the cosine overlap
(0" = Z’“K,:l i ). This defined the probability that two indi-

VEE L 002 S (0])2
viduals will follow agreement (opinions become more similar) or disagree-
ment (opinions become more dissimilar) dynamics. External information
(mass-media) is included as a static individual that all agents can inter-
act with, after a peer interaction, with probability p;. The system was
shown to form one or more clusters depending on py, initial condition and
type of information. Extreme mass-media messages and large exposure
to external information proved to have a reduced success in the popula-
tion, while mild messages and low exposure were more easily adopted by
a large number of individuals. Full agreement with the information was
obtained either for a very mild message or for a very low exposure of a
non-extreme message to a compact initial configuration. The model was
further developed in [I76], where multiple media sources were analysed
and shown to lead to more realistic behaviour, i.e., stable non-polarised
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clusters or full agreement for external information which is not extremely
mild.

4 Final remarks

The macroscopic properties of matter, where the forces between atoms
and molecules are in principle known, can be reproduced by numerical
simulations with relative success. On the other end, the emergent collec-
tive behaviours of our societies are not easily to reproduce by numerical
simulations mainly due to the fact that human individuals are already
the result of complex physiological and psychological interactions so that
the social atom itself has been yet hardly understood. The result of this
uncertainty is the proliferation of modelling schemes that try to catch par-
ticular aspects of single humans and try to examine what kind of common
behaviour such selected aspects might trigger or be related to. While
opinions and languages are the result of a social consensus, beliefs and
awareness are somewhat more subtle since they require a sort of contin-
uous feedback from the environment. After an individual realizes that a
small change of his/her own behaviour may lead to a better social condi-
tion, an awareness is acquired and a further phase has to follow to yield
real tangible societal advantages. The small cost in changing behaviour,
e.g. starting trash recycling to cite one, must be sustained by a sufficiently
high number of other individuals for the global advantages to be evident.
That is why modelling schemes try to exploit the conditions that lead to
consensus similar to what in physics happens in phase transitions, so that
an hint can be obtained on how to propel virtuous behaviours and reach
the critical number of persons necessary to self-sustain the change.

With the aim to clarify the current literature on the topic of opinion
dynamics, we presented an overview of recent methods for social mod-
elling, with emphasis on less explored ingredients, e.g., disagreement be-
tween individuals and the effect of external information, which is thought
to model the interaction of individuals with mass-media. According to
how individual opinions are represented, models vary from discrete one
dimensional to continuous multi-dimensional, with several types of inter-
actions introduced. Although under different assumptions, many of these
models have led to similar results, which agree also with some observed
behaviours found in social systems.

Although lots of original models of opinion dynamics consider mostly
attractive behaviour, i.e. two individuals sharing common interests or
opinions tend to come closer to each other, the necessity to build ap-
proaches that have applicability to real settings has triggered introduction
of different other types of interactions. Hence disagreement (contrarians),
independence and zealots have been introduced in many of the models.
These elements were shown to facilitate the coexistence of multiple opin-
ions in all models, regardless of type. At the same time, the introduction
more realistic interaction rules slowed down convergence to a stable state.

Noise was also analysed for most of the models discussed here, in the
form of sudden shifts of opinion, which in reality can happen often. Low
noise levels facilitate consensus both for continuous (e.g. Deffuant) and
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discrete (e.g. Axelrod) models. High noise, on the other hand, leads to
instability of the system, either in the form of disorder or fluctuating
clusters.

Different social network topologies do not have a large effect on the
consensus time and qualitative structure of the final population for most
models, however quantitative structure of clusters may change. When
networks evolve together with opinions, consensus or cluster states can
still appear. On the other hand, non symmetrical interaction between
individuals, i.e. link directionality, was shown to induce fragmentation in
several cases.

The effect of external information is very important in studying real
social systems, however the extent of models including this aspect is re-
duced. Previous analyses have concentrated mostly on the Axelrod and
Deffuant models. For other discrete models, an external field generally
causes trivial consensus to this, while a few scattered efforts have been
made to analyse multidimensional continuous systems with alternative
dynamics. In general, external information was shown to cause fragmen-
tation when it is too extreme or too strong, for both discrete and contin-
uous opinions. Mild information, analysed in the context of continuous
opinions (in discrete models information is always extreme), was shown
to induce cohesion in the population. This matches findings from chap-
ter by K. Akerlof of this volume, where governmental pressure related to
environmental issues was shown to have opposite effects if not suitably
expressed.

Most analyses concentrated on one static information source. However
in reality information comes from multiple sources and is continuously
changing. This change is many times also affected by the feedback from
the population. These issues have been only slightly touched upon by
the literature, and difficulties still remain in devising a framework where
media and agents interact bidirectionally in a manner similar to society.

The traces that society leaves of interactions and other effects are
nowadays more and more at reach with the new communication technolo-
gies. Behaviour data can be extracted from various types of sensors, as we
have seen in chapters by V. Kostakos et al., by D. Ferreira, V. Kostakos,
and I. Schweizer and by Gautama et al. of this volume, but may also come
from the new discipline of human computation and gaming, for which an
overview was presented in this book in the chapter by V.D.P. Servedio et
al. These data are enabling many analyses of social systems. However,
when it comes to opinion formation, although conclusions from the dif-
ferent models appear to be realistic, application to real data is still very
scarce. In general, outputs from discrete models have been compared to
patterns seen in the data, such as strategic voter model and election out-
put, majority vote model and debates or financial market crashes, tax
evasion with majority vote and Sznajd. However, studies still concentrate
on qualitative similarities, with a complete lack of quantitative analyses
on real data.
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