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Abstract. There exists a significant body of work in the theory of checking
experiments devoted to test generation from FSM which guarantees complete
fault coverage for a given fault model. Practical applications require neverthe-
less methods for fault-model driven test generation from Extended FSMs
(EFSM). Traditional approaches for EFSM focus on model coverage, which
provides no characterization of faults that can be detected by the generated tests.
Only few approaches use fault models, and we are not aware of any result in the
theory of checking experiments for extended FSMs. In this paper, we lift the
theory of checking experiments to EFSMs, which are Mealy machines with
predicates defined over input variables treated as symbolic inputs. Considering
this kind of EFSM, we propose a test generation method that produces a
symbolic checking experiment, adapting the well-known HSI method. We then
present conditions under which arbitrary instances of a symbolic checking
experiment can be used for testing black-box implementations, while guaran-
teeing complete fault coverage.

Keywords: Finite state machines � Extended finite state machines � Symbolic
automata � Conformance testing � Checking experiments � Fault model based
test generation

1 Introduction

Research in Model Based Testing (MBT) is currently advancing rapidly trying to match
the growing demand from industry for more effective and better scalable test devel-
opment technologies. Since the cost for leaving undetected faults in software grows with
its complexity, code and model coverage by tests is often considered insufficient and the
guaranteed fault detection becomes the ultimate goal. Accordingly, research in MBT has
been addressing fault modeling and fault model driven test generation problems, see,
e.g., [2, 38]. Fault models usually refer to test models which formalize reference
specifications and/or requirements. State-oriented test models seem to be most popular
models among test engineers. Finite state machines (FSM) and input output transition
systems (IOTS) are state-oriented models; test generation methods have tradition-
ally been developed separately for these models, even though, as has already been
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demonstrated, many ideas, especially for fault model based test generation, developed
for testing from FSM can successfully be used for testing from IOTS [31].

There exists a significant body of work devoted to the development of methods for
test generation from a given FSM to guarantee the complete fault coverage, once a fault
model is defined. The pioneering work of Moore [21] and Hennie [13] led to the
development of the theory of checking experiments, where faults are modeled by a
universe of FSMs with a given number of states, see, e.g., [4, 6, 10, 33]. Checking
experiments have already been lifted to FSMs more general than the classical (com-
pletely specified and deterministic) Mealy machine, such as partially defined and
nondeterministic state machines, see, e.g., [27]. However, practical applications require
more extensions to the classical FSM model. These are commonly known as the
Extended Finite State Machine (EFSM) models. Various flavors of EFSMs are used in
Harel’s statecharts [12], SysML/UML [9], Simulink/Stateflow [32], SDL [11] and other
modelling languages. Extensions are often suggested without a formal semantics; this
creates a big hurdle for fault-model based test generation. Whenever the semantics of a
particular specification language is defined by the tool which supports it, fault models
become specific to the tool provider and may not be adequate for implementations
coming from other suppliers. General testing approaches usually rely on formally
defined extensions of Mealy machine, see, e.g., [26, 36].

Most of the existing work on test generation from EFSM concentrates on the model
coverage, see, e.g., [3, 14, 18, 28], which provides no characterization of faults that can
be detected by the generated tests. There are some techniques for test generation from
EFSM which use certain fault models [26, 36] and limited state/configuration identi-
fication sequences [5, 19, 26]. The work of [16] uses checking experiment methods, but
requires first to determine input/output equivalence classes from a given specification
EFSM and choose concrete inputs. To the best of our knowledge, there is no result in
lifting the theory of checking experiments to extended FSMs. This observation is one
of the main motivations of this work.

Another motivation comes from research on symbolic automata and transducers,
which is driven by several practical problems. The work of [34] mentions applications
ranging from modern regex analysis to advanced web security analysis where the
so-called sanitizers, string transformation routines are extensively used as the first line
of defense against cross site scripting attacks. A large class of sanitizers can be
described and analyzed by using symbolic finite state transducers. Symbolic finite
automata are introduced as an extension of classical finite state automata that allows
transitions to be labeled with predicates. Automata with predicates instead of concrete
symbols are also used in [37] and discussed in [23] in the context of natural language
processing. The work on learning symbolic automata [20] has also to be mentioned
here, since the automata learning shares certain aspects with the testing problem in the
following sense. If a black box passes a checking experiment, then under well-defined
conditions it is recognized as some automaton. Hence it is important to investigate
checking experiments for symbolic automata.

The community focusing on testing from IOTS has also considered extensions to
symbolic representation of transition systems which avoid enumerations of its com-
ponents, see, e.g. [8, 29], but these approaches are not fault model driven, they use one

4 A. Petrenko and A. Simao



or another test purpose. More references on symbolic approaches in testing could be
found, e.g., in [1, 17].

In this paper, we attempt to lift the theory of checking experiments to a special type
of EFSM, which extends the deterministic Mealy machine with predicates defined over
input variables, considered as its symbolic inputs. We propose a test generation method
that produces a symbolic checking experiment, adapting the well-known HSI method
[39]. We then investigate under which conditions instances of a symbolic checking
experiment can be used for testing black-box implementations, guaranteeing the full
fault coverage.

The paper is organized as follows. In Sect. 2, we define the model of FSM with
symbolic inputs. In Sect. 3, we study the relations between SIFSMs. Symbolic and
concrete checking experiments are introduced in Sect. 4, where we also investigate
fault detection capability of concrete tests obtained from symbolic checking experi-
ments. Section 5 summarizes our contributions and presents future work.

2 Definitions and Notations

2.1 Preliminaries

We define an (input) alphabet as a set of guards over variables of well-defined types.
Let G denote the universe of guards that are predicates over variables in a fixed set
V for which a decision theory, e.g., an SMT solver, exists, excluding the predicates that
are always false. G* will denote the universe of input sequences.

Let DV denote the set of all the valuations v of the input variables in the set V, called
concrete inputs. A set of concrete inputs is called a symbolic input; both, concrete and
symbolic, inputs are represented by guards in G. Henceforth, we use set-theoretical
operations on symbolic inputs. In particular, we write v 2 g, when concrete input
v satisfies g. We define some relations between input sequences in G*.

Definition 1. Given two input sequences α, β 2 G* of the same length k, α = g1…gk,
β = g’1…g’k, we let α \ β = g1 \ g’1…gk \ g’k denote the sequence of intersections of
inputs in sequences α and β; α and β are compatible, if for all i = 1, …, k, gi \ g’i ≠ ∅.
We say that α is a reduction of β, denoted α � β, if α = α \ β. If α is a sequence of
concrete inputs as well as a reduction of β then it is called an instance of β; given a
finite set of input sequences E � G*, a set of concrete input sequences I is called an
instance of the set E, if I contains at least one instance for each input sequence in E.

2.2 Symbolic Input FSM

We define a model, called a symbolic input finite state machine (SIFSM), which
operates in discrete time as a synchronous machine reading values of input variables
and setting up the values of output variables. Output variables are assumed to have a
finite number of valuations and form a finite output alphabet. On the other hand, there
may exist an infinite set of input valuations. SIFSM uses guards on transitions which
are executed one at a time.
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Definition 2. A symbolic input finite state machine S (or machine, for short) is a
7-tuple (S, s0, V, O, F, δ, λ), where

• S is a finite set of states with the initial state s0,
• V is a finite set of input variables over which guards in G are defined,
• O is a finite set of outputs,
• F � S × G is a finite specification domain,
• δ : F → S is a transition function, and
• λ : F → O is an output function.

Examples of SIFSM are given in Fig. 1. Examples of realistic systems which can be
specified as SIFSM could be found in [15, 28]. In the first work, the Ceiling speed
monitoring following the public ETCS system specification [7] is modelled, it has two
input and two output variables. In the second work, an HVAC controller specified in
Simulink/Stateflow is considered, it has nine input variables, Boolean and naturals, the
most complex transition guard comprises 13 terms.

The semantics of SIFSM is defined by a Mealy state machine with a possibly
infinite input set, where the state and output sets remain finite.

Given (s, g) 2 F, we say that input g is defined in state s 2 S. Then, G
(s) = {g 2 G | (s, g) 2 F} contains all inputs defined at s. The machine S is deter-
ministic, if for any (s, g), (s, g’) 2 F, it holds that g \ g’ =∅. State s of the machine S is
input-complete, if for each input valuation v, at least one of its guards evaluates to True,
i.e., {v 2 g | g 2 G(s)} = DV. The machine S is input-complete, if each state is
input-complete. The machine S is normalized, if for all (s, g), (s, g’) 2 F, δ(s, g) = δ(s,
g’) implies that λ(s, g) ≠ λ(s, g’); in other words, the machine has at most one transition
with a given output for each ordered pair of states. Any machine that is not normalized
can always be converted into a normalized one by merging transitions with the same
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Fig. 1. SIFSMs S, P, and the distinguishing machine S ⊕ P.
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start and end states as well as the same output and forming the disjunction of their
guards. This is a unique compact form of a SIFSM. We will consider only normalized
deterministic input-complete specification machines.

An input sequence α 2 G*, α = g1…gk, is defined in state s 2 S, if each input in α is
defined in a corresponding state, i.e., if there exist states s1, …, sk, sk+1, where s1 = s,
such that (si, gi) 2 F and δ(si, gi) = si+1 for each 1 ≤ i ≤ k. Let ΨS(s) denote the set of
input sequences defined in state s, and ΨS denote sequences defined in the initial state
of S. Moreover, ΩS(s) denotes the set ΨS(s) closed under the reduction relation, called
the set of input sequences admissible in state s, i.e., ΩS(s) = {α 2 G* | β 2 ΨS(s),
α � β}, and ΩS denotes sequences admissible in the initial state of S. Notice that for an
input-complete machine S any concrete input sequence is admissible in every state, i.e.,
DV* = ΩS(s), for each s 2 S. We lift the transition and output functions from inputs to
admissible input sequences, including the empty sequence ε, as usual: for s 2 S, δ(s,
ε) = s and λ(s, ε) = ε; and for input sequence α 2 ΩS(s) and input g 2 ΩS(δ(s, α)), δ(s,
αg) = δ(δ(s, α), g’) and λ(s, αg) = λ(s, α)λ(δ(s, α), g’), if g’ 2 GS((δ(s, α)) and g � g’.

Considering the input alphabet G, we further extend the transition and output
functions to the set of all possible input sequences in G*. The extended transition
function describes the set of all possible states which a deterministic machine from a
given state can reach in response to input sequence and the extended output reaction
function gives the set of all possible corresponding output sequences; these sets are
singletons if the input sequence is admissible for the starting state. We define the
function Δ : S × G* → 2S as follows. Given s 2 S and α 2 G*, we let Δ(s, α) be {δ(s,
β) | β � α, β 2 ΩS(s)}. Obviously, for any α 2 ΩS(s), Δ(s, α) = {δ(s, α)}. Similarly, we
define the function Λ : S × G* → 2O*. For s 2 S and α 2 G*, we define Λ(s, α) = {λ(s,
β) | β � α, β 2 ΩS(s)}. We call the functions Δ and Λ the extended transition and output
functions. For any α2ΩS(s),Λ(s, α) = {λ(s, α)}. Given a set of symbolic input sequences
Φ � G*, the SIFSM S is said to be a Φ-converter if for each α 2 Φ, |Λ(s0, α)| = 1.

Given input sequence α, we use pref(α) to denote the set of all prefixes of α.
Similar, pref(A) denotes the set of prefixes of sequences in A. The set A is prefix-closed
if pref(A) = A.

3 Relations Between SIFSMs

In this section, we extend the classical equivalence and distinguishability relations to
SIFSMs and introduce new types of distinguishability which have no counterparts in
the classical deterministic Mealy machine. We define a designated symbolic machine
which can be used to check the distinguishability of symbolic input finite state
machines.

In this paper, we focus our attention on deterministic systems, in which different
output sequences produced by two states in response to the same symbolic input
sequence indicate that the two states can be distinguished by the input sequence.

Definition 3. Given states s, s’ 2 S of S, states s, s’ 2 S are distinguishable, denoted
s ≄ s’, if there exist compatible input sequences α 2 ΨS(s) and β 2 ΨS(s’), such that λ(s,
(α \ β)) ≠ λ(s’, (α \ β)); the sequence α \ β is called a separating sequence for
distinguishable states s and s’.
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Since the machine is deterministic, its reacts to a given admissible input sequence as
it does to any of its reduction. We have therefore the following corollary.

Corollary 1. Any instance of a separating sequence is a separating sequence.
The importance of this property of separating sequences becomes evident in the

context of testing, as we discussed later.
Given a prefix-closed set of input sequences E � G*, we let s ≄E s’ to denote the

fact that the set E contains a separating sequence. If E contains no separating sequence
then states s and s’ are said to be E-equivalent, denoted s ≃ E s’, and if E = G*, then the
states are equivalent, denoted s ≃ s’. The machine is reduced if it has no equivalent
states. We further assume that the specification machine S is reduced.

As usual, we define equivalence and distinguishability of machines as the corre-
sponding relation between their initial states.

To decide distinguishability we define a designated machine, where, instead of
composing transitions caused by the same input as in the case of FSMs [27], we
compose transitions with compatible inputs. The machine has the common behavior of
the given machines, as the classical automata product (even lifted to symbolic automata
[34]), but in addition it signals when they disagree on output and enters a sink state.

Definition 4. Given two SIFSMs S = (S, s0, V, O, FS, δS, λS) and P = (P, p0, V, O, FP,
δP, λP) over the same set of input variables V, a SIFSM C = (C [ {∇}, c0, V, O [ {⊥},
FC, δC, λC), where ∇ is a designated sink state, ⊥ is a designated output, is the
distinguishing machine for S and P denoted S ⊕ P, if

• c0 = (s0, p0)
• FC � C × G such that for (s, p) 2 C, g \ g’ 2 GC(s, p), if g 2 GS(s), g’ 2 GP(p), and

g \ g’ ≠ ∅
• For (s, p) 2 S × P and g \ g’ 2 GC(s, p), δC((s, p), g \ g’) = (δS(s, g), δP(p, g’)) and

λC((s, p), g \ g’) = λS(δ(s, g)), (δS(s, g), δP(p, g’)) 2 S × P if λS(s, g) = λP(p, g’)
otherwise, i.e., if λS(s, g) ≠ λP(p, g’), then δC((s, p), g \ g’) = ∇, and λC((s, p),
g \ g’) = ⊥.

We further assume that the distinguishing machine is normalized by merging, if
needed, transitions with the designated output ⊥ from the same state. By the definition,
any input sequence reaching the sink state of the distinguishing machine is a separating
sequence for the given machines; the distinguishing machine could be used to decide
the equivalence of two distinct machines as well as states in the same machine. To
illustrate the above we consider the SIFSMs in Fig. 1, where x is an input variable, a is
a constant, 0, 1 and 2 are outputs and T stands for True.

The machines S and P are distinguishable, as the distinguishing machine S ⊕ P
shows. The shortest separating sequence is (x ≤ a)(x ≤ a)(x ≤ a). Indeed, in response to
it S produces 011, while P produces 010.

In this example, we have that the separating sequence is admissible in both
machines, as required; however, it is defined only in one of them, namely, (x ≤ a)
(x ≤ a)(x ≤ a) 2 ΨP, though (x ≤ a)(x ≤ a)(x ≤ a) 62 ΨS. This sequence is a reduction of
the symbolic sequence (x ≤ a)(T)(T) defined in the machine S. Considering the relations
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between separating and defined sequences we further refine the distinguishability
relation.

Definition 5. Given distinguishable states s, s’ 2 S of S, s’ is strongly-distinguishable
from s if there exists a separating sequence defined in state s, i.e., α 2 ΨS(s); if state s’
is not strongly-distinguishable from state s, then s’ is said to be weakly-distinguishable
from state s.

For two arbitrary states, they could be equivalent, one can be
strongly-distinguishable from another, both can be strongly-distinguishable from each
other, or both can be weakly-distinguishable from each other. In the last case, they are
just distinguishable. Notice that the strongly-distinguishability relationship is not
symmetric.

In our example, the machine S is strongly-distinguishable from P, because the
separating sequence (x ≤ a)(x ≤ a)(x ≤ a) is defined in P. The machine P, in turn, is
weakly-distinguishable from S, since all the separating sequences in the distinguishing
machine are not defined in S.

As follows from Corollary 1, if the machines are distinguishable, they are distin-
guished by any instance of a separating sequence; this is also the case when one
machine is strongly-distinguishable from another machine and by the definition the
separating sequence is defined in the latter. However, an arbitrary instance of such a
sequence may not distinguish a machine that is weakly-distinguishable from another.
This difference becomes crucial in conformance testing, when one machine represents a
specification and another an implementation under test (IUT). To test the latter, only
concrete input sequences would be used, when the IUT is treated as a black box. In the
example, assuming that the machine P is the specification and S is the IUT, any
instance of the separating sequence (x ≤ a)(x ≤ a)(x ≤ a) can be used to detect
non-conformance of the IUT S, as it is not equivalent to P, moreover, S is
strongly-distinguishable from P. On the other hand, if the machines swap their roles
then since P is weakly-distinguishable from S, then non-conformance of the IUT P
cannot be detected by an arbitrary instance of the separating sequence (x ≤ a)(x ≤ a)
(x ≤ a).

We formulate a condition under which a SIFSM is either equivalent to or
strongly-distinguishable from another SIFSM. It is based on the property of one
machine being a converter for all symbolic input sequences defined in another machine.
Intuitively, the condition |Λ(m0, α)| = 1 corresponds to the case when the two machines
are equivalent as well as to the case when they produce different output sequences in
response to α.

Theorem 1. Given a (specification) machine S and an (implementation) machine M, if
M is a ΨS-converter then M is either equivalent to or strongly-distinguishable from S.

Proof. Assume that M is a ΨS-converter, i.e., |Λ(m0, α)| = 1 for each α 2 ΨS. As S is
deterministic, we have that |Λ(s0, α)| = 1 for each α 2 ΨS. Assume also that M is not
strongly-distinguishable from S. Thus, for each α 2 ΨS, Λ(m0, α) � Λ(s0, α). It implies
that for each α 2 ΨS, Λ(m0, α) = Λ(s0, α), since |Λ(m0, α)| = |Λ(s0, α)| = 1. Hence, there
is no separating sequence for S and M, i.e., they are equivalent. ♦
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Clearly, the sufficient condition is not a necessary one. Consider the machine P in
Fig. 1 as an IUT and assume that both transitions from state 4 have the output 0. The
modified machine is strongly-distinguishable from S, but it has |Λ(m0,(x ≤ a)(T))| = 2.

4 Symbolic and Concrete Checking Experiments

In this section, we define symbolic checking experiments following a usual framework
for defining complete test suite for a given machine, conformance relation, and fault
domain [25]. In this case, we are dealing with specification and implementation
SIFSMs in a fault domain containing only normalized deterministic input-complete
machines; the conformance relation is the machine equivalence. Complete test suite is
considered as checking experiment, which could be symbolic or concrete. In the
context of symbolic execution and constraint solving, symbolic experiments are of
interest for white box testing, while concrete ones for back box testing, where all test
data should be concrete. Another specific feature of testing from SIFSM is that a
non-equivalent implementation machine in a fault domain can either be weakly- or
strongly-distinguishable, which as we show later has a significant impact on fault
detection capability of concrete checking experiments.

Let J(V, m) be the universe of SIFSMs over the input variables V with at most
m states. A subset of J(V, m) is called a fault domain for a specification machine S = (S,
s0, V, O, F, δ, λ); it includes SIFSMs which model all possible implementations of S.
A set of input sequences E � ΩS is a checking experiment for S in a fault domain
Σ � J(V, m) iff S ≃ E M implies S ≃ M, for each M 2 Σ.

We now define main ingredients of symbolic checking experiments, following the
classical approach of state identification.

A symbolic state cover C for the machine S is a set which contains the empty
sequence and for each state s 2 S a single defined input sequence α 2 ΨS, such that
δ(s0, α) = s. A symbolic transition cover T for the machine S is a set {αg | α 2 C, g 2 G
(δ(s0, α))}, where C is a symbolic state cover.

Given state s 2 S of the reduced machine S, a finite set E � ΩS(s) is a state
identifier for s, denoted Id(s), if s ≄E s’ for each s’ ≠ s. State identifiers in a set H = {Id
(s) | s 2 S} are harmonized if for each pair of distinguishable states s and s’, there exists
a separating sequence α 2 pref(Id(s)) \ pref(Id(s’)). A straightforward way of con-
structing HSIs is to determine a distinguishing machine for each pair of states and
include the found sequence in the identifiers of the states in the pair.

Given a symbolic state cover C, a symbolic transition cover T and a set of har-
monized state identifiers H = {Id(s) | s 2 S}, a symbolic HSI experiment is
{αγ | α 2 (C [ T), γ 2 Id(δ(s0, α))}.

As an example, we construct a symbolic checking experiment for S in Fig. 1. The
state cover is {ε, (x ≤ a)}, the transition cover is {(x > a), (x ≤ a), (x ≤ a)(T)}. The
symbolic input (x ≤ a) separates states, so Id(1) = Id(2) = (x ≤ a). Then the HSI
experiment becomes {(x > a)(x ≤ a), (x ≤ a)(x ≤ a), (x ≤ a)(T)(x ≤ a)}, which could be
simplified to {(x > a)(x ≤ a), (x ≤ a)(T)(x ≤ a)}.

Recall that we assume that a specification SIFSM S = (S, s0, V, O, F, δ, λ) is
reduced, normalized, deterministic, and input-complete.
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Theorem 2. Let S be a specification SIFSM, an HSI experiment is a checking
experiment for S in the fault domain J(V, n).

Before proving Theorem 2, we demonstrate some auxiliary results.

Lemma 3. Let S = (S, s0, V, O, F, δS, λS) be a specification SIFSM, E be an HSI
experiment for S and M = (M, m0, V, O, FM, δM, λM) be a SIFSM from the fault domain
J(V, n). If M ≃ E S then M has n states.

Proof. Let s and s’ be two states of S. There exist α, α‘ 2 C, such that δS(s0, α) = s and
δS(s0, α’) = s’. There also exists γ 2 pref(Id(s)) \ pref(Id(s’)), such that αγ, α‘γ 2 E and
Λ(s, γ) ≠ Λ(s’, γ); thus, Λ(Δ(s0, α), γ) ≠ Λ(Δ(s0, α‘), γ). As S ≃ E M, we have that Λ(s0,
αγ) = Λ(m0, αγ) and Λ(s0, α‘γ) = Λ(m0, α‘γ). Hence, Λ(Δ(s0, α), γ) = Λ(Δ(m0, α), γ) and
Λ(Δ(s0, α‘), γ) = Λ(Δ(m0, α‘), γ). Thus, Λ(Δ(m0, α), γ) ≠ Λ(Δ(m0, α‘), γ) and, therefore,
Δ(m0, α) ≠ Δ(m0, α‘). We conclude that for each pair of states of S, there exists at least
a pair of states of M which are distinct. Therefore, M has at least n states. As M 2 J(V,
n), M has at most n states. Thus, M has n states. ♦

Lemma 4. Let S = (S, s0, V, O, FS, δS, λS) be a specification SIFSM, E be an HSI
experiment for S and M = (M, m0, V, O, FM, δM, λM) be a SIFSM from the fault domain
J(V, n). If M ≃ E S then there exists a bijection f : S ↔ M, such that for each
α 2 (C [ T), f(Δ(s0, α)) = Δ(m0, α).

Proof. C contains n symbolic input sequences, one for each state of S. By Lemma 3,
M has n states. Thus, we can define a bijection f : S ↔ M, such that for each α 2 C, f
(Δ(s0, α)) = Δ(m0, α). It thus remains to show that for each β 2 T, we also have that f
(Δ(s0, β)) = Δ(m0, β). Let β 2 T and s = Δ(s0, β). There exists α 2 C, such that s = Δ(s0,
α). We have that f(s) = Δ(m0, α). Let α‘ 2 C, such that s’ = Δ(s0, α‘) ≠ s. Thus, f
(s’) = Δ(m0, α‘). There also exists γ 2 pref(Id(s)) \ pref(Id(s’)), such that βγ,
α‘γ 2 E and Λ(s, γ) ≠ Λ(s’, γ); thus, Λ(Δ(s0, β), γ) ≠ Λ(Δ(s0, α‘), γ). As S ≃ E M, we
have that Λ(s0, βγ) = Λ(m0, βγ) and Λ(s0, α‘γ) = Λ(m0, α‘γ). Hence, Λ(Δ(s0, β),
γ) = Λ(Δ(m0, β), γ) and Λ(Δ(s0, α‘), γ) = Λ(Δ(m0, α‘), γ). Thus, Λ(Δ(m0, β),
γ) ≠ Λ(Δ(m0, α‘), γ) and, therefore, Δ(m0, β) ≠ Δ(m0, α‘) = f(s’) and Δ(m0, β) ≠ f(s’). It
follows that f(s) = Δ(m0, β) and, thus, f(Δ(s0, β)) = Δ(m0, β). ♦

Corollary 2. If M ≃ E S then for any α, β 2 ΨS, if Δ(s0, α) = Δ(s0, β) then Δ(m0,
α) = Δ(m0, β).

Proof. Let M ≃ E S and α, β 2 ΨS, Δ(s0, α) = Δ(s0, β). First, we prove by induction on
the prefixes of α that there exists a sequence φ 2 C, such that Δ(s0, α) = Δ(s0, φ) and
Δ(m0, α) = Δ(m0, φ).

For the base case, we have α = ε. As ε 2 C, the property holds for φ = α = ε, since
obviously Δ(s0, α) = Δ(s0, φ) and Δ(m0, α) = Δ(m0, φ).

For the inductive case, assume that α = α’g and there exists φ‘ 2 C, with Δ(s0,
α’) = Δ(s0, φ‘) and Δ(m0, α’) = Δ(m0, φ‘). We have that φ‘g 2 T. As C is a state cover
for S, there exists φ 2 C, such that Δ(s0, φ‘g) = Δ(s0, φ); hence Δ(s0, α) = Δ(s0, φ).
Thus, due to the properties for the bijection f, it follows that f(Δ(s0, φ‘g)) = Δ(m0, φ‘g)
and f(Δ(s0, φ)) = Δ(m0, φ). It then follows that Δ(m0, α) = Δ(m0, φ‘g) = f(Δ(s0, φ‘g)) = f
(Δ(s0, φ)) = Δ(m0, φ), hence Δ(m0, α) = Δ(m0, φ), concluding the induction proof.
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In the same vein, we can prove that there exists a sequence φ‘ 2 C, such that Δ(s0,
β) = Δ(s0, φ‘) and Δ(m0, β) = Δ(m0, φ‘). As Δ(s0, α) = Δ(s0, β) and C contains only one
sequence that reaches each state, we have that φ = φ‘. Thus, Δ(m0, β) = Δ(m0,
φ) = Δ(m0, φ‘) = Δ(m0, α), i.e., Δ(m0, β) = Δ(m0, α). ♦

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let M = (M, m0, V, O, FM, δM, λM) be a SIFSM from the fault
domain J(V, n), such that M ≃ E S. We prove by contradiction that M ≃ S. Assume that
M ≄ S. Let β be the shortest symbolic input sequence such that M ≃ {β} S and there
exists g 2 G* such that βg is a separating sequence, i.e., M ≄{βg} S. Thus, Λ(Δ(m0, β),
g) ≠ Λ(Δ(s0, β), g).

Since E is an HSI experiment {αγ | α 2 (C [ T), γ 2 Id(δS(s0, α))}, it contains a
sequence φ 2 C, such that Δ(s0, φ) = Δ(s0, β). Then Δ(m0, φ) = Δ(m0, β), according to
Corollary 2. Since Λ(Δ(m0, β), g) ≠ Λ(Δ(s0, β), g), it also holds that Λ(Δ(m0, φ),
g) ≠ Λ(Δ(s0, φ), g). The HSI experiment contains a transition cover of S then there
exists a symbolic input g’, such that (Δ(s0, φ), g’) 2 FS, g � g’, and φg’ 2 E. M ≃ E S
implies that M ≃ {φg’} S. We have that Δ(m0, φ) = Δ(m0, β), then Λ(Δ(m0, β),
g’) = Λ(Δ(s0, β), g’). This contradicts the assumption that Λ(Δ(m0, β), g) ≠ Λ(Δ(s0, β),
g), as g � g’.♦

For simplicity, we have considered symbolic experiments for the fault domain J(V,
n). Nevertheless, based on the previous results, e.g., [30, 33], the case of a wider fault
domain J(V, m), where m > n can also be considered.

Symbolic experiments could be used in the context of white-box testing when
symbolic execution of code/model of an implementation SIFSM is possible; however,
they cannot be executed against an implementation SIFSM considered as a black box.
We further assume that only instances of symbolic experiments can be executed against
any implementation SIFSM in a given fault domain.

Consider first the case, when an SIFSM S has a finite number of concrete inputs, in
other words, it is a compact representation of a Mealy FSM S’ over the finite input set
DV. Then the set of all possible instances of a symbolic checking experiment is finite
and is in fact a concrete checking experiment for the SIFSM S. The latter is also a
classical checking experiment for the FSM S’.

Theorem 3. Given a specification machine S with a finite input set DV, let E be a
symbolic checking experiment for S in J(V, n). Let also E’ be the set of all possible
instances of E and S’ be the FSM obtained by unfolding S. Then, E’ is a concrete
checking experiment for S and S’ in J(V, n).

Proof. As E is a symbolic checking experiment for S in J(V, n), for each M in J(V, n),
E contains a separating sequence α distinguishing S and M. Thus, there exists an
instance of α which distinguishes S and M and E’ contains this instance; hence E’
distinguishes S and any SIFSM in J(V, n) which is distinguished by E. As E is a
symbolic checking experiment for S in J(V, n), it follows that E’ is a checking
experiment for S in J(V, n). As S’ is equivalent to S, we have that E’ is also a checking
experiment for S’ in J(V, n). ♦
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The theorem suggests that checking experiments for SIFSMs with a finite set of
concrete inputs can be constructed directly from a given specification machine without
first unfolding it into a classical Mealy machine and using one of the existing methods
for checking experiment generation. It might also be computationally simpler to first
determine all the ingredients of a checking experiment in the symbolic form and then
generate all the concrete instances of symbolic sequences one by one.

Next we consider the case when the input variables do not yield a finite set of
concrete inputs and we investigate faults detectable by concrete experiments. Since we
can execute only a finite number of concrete input sequences, it is interesting to know
in which cases the set of single instances of each sequence in a symbolic checking
experiment remains a checking experiment for a given fault domain. In the following,
we identify several such cases.

Let E be a symbolic checking experiment for S in J(V, n) and let Σ be a subset of
J(V, n). We say that E is safely-instantiable for Σ if any instance of E is a concrete
checking experiment for S in Σ. We will use J(V, n, ΨS) to denote the subset of J(V,
n), which consists of ΨS-converters.

Theorem 4. Let E be a symbolic checking experiment for S in J(V, n). Then, E is
safely-instantiable for J(V, n, ΨS).

Proof. Let M 2 J(V, n, ΨS); thus, for each α 2 ΨS, |Λ(m0, α)| = 1. According to
Theorem 1, the machine M is either equivalent to or strongly-distinguishable from S.
Let C be an instance of E. Assume that M is not equivalent to S; thus, M is
strongly-distinguishable from S. As E is a symbolic checking experiment for S in J(V,
n) and J(V, n, ΨS) � J(V, n), there exists a symbolic separating sequence α 2 E, such
that M ≄{α} S; by Corollary 1, any instance of the sequence α is also a separating
sequence. Thus, the result follows. ♦

Theorem 4 says that any concrete experiment derived from a symbolic checking
experiment is also a checking experiment for the machine S in the fault domain J(V, n,
ΨS). In other words, a complete concrete test suite can be obtained from a symbolic
checking experiment. The question arises as to which structural faults in the imple-
mentation machines preserve their property of being ΨS-converters. Addressing this
question, we follow the same approach for describing faults as in the classical deter-
ministic Mealy machines, see, e.g., [2, 24]. Implementation faults are usually modeled
by mutants of a given machine. Elements of transitions, namely, output and end state,
are subjects for mutations, which yield output faults, transfer faults and transition faults
combining the first two types of faults.

It is not difficult to see that all possible mutants of the specification SIFSM S with
output faults are ΨS-converters, i.e., they are in the fault domain J(V, n, ΨS).

As to transition faults, they should not violate the property of ΨS-converters,
namely, a mutant with transition faults should react to any symbolic input sequence
defined the specification with a single output sequence. It turns out that mutants with
transition faults remain to be ΨS-converters under the following conditions.

Assume that the specification SIFSM S has a fixed set of guards in each and every
state, i.e., G(s) = G(s’) = GS for all states s, s’ 2 S. Let GM denote the set of guards of
an implementation SIFSM M with the same property.
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Theorem 5. Given a specification SIFSM S with the set of guards GS then {M 2 J(V,
n) | GM = GS} � J(V, n, ΨS).

Proof. Let M 2 J(V, n), such that GM = GS. Indeed, GM = GS implies ΨM = ΨS. As
J(V, n) includes only deterministic machines, we have that |Λ(m0, α)| = 1 for each
α 2 ΨM; therefore |Λ(m0, α)| = 1 for each α 2 ΨS. Thus, M 2 J(V, n, ΨS). ♦

We identify another sufficient condition considering the case when the set of
defined input sequences of each implementation machine in a fault domain is a superset
of that of the specification machine. Intuitively, an implementation machine is assumed
to preserve in each state guards of the specification or merge some of them.

Theorem 6. Given a specification SIFSM S, it holds that {M 2 J(V, n) | 8α 2 ΨS,
8g 2 GS(δ(s0, α)), 9 g’ 2 GM(δ(m0, α)), g � g’} � J(V, n, ΨS).

Proof. Let M 2 J(V, n), such that for each α 2 ΨS and each g 2 GS(δ(s0, α)), there
exists g’ 2 GM(δ(m0, α)) such that g � g’. We prove by induction that for each α 2 ΨS,
|Λ(m0, α)| = 1.

For the basis step, we have that Λ(m0, ε) = {ε}, i.e., |Λ(m0, ε)| = 1. For the induction
step, assume that α = βg 2 ΨS and |Λ(m0, β)| = 1. Let also g 2 GS(δ(s0, β)),
g’ 2 GM(δ(m0, β)), such that g � g’. We can see that |Λ(δ(m0, β), g’)| = 1; thus |Λ(δ(m0,
β), g)| = 1. Consequently, |Λ(m0, βg)| = 1, i.e., |Λ(m0, α)| = 1; therefore, |Λ(m0, α)| = 1
for each α 2 ΨS. Thus, M 2 J(V, n, ΨS). ♦

This theorem addresses a specific fault model of symbolic implementation
machines representing the mutation by merging transitions along with their guards
which is not possible in classical FSM, since an implementation FSM should have all
the inputs of a specification FSM. In case of SIFSMs, implementation machines have
all the input variables of a specification machine, but not necessarily its guards.

Consider SIFSMs in Fig. 1. The machine S can be considered a mutant of the
specification machine P, where transitions with guards (x ≤ a) and (x > a) are merged
into a transition with the guard T. On the other hand, when the machine S serves as a
specification and the machine P is an implementation this mutant has a specific fault of
splitting a guard used in the specification SIFSM. To detect such a fault, one has use to
use at least two instances of a symbolic input sequence from the checking experiment.
Since P is treated as a black box testing, and the way a guard is split is unknown, two
concrete tests suffice if they properly “guess” it.

5 Conclusions

We investigated possibilities for lifting the checking experiments theory developed for
the classical (Mealy) finite state machine model to its extension, where input alphabet is
finite, but consists of predicates defined over input variables with large or even infinite
domains. We call it FSM with symbolic inputs, SIFSM. On one hand, this model can
be considered as a special type of Extended FSMs (EFSMs) [26], without context
variables and operations on variables; on another hand, as symbolic automaton or
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symbolic transducer [23, 35]. The recent grow of interest towards symbolic models
could be explained by advances in constraint solving technology, as SMT solvers
become efficient [22].

We lifted the machine equivalence and distinguishability relations to SIFSM and
identified new distinguishability relations which have no counterparts in classical
deterministic Mealy machines. Then, we defined symbolic checking experiments for
deterministic SIFSMs and demonstrated that they could be obtained by mimicking,
e.g., a classical HSI method for constructing checking experiments of FSMs (other
types of state identification facilities, such as W and Wp, might also be used). Since
symbolic experiments could be used for white-box testing, but not for black-box
testing, which requires concrete test values, we focused on investigating fault domains
for which any concrete instance of a symbolic checking experiment remains a checking
experiment.

As expected, in the most general setting, an arbitrary instance of a symbolic
checking experiment may not be a checking experiment in the same fault domain.
Nevertheless, we found some sufficient conditions for the specification and imple-
mentation machines under which any instance of a symbolic checking experiment is
also a checking experiment in well-defined fault domains. Under these conditions,
non-trivial faults modeled by the identified fault domains are detectable by concrete
tests obtained from abstract (symbolic) tests in a symbolic checking experiment. These
faults include transition merging, which is only relevant to implementations of SIFSM
and not to classical Mealy machines.

The novelty of the results comes from the fact that while FSM checking experi-
ments are known for about 60 years, EFSMs for about 30 years, there are no published
results on checking experiments for EFSM which cannot be unfolded into FSM. To the
best of our knowledge, it is the first attempt to advance the checking experiment theory
to FSMs with a symbolic extension.

While the problem of handling more general EFSMs remains open, we believe that
the presented results open a new line of research in checking experiments for symbolic
state machines and transition systems.

Our current work concerns, on one hand, relaxing the sufficient conditions of
safe-instantiability, and on the other hand, extending the SIFSM model with operations
on output variables, thus lifting the checking experiments theory to a wider class of
extended finite state machines. We also plan to investigate other fault models for which
symbolic checking experiments could be used as efficiently as for the faults satisfying
the formulated sufficient conditions.
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