Consistently Formalizing a Business Process
and its Properties for Verification: A Case Study

Michael Rathmair®), Ralph Hoch, Hermann Kaindl, and Roman Popp

TU Wien, Institute of Computer Technology, Vienna, Austria
{rathmair, hoch,kaindl, popp}@ict.tuwien.ac.at

Abstract. Formal verification of business process models can be done
through model checking (also known as property checking), where a model
checker tool may automatically find violations of properties in a process
model. This approach obviously has formal representations as a prerequi-
site. However, a key challenge for applying this approach in practice is to
consistently formalize the process and its properties, which clearly can-
not be done automatically. We studied this challenge in a case study of
formally verifying an informally given business process against a guide-
line written like a legal text. Major lessons learned from this case study
are that formalizing is key to success and that in its course a semi-formal
representation of properties is useful. In the course of such a step-wise
and incremental formalization, problems with the given process model
have been found already, apart from those found with a model checker
tool that used the formal property specification. In total, our approach
revealed five problems not found by the official review. In summary, this
paper investigates in a case study consistently formalizing a business
process and its properties for verification through model checking.

1 Introduction

Hardware and software should be free of errors, and the same applies to busi-
ness processes. Usual quality assurance techniques for hardware and software
in practice are reviews and tests. These have the purpose of finding errors but
they can, in general, not show that there are no errors. Research both related to
hardware and software investigates model checking for formal verification, which
can, in principle, show that there are no errors with regard to certain properties.
This requires both a formally specified behavioral model and formulas specify-
ing properties to verify them against. Neither of them are usually available in
practice, unfortunately.

Roughly speaking, a formal representation is one that allows (automatic)
reasoning purely based on its form, which has defined semantics. In particular,
illustrative diagrams or natural language are not formal representations. That is
why formalization is necessary when something is given informally, e.g., in such
diagrams or in natural language. Business process models typically are behavioral
models, but usually not (really) formally defined in practice. So, their formal-
ization is important but even more so the consistent formalization of properties

© IFIP International Federation for Information Processing 2015
J. Ralyté et al. (Eds.): PoEM 2015, LNBIP 235, pp. 126-140, 2015.
DOI: 10.1007/978-3-319-25897-3_9

Consistently Formalizing a Business Process 127

to check them against. These properties are sometimes hard to get in practice
and at best, informally described. The properties typically refer to the behav-
ioral models, but this means some coupling. And if the person who formalizes
properties has the behavioral model available, then there will be some influence
on the properties. This is reminiscent of someone writing test cases for his own
software. So, we argue for more or less independent formalization of a behavioral
model and of the properties to check it against. Unfortunately, this may lead to
inconsistent formalizations that do not fit together for the purpose of model
checking. Therefore, consistent formalization of behavioral model and properties
is a challenge, which we address in this paper.

We investigated this challenge in the context of a case study where it became
apparent. The task was verifying a high-level business process of our university
against a corresponding guideline, both of which were given informally. More
precisely, this is a real process enacted on a regular basis (for searching and
appointing a full professor). For the case study, a process diagram in informal
notation was used, as given in the course of preparations for an official Quality
Audit. The guideline is an official document of our university, derived from the
Austrian law for universities. In particular, its writing style is like that of this
legal text, i.e., a special kind of text in natural language.

So, there was informal input, but formal representations of both process and
properties are needed for formal verification using model checking. Of course,
there is neither an automated transformation nor a defined sequence of steps
available for such a task of formalization, and we did not attempt to define
something like that, either. Still, we suggest, based on the case study, to use a
semi-formal representation in the course of the formalization. Its usefulness is a
major lesson learned, generalized from the case at hand.

The remainder of this paper is organized in the following manner. First,
we present some background material on model checking in order to make this
paper self-contained. Then we discuss related work. The core part presents a case
study of model checking an informally given high-level process against a guideline
based on legal text, where consistent formalization was particularly studied, and
concludes with lessons learned from it. After that, we discuss threats to validity.
Finally, we derive general conclusions on consistently formalizing properties used
for model checking business processes.

2 Background on Model Checking

Model checking (or property checking) is a formal verification technique based
on models of system behavior and properties, specified unambiguously in formal
languages (see, e.g., [1]). The behavioral model of the system under verification
is often specified using a Finite State Machine (FSM), in our case using synchro-
nized FSMs. Their expressiveness is sufficient for our case, but Petri nets, e.g.,
could be used as well, if needed (depending on the tool used). The properties to
be checked on the behavioral model are formulated in a specific property spec-
ification language, usually based on a temporal language. Several tools (such

128 M. Rathmair et al.

as SPIN [2] or NuSMV [3]) exist for performing these checks by systematically
exploring the state-space of the system. When such a tool finds a property vio-
lation, it reports it in the form of a counterexample.

In this work, we make use of Linear Temporal Logic, or Linear-time Temporal
Logic, (LTL) and Computational Tree Logic (CTL) for property specification.
More precisely, we use PLTL (LTL with past). Since a rough understanding of
some of their operators is needed for understanding our formalization approach,
let us briefly sketch these here. PLTL provides expressions of relations between
states (path formulas) using operators referring to behavior over time. In PLTL,
the set of traditional propositional logic operators is extended by time operators
such as:

— G (Globally): an expression p is true at time ¢ if p is true at all times ¢ > .

— F (Future): an expression p is true at time ¢ if p is true at some time ¢’ > t.

— O (Once): an expression p is true at time ¢ if p is true at some previous time
t<t.

CTL features the specification of branching time properties. While PLTL
allows the specification of properties to hold for all computation paths related
to a given point in time, CTL provides operators for specifying whether there
exists (eventually) a computation path where a specific state property holds. In
this work, we use the following CTL operators:

— EF (Eventually in the Future): an expression p is true in the initial state sg
and there exists a state sequence sy — s; — Sg — -+ — s, such that p is
true in s,.

— AG (Always Globally): an expression p is true in the initial state sg and in
each state of all transitions sg — s1 — 89 — +++ — S,.

3 Related Work

Previous related work made it absolutely clear that some representation with
defined semantics is a prerequisite for formal verification, also of business
processes. Given such a representation, checking correctness properties inher-
ent in the business process itself is possible. Since we rather focus on formalizing
properties given in addition to a business process, we cite only a few references
here. Wynn et al. [4] verify business processes against four defined properties
(soundness, weak soundness, irreducible cancellation regions and immutable OR-
joins). Sbai et al. [5] show how a model checker can be used to identify problems
with a specification of a business process to be automated as a workflow, and
how a verification of certain correctness properties can be accomplished. Kher-
bouche et al. [6] propose an approach for using model checking as a mechanism
to detect errors such as deadlocks or lifelocks.

Some previous work addressed the question of what to verify a business
process model against, to determine possible violations of certain properties
given in addition to the process model itself. Fisteus et al. [7] propose a frame-
work for integrating BPEL4WS and the SPIN and SMV verification tools. This

Consistently Formalizing a Business Process 129

framework can verify a process specification against properties such as invariants
and goals through model checking. Armando et al. [8] show how model check-
ing can be used for automatic analysis of security-sensitive business processes.
They propose a system that allows the separate specification of the business
process workflow and of corresponding security requirements. In more recent
work [9], they show how model checking can be specifically used to check autho-
rization requirements that are implemented in parts of business processes. Barros
et al. [10] propose to check business processes against execution rules incorpo-
rated in workflows with model checking techniques.

Mrasek et al. [11] point out that formalizing properties in CTL is a difficult
task and strive for making it easier through so-called patterns based on textual
fragments in natural language. This approach can work in a given context for
entering properties, and it helped in a case study. In general, however, the inter-
pretation of these textual patterns is subtle and error-prone. So, they have to
be prepared specifically for a given problem by CTL specialists, anyway. In par-
ticular, for our case study with given legal text, such an approach would most
likely require a variety of different patterns and still be hard to validate.

The focus of our work as presented in this paper is, however, consistently
formalizing the business process and its properties as required for automatic ver-
ification through model checking. Still, no previous work in the context of model
checking of business process models addressed it to our best knowledge, including
model-based business process compliance-checking approaches [12]. Apart from
[11], which addresses formalizing properties (but not formalizing the process),
all the publications on model checking of business processes already assume the
availability of formal representations.

4 A Case Study of Model Checking a High-Level Process
Against a Guideline

We performed a case study, where we verified a high-level business process of our
university against a corresponding guideline, both of which were given informally.
More precisely, this is a real process enacted on a regular basis (for searching and
appointing a full professor), but its ‘as-is’ process diagram has been yet under
development at this time (in the course of preparations for an official Quality
Audit). We used a version of this diagram that was under official review at about
the same time as the case study, but in order to keep pace with the tight schedule
of the overall endeavor, we only dealt with the core part of this process where
the search committee is active. Figure 1 shows a selected part of this core part to
be used below for illustration purposes, in the informal notation officially used.
(Note, that the arrow from the task “Invite new reviewers” leads outside of this
selected part.) The guideline is an official document of our university, and its text
(in German) can be found at http://www.tuwien.ac.at/dle/universitaetskanzlei/
satzung/berufungsverfahren/. This guideline is derived from the Austrian law
for universities. In particular, its writing style is like the one of this legal text.

http://www.tuwien.ac.at/dle/universitaetskanzlei/satzung/berufungsverfahren/
http://www.tuwien.ac.at/dle/universitaetskanzlei/satzung/berufungsverfahren/

130 M. Rathmair et al.

MAN-03-02-5S Process of Appointing a Professor m

Yes

B
‘ Forward applications to ‘

reviewers
4
Prepare review wthin 3 R
maonths
Are at least 2 reviews ,/t\, N Extend deadline e
available? ™~ for 1 month
J
Yes Are Reviews l
available? A sC
— <
Action Plan for the X .;[; RI“‘:‘"""'-“"F = = =4
of v eliminaton of 5 - ow D
iz?n:m;ﬁ' - —p{ Create shortlist of canduda:e’.} = 1 candidates

Invite new I
". reviewers |
Forward shortlist of g
candidates to rector

v
E = Executes; D = Decides; C = Contributes; I = Informed.

SC = Search Committee; R = Reviewer; EOW = Equal opportunities working party; D = Dean;
CSC = Chair Person of the Search Committee; RE = Rector.

Fig. 1. Diagram of a part of the process for appointing a professor

4.1 Stakeholders

The stakeholders involved in this case study, directly or indirectly, are the fol-
lowing:

— Central group responsible. A dedicated group directly assigned to the rectorate
was responsible for creating business models of several high-level processes of
our university, and for their review.

— Working groups. In order to acquire knowledge on these processes, several
dedicated working groups were assembled, whose output was fed into the
process models created by the central group responsible for that.

— Reviewers of process models. In order to get as much feedback as possible on
these models, every employee of our university has been invited to participate
in the review (via email).

— Case study team. The people having performed this case study are actually
the same as the authors of this paper. Two of them had enacted this very
process in key roles in 2013.

— Verification engineer. The first author of this paper was the verification engi-
neer in this team and brought in know-how and experience from applying

Consistently Formalizing a Business Process 131

such techniques in hardware design, more precisely circuit verification, see,
e.g., [13].

4.2 Formalization of Guideline and Process Model

Initially, the verification engineer only worked on formalizing the guideline, as
he did not know the process at all. Therefore, he could not formalize the process
model yet, and also not completely formalize the properties to check it against,
since he did not know the states of the process model. So, he created a semi-
formal representation of properties according to the guideline first, where he
used PLTL/CTL operators already, but still text fragments from the guideline
to indicate, e.g., sequences of tasks. This property representation was subject
to an informal manual inspection by the complete case study team. Only after
that, the verification engineer was given the part of the process model, which
he formalized as an FSM. Once having the FSM available, he formalized the
properties based on the previously prepared semi-formal representations. Finally,
he applied the model checking tool for checking whether the process model is
inconsistent with the given guideline.

For illustrating the creation of a semi-formal representation, let us start with
an example excerpt from the guideline. §7(1) of the guideline is given in the
second column of Table1: “The chairperson of the search committee forwards
...7. First, the verification engineer identified all actors and artefacts mentioned
in the partial sentence and treated them as individual objects, e.g., CSC and list
(of candidates). After that, he identified actions and mapped them to expres-
sions including temporal operators, e.g., F' as specifications of allowed sequences.
Since this example contains two different actions with different actors, the full
paragraph is actually mapped to two properties. The second of these proper-
ties in its semi-formal representation, i.e., “G (list = TRUE — F Dean.state =
forward candidate list to rector)”, expresses that globally (PLTL operator G),
if the list exists, then the Dean must reach a future state (PLTL operator F),
where the list of candidates is forwarded to the rector.

Especially with respect to ‘time’, it is interesting to give an example of what
we did not formalize from the given guideline, even though temporal logics are
employed. The guideline says, for instance, “reviews should be prepared within
3 months” (as translated from the German text). The verification engineer did
not include this statement into the list of properties (not even their semi-formal
representation), since he had his focus on sequences in time, although the so-
called X operator of LTL could be used in an attempt to model this statement.
In hindsight, we briefly discussed this possibility, where time units would be
defined, e.g., a day. Based on that, the checker tool could simulate time slots
through loops for a defined number of time units corresponding to 3 months.
Obviously, there would a minor intricacy involved, since not every month has
the same number of days, but this could be approximated. Another, more serious
issue with this approach would be that a day would be the minimum duration
of each task. All of these intricacies of this thought experiment are, however,
beyond the scope of the given guideline text and the law it is based upon.

M. Rathmair et al.

132

*103091 0} SAJLPIPUED JO ISI[HOYS PIEMIO] = ¥ D PIemIo]
SYIUOW ¢ UIYIIM MIIAdI dredald = aredoig
$SOIBPIPUERD JO ISI[HOYS)81 = T D) 911D

‘yjuowW | I0J QUI[PEIP PUdIXY =

¢10ssoy01d € Sunurodde Jo sseo01d =

puaIxg
sso01d-Isur

(uea(= grssooxd-sur (103931 03 381 AJEPIPULD 101091 3} 0} J1 SPIEALIOJ OYM
— A OTPIBMIO] = IS'SSo001dTISuL) 9| pIeMIOj = djels e o] < HOUL=ISH) O ‘ueap 9[qIsuodsar ayy 03 [qIssod s UOOS SE IS SIY)
JNSH QU UI SISIX? JJe)S yons ou (ueap 0} IS1] AJepPIPURD : : o (D25
Qours ‘9[qIssod UONEZI[EWLIO) Pauyal ON|pIemIo) = AeIs' DS 4 < ANAL =IS1) H SPIRMIOJ SANIWIWOD YO1eas 3y} Jo uosiadireyd oy, DL
(T O 91eaID=31.)s"$s001dIsuL ('seyepIpuLd IIM ISI] Ak SMITAI J[qR[IBAR dU) UO pIseq UOISIOdP
] [UETE] = CIEUIERTaE) /5|5 =GO o < P ST SII SOYBW 2PIUWIWIOD YOIBS AY) ‘QUI[PLp SIY) IJe
((puarxyg = 3B ssoo1d-jsur .777) (fpuowr | 10§ : : :
% (puaxg = 9e)s'ssaoord-isur 747)i) [QUIPEIP PUAIXH = AeIS'DS J 4 29 Jruowt iy
— ((z > SMITAYWINUTISI["MTAIISUT) | | JOJ QUI[PBAP PUAIXH = AJRIS'DS J/F|) <—| QUO IOJ QUI[PBIP) PUAIXI ABUI JOPIUWIWIOD [OIBAS)
2 (aredarg = 9)BIS'SSE00IdTISUI))) DV |SMIIAIL T URY) SSI PAAIDIAI SBY DS) £/ [9SIMIAYIO ‘SMITAAI J[QR[TBAR S} UO PISBQ UOISIIAP S
(T D 91ea1D=97e)s"ssao01d-Isur SYRW 99)IWIOD [OIBIS AY) ‘SYIUOW ¢ Id)Je J[qe[IeAR
A < (T = SMIAJWINUTISI[MITAIIISUT| (SOIBPIPURD [IIM IS 9JBAID = ABIS'DS J| SMIIAAI 7 oIk pue ‘pIjsanbar usaq aary smaraar g ueyy| (7)98
» aedord = 9eIS'sse001dTISUL)) H)|«— SMIIAI QIOW JO 7 PIAIAIAI SBY DS) £H| 210w uI[opIng SIy) JO | ZIesqy ¢€8,, 03 SUIPIOdde J]
7 B[OULIO] %tomobi uonejuasarday A1redoig ?Euooﬁ-_Eomi Vel g o::oE:Oi ﬁ
punoigsoeq se Arid

JO sepeys SnoLreA ysnoiy) pojySIysiy are sorrodoid peje[ola aIoym ‘OUIepPING o) WOI} PoALp se soljredoid Jo uorjoees y T 9[qel,

Consistently Formalizing a Business Process 133

numReviews < 2 numReviews =
> >

Forward_A_Rzmmm s Prepare

numReviews >= 2 numReviews > 0

> -+

Forward_C_R

Extend = Extend deadline for 1 month; numReviews = signal number of reviews; Create_C_L =
Create shortlist of candidates; Prepare = Prepare review within 3 months; Forward_A_R =
Forward Applications to Reviewers; Forward_C_R = Forward shortlist of candidates to rector;
Invite = Invite new reviewers.

Fig. 2. FSM of the part of the process model shown in Fig. 1

A related example of what we clearly did not formalize about ‘time’ is the
phrase “as soon as possible” (in the original German text the word “ehestméglich”)
in § 7(1), see Table 1 in the last row. Without modeling time units, this cannot even
be approximated.

The effort for the manual translation of the given part of the guideline to a set
of semi-formally represented properties was approximately six hours. It included
eleven paragraphs of the guideline, resulting in 25 semi-formally represented
properties, and a meeting of the team for their informal inspection.

The informal inspection of the semi-formal property formulations was an
essential part of the full verification process. The translation of a natural lan-
guage text fragment as given by the guideline is an error-prone process. One or
more formulated properties have to cover the textually given facts and character-
istics of the described process “Appointing a Professor”. At the review meeting,
all 25 properties were discussed and analyzed whether they are not in conflict,
covering the guideline and adequately representing it.

Based on the results of this review, the verification engineer made a few
changes to the semi-formal representation of the properties. After that, he was
given the process representation in the form of the excerpt shown in Fig. 1,
essentially an annotated flow diagram. He constructed an FSM for the control
flow, which is shown in Fig. 2 for the same excerpt. In essence, he mapped each
chart element to an FSM state each. State transitions were derived from the
task flow of the given process model. Since the arrow from the state “Invite new
reviewers” in Fig. 1 is outside of the part selected for presentation here, it is not
included in the FSM.

134 M. Rathmair et al.

Constructing this FSM may even look straight-forward, especially for the
excerpt used in this paper. However, the notation of diagrams like those shown in
Fig. 1 is not formally specified. In fact, forks of lines can either mean procedural
or concurrent flows, as we found in such process representations. So, there is
essential ambiguity also in such process diagrams, which make formalization
hard in general.

Data objects were extracted from the given process model and may influ-
ence control flow decisions: reviewer list, review list, application list, and list of
candidates. As illustrated in Fig.2, i_numReviews is an internal variable of the
data object review list. The value of this variable (either > 0 or = 0) directly
influences the state transition in the control flow FSM.

Roles of this process as given through the columns with the header “E / D
/ C /T in the process diagram of Fig. 1 are modeled through a variable each,
all of them of type enumeration, with possible values SC, CSC, etc. The values
assigned depend on the given FSM state, e.g., for the state Create_C_L of this
FSM corresponding to the task “Create shortlist of candidates”, variables to be
used by the model checking tool are assigned as follows: E := SC, C := EOW
and I := D.

Once the FSM is defined, based on the given process diagram, it is useful
to reflect again on the representation of ‘time’ apart from sequences. There is
a task with the text “Prepare review within 3 months” in the process diagram
in Fig. 1. In the FSM, it is simply a state with a corresponding identifier. So,
the semantics of this text is obviously not represented. The verification engineer
saw the correspondence of this text with the corresponding text of the guideline
(as discussed above) in passing, but there was no formal verification based on a
temporal logic.

For the creation of the FSM and the definition of related variables as derived
from (the selected part of) the officially given process diagram, a time effort of
approximately three hours was used.

According to the given FSM, the verification engineer manually reformu-
lated the semi-formally represented property statements to corresponding PLTL
or CTL formulas, respectively. Informal parts of the semi-formally represented
property had to be replaced by expressions referencing states of the FSM and its
related variables. In the example used above, the formula “G (inst_process.state =
Forward_C_R — inst_process.EE = Dean)” refers to the process state Forward_C_R.
While the list object is not used here, the state Create_C_L before Forward_C_R
(in the FSM) creates it.

If a semi-formal representation of a property could not be translated to an
adapted PLTL or CTL formula, two cases were to be distinguished:

1. The granularity of the given model was partially not compatible with the
level of detail specified in the guideline. Hence, if the verification engineer
was unable to redefine some semi-formally represented property, this is not
necessarily a violation of the given guideline.

Consistently Formalizing a Business Process 135

2. An error in the model was identified. A subsequent detailed manual inspec-
tion of the model uncovered errors like missing or improper states, undefined
variables, etc.

An example of a missing state is the first semi-formally represented prop-
erty of §7(1). It cannot be translated into a refined formula because there is
no state in the given model denoting that “The chairperson of the search com-
mittee forwards this list as soon as possible to the responsible dean”, i.e., the
sentence highlighted in light-gray of the guideline in Table 1 and the correspond-
ing semi-formal property representation. More precisely, there is also a confusion
in the process model about the actors SC and CSC involved here, which means
a second violation of this property. Yet another task was identified to be missing
(with respect to preparing and submitting the final report, which were mixed
up in the process model), similarly to the one indicated above. So, a total of
three violations were found by the verification engineer already in the course of
modeling.

After this final formalization effort of approximately two hours, both the
model in the form of an FSM and the set of formalized properties were defined
and ready for model checking with the tool.

4.3 Tool-Supported Model Checking and its Results

For the tool-supported model checking, the formalized process model (in the
form of the FSM and its associated variables) and the set of refined properties
from the guideline (in the form listed in the fourth column of Tablel) were
input to the model checker tool NuSMV. For any property violation found by
the model checker tool, it returns a counterexample listing. This is presented as
a possible execution sequence violating a specific property formulation. These
results had to be manually analyzed by the verification engineer to locate the
violations in detail and, finally, to interpret them in terms of the given process
model and the guideline it has been verified against.

Table 1 contains examples of such violations found by the NuSMV tool, indi-
cated in dark-gray and mid-gray, respectively. Let us explain the violation shown
in mid-gray first. Listing 1 shows a selected part of the counterexample report for
this violated property formula. Such listings refer to states, but these are differ-
ent from the states of the FSM. In fact, NuSMV enumerates its execution states,
whose sequence forms a trace. In this example, State 1.1 denotes that the vari-
able i_numReviews, which is a local variable of the data object review_list, has
the value 0. The control flow FSM reaches its FSM state Prepare at (execution)
State 1.13. At State 1.14, the control flow FSM reaches its state Extend because
the condition “Are at least 2 reviews available” is not fulfilled. The violation of
this property is indicated by the following unspecified transition from the FSM
state Extend (State 1.14) to Invite (State 1.16). This FSM state sequence is
in conflict with the partial sentence “after this deadline, the search committee
makes its decision based on the available reviews” (textual part highlighted in
mid-gray of column one). In fact, the guideline does not define what to do if

136 M. Rathmair et al.

inumReviews = 0. As a consequence, the model checking tool automatically
indicates that the given formal property is not satisfied on the formalized input
model, and hence the guideline is not consistent with the process model.

-- specification G (inst_process.state = Extend -> F
inst_process.state = Create_C_L) is false

-- as demonstrated by the following execution sequence Trace
Type: Counterexample

-> State: 1.1 <-

inst_review_list.i_numReviews = 0

-> State: 1.13 <-
inst_process.state = Prepare
-> State: 1.14 <-
inst_process.state = Extend
-> State: 1.16 <-
inst_process.state = Invite

Listing 1. Counterexample Tool Output Reporting a Property Violation

For the second property violation found by the tool, highlighted in dark-gray
in Table 1, the same counterexample as shown in Listing 1 is returned (possibly
with different execution states, but this does not matter). In fact, the value 0
is the cause of the contradictions of both properties. In addition, the property
highlighted in dark-gray is also violated if the variable i numReviews is assigned
to 1. This has actually been checked with the tool by the verification engineer
by forcing it to evaluate an example with the value 1, where the tool tells that
this is a counterexample as well.

This second property violation is especially interesting, since it expresses
that shifting of the deadline for the submission of Reviews is optional and not
mandatory if inumReviews < 2. This is formalized as a CTL formula, which
enables the combination of path and state operators. Since the property states
that the task “Extend the deadline for 1 month” is optional, it has to be checked
whether both paths, one including the task and one not, are reachable. In terms
of formalization, simply using the EF operator in one direction is not sufficient,
therefore, since it defines that a path exists. This would also include the case of
a mandatory extension as given in the process model. So, it is necessary to have
a conjunction with the same part of the formula negated, see Table 1.

For the dedicated final adaptation and debugging of the formalized model
and properties, a final interpretation, and location of the two violations found
by the tool, a time effort of approximately two hours was used.

4.4 Summary of Results and Lessons Learned

In total, five problems were revealed in the selected part of the process for
appointing a professor. In fact, no problems at all were found in this part by the
official review, for which all employees of the university had been invited.

Consistently Formalizing a Business Process 137

Now let us briefly generalize from the case at hand and try to indicate lessons
learned that may be useful for similar endeavors:

— Possibly conflicting roles. Specifying the process model and the properties to
be used for verifying it, should be done by different people. The process model
should also not be known in advance by the one(s) formalizing the proper-
ties. Having it available, however, imposes the risk that knowing the process
already may influence the verification engineer in the semantic interpretation
of properties. We think that this is reminiscent of a test-case writer who knows
the internal details of the program to be tested. In our case study, this helped
the verification engineer to avoid related pitfalls.

— Usefulness of a semi-formal representation of properties. Introducing a semi-
formal representation of properties appears to be helpful, when the final for-
mulas cannot be directly stated because the process model is not (yet) avail-
able to the verification engineer. In addition, the semi-formal representation
was useful for the informal inspection, since not the whole team had to be
familiar with the actual modeling language.

— Finding violations in the course of formalization. While usually the emphasis
is on finding violations through a model checker tool, already in the course of
formalizing properties, certain violations can be revealed. In our case study,
even three out of five violations were found in the course of trying to translate
the semi-formal representation of properties to formulas fitting the FSM of
the process model.

— Mismatch of the level of abstraction of the business process model and proper-
ties to be checked. Especially when the model and the properties are formal-
ized separately, a mismatch of their respective levels of abstraction may occur.
In our case study, several statements in the official guideline that the given
process diagram was verified against were much more detailed than this dia-
gram with its abstractions. Analyzing such cases helped to determine missing
tasks in the process model.

— Formalizing time. It may come as a surprise first that in spite of the use of
temporal logics certain aspects of ‘time’ were not formally represented and,
therefore, not verified by the model checker tool. One issue in this regard is,
again, the level of abstraction to be used for consistent formalization of the
process and its properties, another the expressiveness of the given formalisms.

— Ambiguity of legal text. It does not come as a surprise, however, that nat-
ural language is, in principle, ambiguous. Strictly speaking, we had to deal
with a kind of legal text in our case study, which is supposed to be less
ambiguous. We believe that we made a reasonable formalization of the text
“the search committee may extend the deadline for one month”, as given in
Table 1 in dark-gray, as discussed in relation to a property violation found by
the checker tool. The text is, however, “otherwise the search committee may”
(“andernfalls kann die Berufungskommission” in the original German text),
which could even deserve a legal interpretation by an educated expert in the
given context.

138 M. Rathmair et al.

While some of these lessons learned have most likely been observed before
and in other areas, we think that especially finding violations already in the
course of formalization, as well as mismatch of the level of abstraction of the
business process model and properties to be checked are new. Some of our lessons
learned may even be more generally relevant for other formalization efforts, e.g.,
usefulness of a semi-formal representation. In fact, it was also observed in the
context of requirements engineering [14].

5 Threats to Validity

Of course, there are threats to the validity, both external and internal. Regarding
threats to the external validity, having performed just a single case study yet is
obviously relevant. In addition, this was a relatively small case study. However,
the third author is well informed about the spectrum of business processes sub-
ject to the official Quality Audit, and we can state that the chosen one is highly
representative. So, for gaining first insights into issues and benefits of applying
model checking to the verification of such high-level business process, this case
study seems to have been appropriate, especially with regard to the formaliza-
tion challenge. Still, more cases studies along these lines will be required, also in
industry, to substantiate the results.

Regarding threats to the internal validity, let us consider the fact that the
verification engineer (the first author) comes from the field of hardware design
and verification. The work in this case study may have been easier to tackle
with more background on business processes and their modeling. However, our
experience shows that especially the core task of formalization was possible to
be done well even without. The most important background was the know-how
for model checking and its tool support as well as the prior experience with
behavioral and temporal modeling, even gained in a completely different domain.
In addition, a case study with inductively generalized lessons learned is clearly
a weak method for gaining trustable results. However, it is a recognized method
for empirical studies and for gaining experience, and we applied it according to
the usual way of doing a case study according to the current state of the art.
Still, for getting more reliable results for specific hypotheses (to be formulated
based on our lessons learned), reproducible experiments will be necessary.

6 Conclusion

In this paper, we investigate formalizing as required for formal model checking.
We present a case study of formalizing an excerpt of a high-level business process
of our university and of properties derived from a guideline derived from an
Austrian law. A fundamental issue involved was formalizing properties consis-
tently with a process model (yet) unknown to the verification engineer. This has
been addressed and solved by using a semi-formal intermediary specification. In
this case study, problems in the process model were found already while for-
malizing, and later by the model checker tool. Overall, several problems were

Consistently Formalizing a Business Process 139

revealed by this approach to model checking that were uncovered in the official
review.

In this course, we investigated a new verification option for business process
owners whose processes and associated properties are given informally. There is
quite some effort involved in such a formalization task, and a case study like
ours helps to get an idea of the amount. It just depends on the criticality of the
business process, whether the results are worth this effort. The process of our
case study is one of those most critical for a university, and none of the problems
found by our formalization effort and by the model checker has been found in a
review by all members of the university, in principle. So, it is up to the people
responsible for a given business process to judge whether this effort may pay off.
Our case study shows the feasibility of such an approach and provides data on
this trade-off.

Based on all that, we conclude that consistently formalizing is key for suc-
cessful formal and automated verification of business processes. This has not
been addressed yet in the literature. Still, much is left for future work, such as
systematically extracting data objects and their life cycles from process mod-
els and additional sources, and machine support for incremental formalization
(possibly building on [15,16]).

Acknowledgment. Part of this research has been carried out in the ProREUSE
project (No. 834167), funded by the Austrian FFG.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. SPIN: SPIN Verifying Multi-threaded Software with Spin. http://spinroot.com/
spin/whatispin.html. Accessed, 01 December 2014

3. NuSMV: NuSMV: a new symbolic model checker. http://nusmv.fbk.eu/. Accessed
01 December 2014

4. Wynn, M., Verbeek, H., van der Aalst, W., ter Hofstede, A., Edmond, D.: Business
process verification - finally a reality!. Bus. Process Manage. J. 15(1), 74-92 (2009)

5. Sbai, Z., Missaoui, A., Barkaoui, K., Ben Ayed, R.: On the verification of business
processes by model checking techniques. In: 2010 2nd International Conference on
Software Technology and Engineering (ICSTE), vol. 1, V1-97-V1-103, October
2010

6. Kherbouche, O., Ahmad, A., Basson, H.: Using model checking to control the
structural errors in bpmn models. In: 2013 IEEE Seventh International Conference
on Research Challenges in Information Science (RCIS), pp. 1-12, May 2013

7. Fisteus, J.A., Ferndndez, L.S., Kloos, C.D.: Applying model checking to BPEL4WS
business collaborations. In: Proceedings of the 2005 ACM Symposium on Applied
Computing, SAC 2005, pp. 826-830. ACM, New York (2005)

8. Armando, A., Ponta, S.E.: Model checking of security-sensitive business processes.
In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 66—80.
Springer, Heidelberg (2010)

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://nusmv.fbk.eu/

140

10.

11.

12.

13.

14.

15.

16.

M. Rathmair et al.

. Armando, A., Ponta, S.E.: Model checking authorization requirements in business

processes. Comput. Secur. 40, 1-22 (2014)

Barros, C., Song, M.: Automatized checking of business rules for activity execution
sequence in workflows. J. Softw. 7(2), 374-381 (2012)

Mrasek, R., Miille, J., Bohm, K., Becker, M., Allmann, C.: User-friendly property
specification and process verification — a case study with vehicle-commissioning
processes. In: Sadiq, S., Soffer, P., Volzer, H. (eds.) BPM 2014. LNCS, vol. 8659,
pp. 301-316. Springer, Heidelberg (2014)

Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and applica-
bility of model-based business process compliance-checking approaches - a state-
of-the-art analysis and research roadmap. BuR - Bus. Res. 5(2), 221-247 (2012)
Rathmair, M., Schupfer, F., Krieg, C.: Applied formal methods for hardware Tro-
jan detection. In: 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 169-172, June 2014

Kaindl, H.: Using hypertext for semiformal representation in requirements engi-
neering practice. New Rev. Hypermedia Multimedia 2, 149-173 (1996)

Kaindl, H.: How to identify binary relations for domain models. In: Proceedings of
the Eighteenth International Conference on Software Engineering (ICSE-18), pp.
28-36. IEEE, Berlin, March 1996

Kaindl, H., Kramer, S., Diallo, P.S.N.: Semiautomatic generation of glossary links:
a practical solution. In: Proceedings of the Tenth ACM Conference on Hypertext
and Hypermedia (Hypertext 1999), pp. 3-12. Darmstadt, Germany, February 1999

	Consistently Formalizing a Business Process and its Properties for Verification: A Case Study
	1 Introduction
	2 Background on Model Checking
	3 Related Work
	4 A Case Study of Model Checking a High-Level Process Against a Guideline
	4.1 Stakeholders
	4.2 Formalization of Guideline and Process Model
	4.3 Tool-Supported Model Checking and its Results
	4.4 Summary of Results and Lessons Learned

	5 Threats to Validity
	6 Conclusion
	References

