Modeling DevOps Deployment Choices Using Process
Architecture Design Dimensions

Zia Babarl(@, Alexei Lapouchnianz, and Eric Yu'?

1 Faculty of Information, University of Toronto, Toronto, Canada
zia.babar@mail.utoronto.ca, eric.yu@utoronto.ca
2 Department of Computer Science, University of Toronto, Toronto, Canada
alexei@cs.toronto.edu

Abstract. DevOps is a software development approach that enables enter-
prises to rapidly deliver software product features through process automa-
tion, greater inter-team collaboration and increased efficiency introduced
through monitoring and measuring activities. No two enterprise-adopted
DevOps approaches would be similar as each enterprise has unique charac-
teristics and requirements. At present, there is no structured method in enter-
prise architecture modeling that would enable enterprises to devise a DevOps
approach suitable for their requirements while considering possible process
reconfigurations. Any DevOps implementation can have variations at different
points across development and operational processes and enterprises need to
be able to systematically map these variation points and understand the trade-
offs involved in selecting one alternative over another. In this paper, we use
our previously proposed Business Process Architecture modeling technique
to express and analyze DevOps alternatives and help enterprises select custom-
ized DevOps processes that match their contexts and requirements.

Keywords: Enterprise modeling - Software processes - Business process
modeling - Devops - Goal modeling - Adaptive enterprise

1 Introduction

Enterprises are expected to continuously respond to ongoing changes and evolving
environmental factors. Increasing competition and emergence of new market players
from non-traditional sectors require enterprises to react and adapt to change more
quickly than ever before [1, 2]. To this end, more and more enterprises are relying
on software for the development and delivery of appropriate products and services.
As aresult, software processes are becoming an integral part of enterprise processes.
Just like business processes (BPs), software development processes can vary signif-
icantly from organization to organization due to unique enterprise characteristics;
these processes can be reconfigured in multiple ways to take account of enterprise
variations and behavioral peculiarities so as to fulfill high-level enterprise require-
ments. However, current methods of modeling software process reconfigurations are
limited in their ability to consider multiple enterprise perspectives and help choose

© IFIP International Federation for Information Processing 2015
J. Ralyté et al. (Eds.): PoEM 2015, LNBIP 235, pp. 322-337, 2015.
DOI: 10.1007/978-3-319-25897-3_21

Modeling DevOps Deployment Choices Using Process Architecture 323

among alternate configurations. In this paper, we elaborate on the software process
reconfigurations that are possible in the DevOps approach for the purpose of
describing a Business Process Architecture (BPA) modeling technique, which allows
the depiction and analysis of BP reconfigurations along multiple dimensions.

The term “DevOps” is a combination of two words “Development” and “Operations”
and has been described and referred to as a phenomenon, a philosophy, a mindset, a set
of techniques, a methodology, etc. DevOps is not a software tool or methodology per
se, but rather an approach for rapidly and frequently delivering new software product
features and service innovation. A recent Gartner news release predicted that “DevOps
will evolve from a niche strategy employed by large cloud providers to a mainstream
strategy employed by 25 % of Global 2000 organizations” [3]. Broadly speaking,
DevOps attempts to introduce rapid delivery of product features, services and bug fixes
to end-users through frequent release cycles, each containing a small feature set. Rapid
delivery enables an enterprise to reduce the time-to-market for new products and
features, provides greater customer centricity by introducing new features based on
evolving customer needs, quickly resolves operational and support issues, and shows
greater responsiveness to changing (internal and external) environment situations.
DevOps enables the above by [4-6]:

e Automating activities in the overall software development process through the intro-
duction of software tools and custom development of scripts, thus shortening the time
required for new feature development and bug fixes through reduction of manual
effort. This enables software teams to deliver more frequent releases to customers
and the user base.

e Using feedback loops for continuously improving software development processes
and development of product features through the monitoring and measurement of
various software process and technical metrics. These metrics are then interpreted
and utilized for overall process improvement.

e Promoting a culture of collaboration and information sharing between multiple
teams. The traditional approach of having organization silos with defined boundaries
and handover points is discouraged, and team members are expected to collectively
collaborate towards the attainment of enterprise objectives.

The above characteristics are not unique to DevOps, and indeed, are generally appli-
cable to enterprises with respect to enterprise agility and enterprise digital transforma-
tion [7]. Looking at software processes can provide insights into a broader context, such
as the development and evolution of new products and services, many of which are
digitally enabled. A BPA needs to be understood through a combination of these ideas
and concepts, particularly in light of enterprise requirement for greater responsiveness
and adaptability, with DevOps being a suitable example for such a study.

This paper is organized as follows. In Sect. 2, we introduce a DevOps-based moti-
vating example that allows us to discuss the core concepts of this paper. In Sect. 3, we
model a typical DevOps implementation using the BPA modeling technique and indicate
possible areas and dimensions of software process variability. In Sect. 4, we refer to the
related work, while in Sect. 5 we outline future directions of this research. Section 6
concludes this paper.

324 Z. Babar et al.

2 Motivating Example

DevOps is an interesting challenge for enterprise modeling for a number of reasons. As
described above, DevOps involves diverse considerations from the viewpoints of
process design, systems and tools development and deployment, and social and organ-
izational issues. Continuous Integration (CI) and Continuous Deployment (CD) of
product functionality and infrastructure setup are outcomes of DevOps [6]. The general
area of continuous software engineering, CI and CD has been covered in both academic
and industry literature with numerous published case studies [8]. Through CD, “compa-
nies could benefit from even shorter feedback loops, more frequent customer feedback,
and the ability to more accurately validate whether the functionality that is developed
corresponds to customer needs and behaviors” [8]. Studying all facets of the DevOps
approach is thus best done through the enterprise modeling lens enabling a multi-
perspective understanding of the various considerations.

Analyzing and deciding between various DevOps process reconfigurations can be done
by considering enterprise objectives and benefits, which can be interpreted as functional
requirements (FRs) and non-functional requirements (NFRs) from a process design
perspective. The use of NFRs (represented by softgoals) in the requirements engineering
discipline to evaluate and decide between variations and reconfigurations is well estab-
lished [9]. Some of the NFRs, as present in a typical DevOps adoption, would be:

o Agility and Adaptability: Rapidly adapting to changing circumstances such as
evolving customer behavior, regulatory environment, emerging technologies, etc.

o Responsiveness: Quickly responding to user feedback and change requests in the
form of new product features and bug fixes.

e Speed and Frequency: Delivering new product features and bug fixes faster as well
as having a high deployment frequency.

o Efficiency: Improvement in software process execution by automating key process
segments and increasing collaboration between team members for greater informa-
tion flow.

o Customizability: Being able to customize the behavior of the software development
lifecycle based on changing contextual and situational needs.

Figure 1 shows a simple BPMN [10] process model indicating the primary participants
and the major activities in a typical DevOps-inspired software process. We have devel-
oped this context by referencing published literature from multiple sources, such as
[8, 11-14], with the intention of highlighting how the various process activities in
DevOps can be better configured to serve a variety of enterprise FRs and NFRs.

In DevOps, the development of product features can be done using different devel-
opment methodologies while adhering to different practices and policies specific to an
enterprise adoption; in this context we assume the use of the Scrum project management
methodology [14]. However, this general DevOps context is not intended to be an
exhaustive depiction of variations in DevOps adoption in an enterprise setting, but rather
is meant to illustrate variability in software process configurations. We consider four
scenarios of variable behavior in this contextual setting, which correspond to the
numbered annotations in the BPMN diagram:

325

sig ueld 7 ; 3 51001
Bunss | ajeain Bunsa | a1eain ; E:o_ﬁ:_vo.i dnjes fuedpayl feisul
||||||||||||| —
|

{¢)
_

Modeling DevOps Deployment Choices Using Process Architecture

)
o
SNSS| UOKINPOIY Soue JWBWUONAUT uoipNpoId aseapy Bunsa] a2
X4 pue paRQ A8y ainsespy UOoIPINPOId JOJUOW 0} fojdeq Pnpod abexoeq weysAs wiopsd % (@]
o
foan7)
5
|||||||||||||||||||||||| \ W
! AP
siduos snjels Bunse] «Q M
Buibeys o) Aojdeq Joday sjesausn Q bugsa. oymoxa pling @jn%9x3 Buns. PoUD VO wiopsd w g
el
1 3
[}
3
=
012 I3} AN w
2
: s
g
S9IqeRONRQ | INiSSa0NS sabueyo ainjea abueyxg smels [— a
uoneIR)| MAINDY Bunsa | 3poD WD PNpoid Juawaiduw 104 Areq 123N 5
[n @
(0]
| "§SS800NS | =
| oy !
| T === L =
\ malney (
3 siqeRARA & B
JeQpasy 1 3
19p | Soppeg Soppeg Q
oyyeis ! aseajoy 1~ P wenposg BTy s
1 i 1 1 23
| | | =
1 L N v L)
3
a
sa|qesAlRa Boppeg Boppeg Sul)| aur swa)| boppeg yoy3 Bopoeg sjuawalinbay ®
uoneId)| maIey 9SBIDY W01 9SEedDY Sjean -ay-aroqy Apjusp| 1onpold azoud Kianjeq aewnsy 1onpoid dojpreg w3 3
[}
>
-

J99ulbug
uojewony

Any developed feature has to be functional tested before it goes through

the CD process. This testing can be carried out by QA engineers in at least two ways:

.
.

Fig. 1. A simple BPMN model representing a typical DevOps approach

they can retrieve the committed code from the code repository and test it on a test

QA Testing

1.

326 Z. Babar et al.

environment, or alternatively, they can collaborate with the software engineer to
quickly validate the functionality before the codebase is committed to the code
repository.

2. Release Planning: The enterprise is assumed to have periodic and fixed release
cycles of appropriate duration. A release planning activity is carried out at release
initiation that results in a release backlog; this artifact is then used to plan out indi-
vidual sprint iterations. Two of the possible alternatives are (1) the release backlog is
produced once and remains static throughout the release duration and (2) the release
backlog is revisited at the beginning of every sprint and “groomed” (i.e. reordered and
re-estimated) based on on-going change in circumstances and priorities.

3. Automated Testing: In order to reduce product delivery durations, some product
testing can be automated by developing test plans that are then scripted for execution
as part of the CI process. The test scripts can be developed once and reused for
subsequent CI activities or they can be developed every time to serve specific testing
needs based on the product feature being tested.

4. Tool Usage for Automation: DevOps is characterized by the usage of third-party
tools for CI and CD, server configuration, infrastructure provisioning, deployment
management, etc. These tools are configured for use repeatedly without requiring
the knowledge of their inner working. This is depicted in Fig. 1 as a separate Auto-
mation Engineer pool to visually differentiate it from the on-going DevOps Engineer
activities.

The BPMN model in Fig. 1 allows a visual understanding of the sequencing of
process activities and the flow of information between them. However, BPMN process
modeling is lacking in terms of the selection and evaluation of alternative DevOps
configurations. In any enterprise, there would exist multiple process levels, with
processes at one level feeding into those at an upper level. The multiple levels of process-
driven dynamics and the relationships between the process levels are not apparent in the
BPMN model nor are boundaries between these process levels obvious. Multiple BPs
may come together to provide some feature functionality (for example, the development
of test plans and their execution are part of two separate BPs), but the nature of their
relationship is not explicit in the model. While process activities can be shown, along
with the changes in their sequencing, the implications of any activity reordering cannot
be determined. Similarly, enterprises rely on sense-and-respond loops to continuously
improve their operational processes [15]. While the BPMN model in Fig. 1 does show
such feedback loops, the full range of attributes associated with them (for example, the
multitude of timescales present in the loop or the execution frequency of the sensing
and responding parts) are not evident.

3 Modeling Process Reconfigurations

The BPA modeling framework was introduced in [16, 17] for assisting with the modeling
of BPs, their relationships, and the flexibility afforded by various BPA configurations.
We use this framework to evaluate various DevOps reconfigurations and to choose
among them. Fundamental concepts in the BPA framework are that of Process Element
(PE), Variation Point (VP), Stage and Phase [16].

Modeling DevOps Deployment Choices Using Process Architecture 327

e A PE is defined as “an activity that produces some output or outcome. It may also
include the act of making decisions”.

e A VP is referred to “the point in a process where multiple options exist. Variation
points may appear anywhere in a process”.

e PEs are grouped together in process Stages if they are executed together as part of
the same execution cycle. A stage boundary exists between two stages and PEs can
be moved across stage boundaries as required while considering different trade-offs.

e A stage may contain one or more Phases, which are sections of a stage that are the
“portions of a process such that placing a PE under consideration anywhere within
a phase produces the same result...However, moving PEs across phase boundaries
may affect the quality of decisions and the outcome of actions”.

A PE can be repositioned along four dimensions in any process architecture. These
four dimensions include, (1) the temporal dimension — positioning a PE either before or
after other PEs (with respect to sequence of execution), (2) the recurrence dimension —
positioning a PE in a stage that is executed more frequently or less frequently compared
to other stages, (3) the plan-execution dimension — positioning a PE in a stage that either
is responsible for planning or responsible for the execution of that plan, (4) the design-
use dimension — positioning a PE in a stage that either is responsible for designing a
tool, capability or artifact, or responsible for using the output of that design stage. These
dimensions are discussed in more detail in the subsequent sub-sections.

Figure 2 shows a BPA model for the DevOps approach with multitudes of process
elements, stages, phases and the relationships among them. The model visualizes the
key aspects of software development and operational support processes that are
commonly present in the DevOps approach starting from the Product Management stage
to the Operational Support stage. For the sake of comprehension and understandability,
we conceptually divide the model into multiple sections and consider them individually
with regards to the overall DevOps approach as follows:

e Product Management: Product FRs and NFRs are elicited and gathered from a
variety of sources (such as User Input and Business Need) and consolidated together.
This is then used to develop a Product Backlog, which is frequently groomed for
estimating and prioritizing individual Product Backlog Items (PBIs). The grooming
exercise is a periodic process that runs at a higher recurrence than the requirements
elicitation activity, which is denoted by the recurrence relationship between the two
stages.

o Development: The model depicts the Scrum project management methodology with
the various rituals and iterations shown as part of the Release Planning and Sprint
Cycle stages. Evidence of recurrence is apparent in the usage of the Product Backlog
over multiple Release Planning iterations. The Perform QA Testing process element
can be used to demonstrate the temporal dimension as the testing can be done either
before the code is committed to the source repository or after. Both options have
different consequences as shall be seen in the Sect. 3.1.

o Automated Testing: The DevOps approach promotes the usage of tools and scripts
for automating the testing of product features. For this, test plans and test scripts are
created and are then used to automate the testing effort, whereas test plans are

328 Z. Babar et al.

implemented through test scripts. The test plans and test scripts are created in the
Testing Plan stage and the test scripts are executed through the Execute Test Scripts
PE (part of the Continuous Integration stage); these are illustrative of the plan-execute
dimension.

o Ongoing Deployment: As with testing, the deployment of the developed product
feature is ongoing, immediate and automated while factoring in the variable and
multiple environments that the product would have to run on. The software deploy-
ment is automated through deployment scripts that are executed by various deploy-
ment tools; these scripts are developed by the DevOps engineers and executed as part
of the Continuous Deployment stage that gets triggered on the successful completion
of the Automated Testing and Continuous Integration stages.

e Operational Support: A major contribution of DevOps to software development is the
breaking down of silos between the development and operational teams, thus fostering
a culture of collaboration. The BPA models do not show process participants, so the
collaborative aspect of DevOps is not visible. However, the Operational Support stage
(along with the monitoring and measurement of operational metrics) is visually appa-
rent, including the incorporation of software metrics into the product backlog (through
a feedback loop) for ongoing software process lifecycle improvement.

The positioning of certain PEs in the DevOps approach are described in subsequent sub-
sections along with the criteria for deciding among the options. Enterprises may want
to analyze alternate positioning of PEs based on their FRs and NFRs. For this purpose,
goal modeling can be used for representing the variations and helping select the appro-
priate alternative. NFRs are represented as softgoals and alternate methods of achieving
a goal are represented as OR decompositions. Selection of a suitable alternative is made
based on the positive and/or negative contribution(s) that the alternative would have on
the NFRs (softgoals). The four scenarios described in the previous section (which also
correspond to each of the four process architecture dimensions) are presented, with goal
models shown alongside the BPA model snippets. In all goal model examples, the root
goal can be achieved through two alternate sub-goals. The choices are limited to just
two for brevity and space reasons. A real-world situation could contain many possible
choices, as well as many competing and complementary NFRs. Also, the goals are
shown at a PE level and decomposed down to just one level. In the general case, the
goal model would start from enterprise-level goals, with multiple levels of goal refine-
ment and alternatives until PE level sub-goals are reached [9].

3.1 The Temporal Dimension

The particular temporal placement of a PE can bring about certain benefits. A PE can either
be advanced (and be executed) before other PEs or postponed after those PEs. Postponing
a PE provides the benefit of executing it with the latest context and information available,
thus reducing the risk and uncertainty that are inherent in any BP. The alternative is to
advance the PE relative to other PEs, which reduces the complexity and cost as less effort
is required to process the limited contextual information available at that instant. Uncer-
tainty is also reduced. Therefore, the placement of any PE should be carefully considered
with regards to various NFRs, subject to inherent temporal constraints among the PEs. The

Modeling DevOps Deployment Choices Using Process Architecture 329

Market ' Product Management User
i Input
i vel
.2 Producr
. Customer | Requirements Backlog « _Business
Surveys \ Need
L _4

| |
| |
| |
| |
| |
| |
| 1N |
1 Product Backlog |
I \ |
| |
| |
| |
| |
| |
|

(5 z
Product Backlog Grooming Release Planning
N B £ Y

Prioritize 1:N- Identify Create Groom —_——

| Dei::maéfefo t Product Above-the-Line Release Release ! 1
v Backlog Items Items Backlog Backlog Stakeholder Operations
Product \ Feedback
" | Feed‘back

A T !
I ; I
| Effort 1N \ 2) H
| Refinement Release Backlog | |
; i A A . }
: Sp rint Cycle —————— Testing Results }
| N e/ T /= 5 |
! Meel Daily for Implement Review !
} Plan Iteration R“th—h Status Product Corg:’\al :‘C:de Iteration :
| : Exchange Feature 9 Deliverables |
| ~— e S~ N |
| L |
| I
| Bulld Checkin |
} Results Trigger |
| L r |

I - 2} (- " N
} Testing Plan {3) | continuous Integratlon }
| p I
! Test_ |
* | Create Testing Create Testing o— plan Execute Builds Execute Generate Deploy to |
Plan Scripts Testing Scripts Report Staging }
I
|
I
\ I
,,,,,,,,, Envionment Product Build }
! Parameters | !
v) v 1
Environment Setup (\4) Continuous Deployment :
\ e \ N N) :
Install Setup Tools h Perform Package f |
Third-Party Production H System Product ‘ PE: gg:cytit:n 5 |
Tools Environment U Testing Release J | |
\ / \ 4 (5 |
B . |
T |
Release !
Legend I Package |
- Y . |
p N
; |
Stage P oai Operational Support |
Element = p }
- - Monitor De'ect and Fix ——a
Production Me;s;‘l:i:ey Production
Recurrence Plan-Execute Design-Use Environment Issues

u::.‘n’ O— Plan— % O—Design

X u

Fig. 2. Business process architecture (BPA) for a DevOps approach

testing of a product feature by a QA engineer illustrates the trade-offs between advancing
and postponing a PE (Fig. 3). The QA engineer can verify the developed feature (Perform
QA Testing) after the software engineer checks in the code to the code repository (Commit
Code Changes) or before the code is checked in by working directly with the software
engineer. As shown by the goal model, the latter approach has the benefit of being collab-
orative in nature and encouraging both the software engineer and QA engineer to work
together to solve the problem quickly. The former approach is more methodological and
allows for the proper (and independent) validation of the feature and the tracking of testing
issues. The appropriate order of the Perform QA Testing PE is determined based on the
organization’s prioritization between the softgoals.

330 Z. Babar et al.

A1 Sprint Cycle
ua e 8616 Chedin N /77T Ae Chedan
p S 7 N
‘| implement . i
el Product Cog:'n: Code : Pes;tnm A0
[¢ 1) Feature anges i 9
[a2] | Sprint Cycle
7 i Chickin N /7T R Chedin
i i Vi N
‘| implement i ; i Perfom QA
ees || Product Pe;:sr::‘;:m = Cog‘hr::gi‘;de i eee Testing
Feature i | @ghii"':'e @P: After Checkin,

Fig. 3. QA testing alternatives (Al) as a separate phase from product feature implementation,
(A2) as part of the product feature implementation phase. (B) Analyzing the temporal placement
of QA testing process element based on NFRs.

3.2 The Recurrence Dimension

A recurrence relationship exists between the two stages of a process when the output of one
stage can be used repeatedly (and without change) by the subsequent stage. A PE can be
moved from a stage with a lower recurrence to one with a higher recurrence (and vice
versa). Such a movement of the PE can change the non-functional properties of the BP in
various ways. For example, reducing the PE recurrence saves cost as the same PE does not
have to be executed repeatedly. Conversely, increasing the PE recurrence can assist with
flexibility and adaptability as the PE is executed based on updated and current information.

In the DevOps approach, a product can be developed by having periodic and multiple
product releases with many development sprints (within each release) required for
attaining the release objectives (Fig. 4). Depending on the situation, an enterprise can
create (Create Release Backlog) and groom a release backlog (Groom Release Backlog)
once, which is then used for subsequent sprint planning. Alternatively, the enterprise
can reassess the release objectives every time it starts a new sprint [13]. The former is
a more methodological approach and ensures that the enterprise is aligned to what the
release deliverable is going to be, whereas the latter enables the enterprise to adapt to
changing priorities by constantly reviewing the release delivery items. The enterprise
can decide to go with either approach based on NFRs such as methodicalness, stability,
cost, adaptability, flexibility, etc., by moving the Groom Release Backlog between the
Sprint Cycle and Release Planning stages.

3.3 The Plan-Execute Dimension

A BP can be considered to have two distinct segments, where one segment is responsible
for creating a plan, which the other segment would then execute one or many times.
Here, a plan-execute relationship exists between the two segments of the process. In the
BPA modeling technique, each segment is modeled as a stage, with the stage producing
the plan being the planning stage and the stage executing it being the execution stage.
PEs can also be moved from an execution stage to a planning stage (and vice versa)
based on the goal-driven analysis of their contribution to the relevant NFRs. Such
movements create variations in the plan-execute behavior and allow either increased

Modeling DevOps Deployment Choices Using Process Architecture 331

p
Sprint Cycle
Groom
Release —11-» Plan Iteration |eee
@ Backlog
{ L)
r -
| Release Plannin Sprint Cycle
[a2 - . p: <

Groom
Release
Backlog

-

N Release
Backlog

@S: Release
Planning

Groom R

Backlog
@S: Sprint Cycle

oo Plan Iteration | eee

8 p

Fig. 4. Release backlog grooming alternatives (A1) as part of the sprint cycle stage with no
recurrence, (A2) moved to the release planning stage with a multi-recurrence dimension between
both stages. (B) Analyzing the recurrence arrangement of the release backlog grooming and sprint
planning stages based on NFRs.

pre-planning (by moving a PE to the planning stage) or shifting more responsibility to
the execution side (by moving a PE to the execution stage).

Typically, testing plans are created (Create Testing Plan) for enabling automated
testing. They are then coded up (Create Testing Scripts) in the form of testing scripts by
the DevOps engineer and repeatedly executed (Execute Testing Scripts). As shown in
Fig. 5, there are two possibilities with respect to the creation of the testing scripts. One
is to create the testing scripts for every instance of automated testing so that the scripts
are customized to the particular feature being tested (Create Testing Scripts PE is part
of the Continuous Integration stage), whereas the other is to have a consistent and
standard set of testing scripts that would allow testing coverage irrespective of particular
product features being developed (Create Testing Scripts PE is part of the Testing Plan
stage). The trade-offs would be between customized behavior and efficiency; on the one
hand, the repeated creation of testing scripts would allow specific and customized
testing, while in the other case, the development lifecycle automation would be higher.
Enterprises would have to choose the appropriate configuration based on their situational
and contextual needs.

(& - y = =
Testing Plan Continuous Integration
Al —mm et — =B
Create Testing Test Create Testing Execute vee
Plan Plan Scripts Testing Scripts
L ; X L J
® \

[Testing Plan (5
a2l - 9 N \In)eg:anorp
‘ Test ‘ Create Testing
Create Testing Create Testing | o— | Execute . Scripts Create Testing
Plan Scripts Plan Testing Scripts @S: Continous Scripts
J | x J Integration @S: Testing Pla
/ \ /
\

Fig. 5. Test scripts creation placement alternatives (A1) as part of the continuous integration
stage with increase customizability of testing, (A2) as part of the testing plan stage leading to
greater efficiency and reuse. (B) Analyzing the placement of test script creation along the plan-
execute dimension while considering trade-offs for NFRs.

332 Z. Babar et al.

3.4 The Design-Use Dimension

A BP can result in the creation of a tool, capability or artifact that can be repeatedly
used. Just like the plan-execute dimension, such BPs can be considered as having two
distinct stages, with one stage being responsible for designing the artifact and the other
stage for using that artifact repeatedly. Thus, a design and use relationship exists between
these segments of the process. In the BPA modeling framework, the stage producing the
artifact is called the design stage and the stage using the artifact is called the use stage.
The use stage uses the artifact repeatedly without necessarily being aware of the inner
working of that artifact. PEs can also be moved from a design stage to a use stage (and
vice versa), with such a repositioning either leading to an increased design/artifact
sophistication/automation or to trading the design effort for run-time usage control/
customizability.

The DevOps approach emphasizes greater automation of the software development
lifecycle through the use of tools. A number of third-party tools are available (e.g.,
Jenkins! for CI, Chef? for deployment management, Github? for source repository and
Splunk* for application monitoring etc.), which provide such automation of process
activities. These tools are configured (designed) for use in any particular DevOps imple-
mentation and thus enable a move from manual methods of product deployment (shown
by the Manual Deployment stage in Fig. 6) to more automated and CD cycles (shown
by the Environment Setup design stage and the Continuous Deployment use stage).
However, the introduction of any artifact in the design-use dimension should be evalu-
ated against the NFRs (as shown by the goal model).

a1l [Manual Deployment

p [e]
[Package | | seup |)
<Z> Product |-= Producion = DSPRYI0
Production
Release Environment
o+ -

[22] ’

L

(Continuous Deployment

Environment Setup
—— s N a \ / N Automated
Install Setup 1N Package Deploy to Deployment
Third-Party Production Tools Product - o Zuynon @S: Environment
Tools Environment Release oduc Deployment S(::; s

Deployment

Fig. 6. Deployment of product release alternatives (A1) manual deployment without the use of
automated tools, (A2) through the design and use of configured third-party tools. (B) Analyzing
the need for having a design-use dimension for product release deployment.

4 Related Work

CI and CD are well understood concepts in continuous software engineering where the
objective is to deliver ongoing software product improvement and enhancements in less

' https://jenkins-ci.org/.
https://www.chef.io/.

’ https://github.com/.

! http://www.splunk.com/.

https://jenkins-ci.org/
https://www.chef.io/
https://github.com/
http://www.splunk.com/

Modeling DevOps Deployment Choices Using Process Architecture 333

time and greater frequency through improved process automation and introduction of
suitable software tools [8]. Generally, any organization would have multitudes of soft-
ware processes to handle different project development situations; appropriate software
processes are selected based on situational needs and business context [18]. Software
process tailoring refers to the customization of standard software planning, development
and operational processes [19] in situations where organizations need an enterprise-level
assessment on how environmental factors, product and project goals, and other organ-
izational aspects influence software process configurations. Commonalities and varia-
bilities exist between these software processes and, as such, these software processes
can be tailored to meet specific enterprise business and operational goals and objectives
using different techniques for decision making [20, 21].

Several software process modeling techniques exist and are primarily based on
process modeling languages (such as BPMN), Unified Modeling Language (UML) or
Software & Systems Engineering Metamodel (SPEM) [22]. Apart from a few (such as
[23, 24]), most of the software process modeling frameworks do not provide support for
modeling variability in software process configurations and the ability to reason about
them while taking enterprise- and process-level NFRs into consideration.

Enterprises attempt to reduce development effort and increase the range of product
features offered through software product lines (SPLs). SPLs can be used to support
multiple software products through the development of common software architec-
ture(s) and code components. SPLs rely on variation points to support software product
variability [25]. Delaying decisions during the development cycles of these SPLs
provides the benefit of allowing the optimization of technical and business goals (e.g.,
increased code reuse) across multiple products, possibly at the expense of other goals
(e.g., simpler architecture). Extending the idea of SPLs to processes results in the notion
of Software Process Lines (SPrL) [26], which is based on a similar premise: similarities
and differences between a set of software processes could be scoped for determining
customized software process configurations as per unique software project conditions.
In [27], the idea of (software) Process Line Architectures (PLA) is introduced. A PLA
is described as “a process structure which reflects the commonality and variability in a
collection of processes that make up a process line from the perspective of overall opti-
mization”. Like a BPA, a PLA also represents the existence of VPs in (software)
processes. However, it does not support the placement of a process element along the
four dimensions as described in this paper.

Previous research on BPAs largely focused on the nature of the relationships among
their BPs. Various relationship types were proposed (e.g., [28, 29]), such as sequence,
reference, composition, etc. Unlike most BPA approaches, we focus on systematically
analyzing multiple BPA alternatives along the four variability dimensions with the aim
at finding the one that best matches the properties of the domain.

Another relevant domain is BP variability modeling that focuses on representing
customizable BP models and deriving custom variants from them (see [30] for an over-
view), with the key element being a VP, which is used to represent and bind variability.
Overall, these approaches deliberate about variability only at the process level (within
a single process) and do not support reasoning about BPAs. In dealing with BP flexi-
bility, Weber et al. [31] propose four dimensions of change, including the one focusing

334 Z. Babar et al.

on the recurrence of activity execution. While somewhat similar to our approach, it
neglects trade-offs among the various options and does not cover flexibility in BPAs.
Feature models [32] are sometimes employed as a useful abstraction to help guide BP
customization (i.e., selecting or deriving a BP variant from a customizable process
model). While a viable option, feature models (unlike goal models used here) lack the
ability to represent selection criteria and support trade-off analysis among configuration
alternatives.

5 Future Work

In future iterations of this work we plan to study the following:

e Many enterprises are becoming critically dependent on software and software
processes to create and deliver value to their stakeholders in the form of products and
services. Successfully introducing software process reconfigurations in response to
changing business models or strategic direction may impact the ongoing delivery of
value, product and services [33]. We aim to link the impact of software process
reconfigurations to business goals and value in order to exploit synergies and mitigate
negative consequences.

e We wish to understand the possible forms of software process reconfigurations with
the intention of identifying key points of process variations and the influencing
factors that contribute towards these process reconfigurations. Requirements for
software process reconfiguration are usually developed in response to shifting enter-
prise objectives, adaptability requirements and emerging digital technologies in the
enterprise context. The relationship between these requirements and their influence
on variation points for software processes would need to be understood.

e Processes are executed by participants or actors in any enterprise. Changes in organ-
izational structure and team dynamics would invariably influence process configu-
rations (and vice versa). For example, any process reconfiguration would possibly
shift the boundaries of actor influence with some actors gaining responsibility and
other actors losing responsibility or power. Conversely, changing an actor’s boundary
of influence may also require the selection of an alternate process configuration to
successfully attain the same set of goals. The association of operational process level
concerns and social organizational considerations needs to be studied and developed
by combining the BPA technique (for process representation) with a social actor
modeling framework, such as i* [34].

e Enterprises take advantage of software metrics to routinely and incrementally
improve on software processes. While software metrics are well documented [35],
illustrating and analyzing the integration and usage of these software metrics for
ongoing software process improvements, through the use of enterprise modeling
techniques, is not well covered. The BPA can be continuously refined through use
of software metrics and data analytics in all stages of the feedback loop —i.e., sensing,
interpreting, deciding and acting.

Modeling DevOps Deployment Choices Using Process Architecture 335

We are exploring methods and techniques from diverse areas, including software
engineering, requirements engineering, system dynamics, and management literature,
to contribute towards a framework for the management of enterprise software process
variability. We are developing a meta-model and an ontology to understand the nature
of software process variability and to extend existing enterprise modeling techniques to
incorporate attributes and constructs for denoting variability and flexibility in software
processes. Finally, we aim to validate such a proposed framework by conducting case
studies for various types of enterprises.

6 Conclusions

Every enterprise relies on various BPs for proper functioning, which can take many
forms and can include operational, transactional, strategic, recurring, design processes,
etc. Having uniform and static processes is no longer an option for enterprises dealing
with a multitude of dynamically changing situations that require periodic adjustment of
process configurations [36, 37]. A recent report from Gartner mentions that “by 2017,
70 % of successful digital business models will rely on deliberately unstable processes
designed to shift as customer needs shift” [38]. In this paper, we considered the possible
dimensions of software process reconfigurability using the DevOps approach as a moti-
vating example. Limitations of current process modeling languages, such as BPMN, in
illustrating multiple aspects of process architecture were discussed, with the BPA
modeling technique being used to describe four dimensions of PE positioning, namely,
temporal, recurrence, plan-execute, and design-use, in a typical DevOps implementa-
tion. Goal models were used for evaluating alternate software process reconfigurations
by assessing the satisfaction of enterprise NFRs.

References

1. Wilkinson, M.: Designing an “adaptive” enterprise architecture. BT Technol. J. 24(4), 81-92
(2006)

2. The Economist: Organisational agility: how business can survive and thrive in turbulent times.
A report from The Economist Intelligence Unit (2009)

3. Gartner Research: Gartner says by 2016, DevOps will evolve from a niche to a mainstream
strategy employed by 25 percent of global 2000 organizations. http://www.gartner.com/
newsroom/id/2999017. Accessed 5 March 2015

4. Erich, F., Amrit, C., Daneva, M.: A mapping study on cooperation between information
system development and operations. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Ménnisto,
T., Miinch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 277-280. Springer,
Heidelberg (2014)

5. Bang, S.K., Chung, S., Choh, Y., Dupuis, M.: A grounded theory analysis of modern web
applications: knowledge, skills, and abilities for DevOps. In: Proceedings of the 2nd Annual
Conference on Research in Information Technology, pp. 61-62. ACM (2013)

6. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In: Lassenius, C., Dingsgyr,
T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 212-217. Springer, Heidelberg
(2015)

http://www.gartner.com/newsroom/id/2999017
http://www.gartner.com/newsroom/id/2999017

336

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Z. Babar et al.

Smeds, J., Nybom, K., Porres, I.: DevOps: a definition and perceived adoption impediments.
In: Lassenius, C., Dingsgyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 166—
177. Springer, Heidelberg (2015)

. Bosch, J. (Ed.): Continuous Software Engineering. Springer (2014)
. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and configuration

management of business processes. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 246-261. Springer, Heidelberg (2007)

Business Process Model and Notation, v2.0. http://www.omg.org/spec/BPMN/2.0/PDF/
Stéhl, D., Bosch, J.: Modeling continuous integration practice differences in industry software
development. J. Syst. Softw. 87, 48-59 (2014)

Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using scrum in distributed agile development:
a multiple case study. In: Fourth IEEE International Conference on Global Software
Engineering, ICGSE 2009, pp. 195-204. IEEE (2009)

Fitzgerald, B., Stol, K.J.: Continuous software engineering and beyond: trends and challenges.
In: Proceedings of the 1st International Workshop on Rapid Continuous Software
Engineering, pp. 1-9. ACM (2014)

Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper
Saddle River (2002)

Haeckel, S.H.: Adaptive Enterprise: Creating and Leading Sense-And-Respond
Organizations. Harvard Business Press, Boston (1999)

Lapouchnian, A., Yu, E., Sturm, A.: Re-designing process architectures towards a framework
of design dimensions. In: 2015 IEEE 9th International Conference on Research Challenges
in Information Science (RCIS), pp. 205-210. IEEE, Chicago (2015)

Lapouchnian, A., Yu, E., Sturm, A.: Towards variability design for business process
architecture. In: 34th International Conference on Conceptual Modeling (2015) (Accepted)
Alegria, J.A .H., Bastarrica, M.C.: Building software process lines with CASPER. In: 2012
International Conference on Software and System Process (ICSSP), pp. 170-179. IEEE
(2012)

Pedreira, O., Piattini, M., Luaces, M.R., Brisaboa, N.R.: A systematic review of software
process tailoring. ACM SIGSOFT Softw. Eng. Notes 32(3), 1-6 (2007)

Martunez-Ruiz, T., Garcua, F., Piattini, M., Munch, J.: Modelling software process
variability: an empirical study. Softw. IET 5(2), 172-187 (2011)

Martinez-Ruiz, T., Garcia, F., Piattini, M.: Managing process diversity by applying rationale
management in variant rich processes. In: Caivano, D., Oivo, M., Baldassarre, M.T.,
Visaggio, G. (eds.) PROFES 2011. LNCS, vol. 6759, pp. 128-142. Springer, Heidelberg
(2011)

Garcia-Borgofion, L., Barcelona, M.A., Garcia-Garcia, J.A., Alba, M., Escalona, M.J.:
Software process modeling languages: a systematic literature review. Inf. Softw. Technol.
56(2), 103-116 (2014)

Cares, C., Mayol, E., Franch, X., Alvarez, E., Goal-driven agent-oriented software processes.
In: Proceedings of the 32nd Euromicro Conference on Software Engineering and Advanced
Applications, SEAA, Cavtat/Dubrovnik, Croatia, pp. 336-343 (2006)

Washizaki, H.: Deriving project-specific processes from process line architecture with
commonality and variability. In: Proceedings of the IEEE International Conference on
Industrial Informatics INDIN 2006), Singapore, pp. 1301-1306 (2007)

Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product lines.
In: Working IEEE/IFIP Conference on Software Architecture. Proceedings, pp. 45-54. IEEE
(2001)

http://www.omg.org/spec/BPMN/2.0/PDF/

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Modeling DevOps Deployment Choices Using Process Architecture 337

Rombach, H.D.: Integrated software process and product lines. In: Li, M., Boehm, B.,
Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 83-90. Springer, Heidelberg (2006)
Washizaki, H.: Building software process line architectures from bottom up. In: Miinch, J.,
Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 415-421. Springer, Heidelberg
(2006)

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process
Management, Chap. 2. Springer, Heidelberg (2013)

Eid-Sabbagh, R.-H., Dijkman, R., Weske, M.: Business process architecture: use and
correctness. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 65—
81. Springer, Heidelberg (2012)

La Rosa, M., Aalst, W.M.P. van der, Dumas, M., Milani, F.P.: Business process variability
modeling: a survey. ACM Computing Surveys (2013)

Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features —
enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3), 438—
466 (2008)

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, SEI, Carnegie Mellon
University (1990)

Esfahani, H.C., Yu, E., Annosi, M.C.: Strategically balanced process adoption. In:
Proceedings of the 2011 International Conference on Software and Systems Process, pp. 169—
178. ACM (2011)

Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. MIT Press, Cambridge (2011)

Fenton, N., Bieman, J.: Software Metrics: Rigorous and Practical Approach. CRC Press, Boca
Raton (2014)

Yu, E., Deng, S., Sasmal, D.: Enterprise architecture for the adaptive enterprise — a vision
paper. In: Aier, S., Ekstedt, M., Matthes, F., Proper, E., Sanz, J.L. (eds.) PRET 2012 and
TEAR 2012. LNBIP, vol. 131, pp. 146-161. Springer, Heidelberg (2012)

Yu, E., Lapouchnian, A.: Architecting the enterprise to leverage a confluence of emerging
technologies. In: Proceedings of the 2013 CASCON. IBM Corporation (2013)

Spender, A.: Top 10 strategic technology predictions for 2015 and beyond, gartner research.
http://www.gartner.com/smarterwithgartner/top-10-strategic-technology-predictions-for-
2015-and-beyond/. Accessed 18 February 2015

http://www.gartner.com/smarterwithgartner/top-10-strategic-technology-predictions-for-2015-and-beyond/
http://www.gartner.com/smarterwithgartner/top-10-strategic-technology-predictions-for-2015-and-beyond/

	Modeling DevOps Deployment Choices Using Process Architecture Design Dimensions
	Abstract
	1 Introduction
	2 Motivating Example
	3 Modeling Process Reconfigurations
	3.1 The Temporal Dimension
	3.2 The Recurrence Dimension
	3.3 The Plan-Execute Dimension
	3.4 The Design-Use Dimension

	4 Related Work
	5 Future Work
	6 Conclusions
	References

