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Abstract. Distinguishing Sequences (DS) and Homing Sequences (HS) are used
for state identification purposes in Finite State Machine (FSM) based testing. For
deterministic FSMs, DS and HS related problems are well studied, for both preset
and adaptive cases. There are also recent algorithms for checking the existence
and constructing Adaptive DS and Adaptive HS for nondeterministic FSMs.
However, most of the related problems are proven to be PSPACE-complete,
while the worst case height of Adaptive DS and HS is known to be exponential.
Therefore, novel heuristics and FSM classes where they can be applied need to be
provided for effective derivation of such sequences. In this paper, we present a
work in progress on the minimization of Adaptive DS and Adaptive HS for
nondeterministic FSMs.
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1 Introduction

Distinguishing Sequences (DS) and Homing Sequences (HS) are used for state iden-
tification purposes in Finite State Machine (FSM) based testing [1–3]. A DS identifies
the initial state of the FSM under investigation, while an HS is used to identify the final
state after the sequence has been applied. A sequence is adaptive if the next input to be
applied to an FSM under investigation is chosen based on the previously observed
outputs, and the sequence is preset if the outputs need to be observed only after the
entire sequence applied. The methods to derive preset/adaptive HS/DS are well elab-
orated for complete and deterministic FSMs [3–5]. Even though the length of most of
these sequences is polynomial w.r.t. the number of FSM states, the current complexity
of digital systems and software makes it almost impossible to derive a complete
deterministic behavior of the system integrated into the overall software and/or hard-
ware environment. Moreover, current specifications of telecommunication protocols
and other digital systems include an optionality of output responses under the same
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queries. That is the reason why researchers turn their attention towards special FSM
types, and in particular, nondeterministic FSMs.

A method for deriving a DS for two states of an observable nondeterministic FSM
has been proposed in [6], where the length of this sequence is shown to be exponential
for nondeterministic FSMs. The upper bound on the length of an HS for an observable
nondeterministic FSM is shown to be exponential as well, and this upper bound is
reachable [7]. As for adaptive experiments for nondeterministic FSMs, it has been
shown that the length of a shortest adaptive DS for two states of an observable non-
deterministic FSM with n states is at most n(n – 1)/2 [8]. Whenever such an adaptive
sequence is derived to distinguish m > 2 states of an observable nondeterministic FSM,
the length of this sequence grows exponentially [9]. The problem of checking the
existence of a preset DS is known to be PSPACE-complete even for complete deter-
ministic FSMs [3]. The latter means one cannot directly apply these techniques to
effectively derive test sequences against FSM specifications. That is the reason why a
number of heuristics to decrease such complexity have been proposed. In particular,
various heuristic methods to construct reduced adaptive DS for complete deterministic
FSMs have been proposed in [10]. However, it has been also proven that constructing a
minimal adaptive DS for complete deterministic FSMs is an NP-hard problem [11].
Therefore, novel heuristics need to be provided for effective derivation of adaptive HS
and adaptive DS for nondeterministic FSMs.

In this paper, we focus on two techniques for deriving adaptive DS and adaptive HS
for nondeterministic FSMs. In particular, we present a class of nondeterministic FSMs
for which it is possible to construct an adaptive DS without using any nondeterministic
transitions. We also argue how existing adaptive DS minimization approaches can be
used for such nondeterministic FSMs. As for adaptive HS, we address a method
proposed in [9] that constructs an adaptive HS for an observable nondeterministic FSM
when each state pair is adaptively homing. We discuss how this method can be
improved so that the resulting adaptive HS can be shorter. Therefore, the main con-
tributions of this work in progress are two novel heuristics for effective derivation of
adaptive DSs for nondeterministic FSMs and adaptive HSs for observable nondeter-
ministic FSMs.

The paper is organized as follows. Section 2 contains preliminaries. A heuristic
method for effective adaptive DS derivation for nondeterministic FSMs is given in
Sect. 3 while Sect. 4 presents an approach for minimizing adaptive HS for observable
nondeterministic FSMs. Section 5 concludes the paper.

2 Preliminaries

In this paper, we focus on minimizing adaptive HS and DS for nondeterministic FSMs.
As usual, an FSM S is a 4-tuple ðS; I;O; hSÞ, where S is a finite set of states; I and O are
finite non-empty disjoint sets of inputs and outputs, respectively; hS � S × I × O × S is a
transition relation, where a 4-tuple (s, i, o, s′) 2 hS is a transition. An FSM is complete
if for each pair (s, i) 2 S × I there exists (o, s′) 2 O × S such that (s, i, o, s′) 2 hS.
Otherwise it is called partially specified. If for some pair (s, i) 2 S × I, there exist two
transitions (s, i, o1, s1), (s, i, o2, s2) 2 hS, such that o1 ≠ o2 or s1 ≠ s2 then s is called
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nondeterministic. For a nondeterministic FSM the nondeterminism is observable if
each input/output pair i/o uniquely identifies the successor of each FSM state (if it
exists). Given a state s of s and an input/output sequence α/β, the α/β-successor of state
s is the set of all states that are reached from s via an application of α when an output
reaction β is produced. Note that for an observable FSM s, the cardinality of the α/β-
successor of state s is at most one for any input/output sequence α/β.

A sequence α is a distinguishing (homing) sequence (DS/HS) for the FSM S if after
applying α and observing output reaction β one can uniquely conclude about the initial
(final/current) state of S. The length of preset DS and HS is exponential for nonde-
terministic FSMs, however sometimes this length can be shorter when adaptivity is
used. An adaptive DS/HS can be represented as a tree or as a specific acyclic
single-input output-complete FSM that are called test cases [3, 12].

A number of methods for deriving adaptive DS and HS for nondeterministic FSMs
have been proposed (see, for example [9]). However, the length of the corresponding
sequence in general case remains exponential and thus, novel heuristics need to be
provided for minimizing the length of such sequences.

3 Nondeterministic FSMs with a Deterministic Adaptive DS

For a complete deterministic FSM with n states, it is known that n(n – 1)/2 is the tight
upper bound for the height of an adaptive DS [3]. However, for nondeterministic
FSMs, the height of an adaptive DS is exponential in general. In this section, we
present a class of nondeterministic FSMs for which the height of an adaptive DS is at
most 2n2 – n – 1 and existing algorithms of adaptive DS minimization can be readily
applied.

A transition (s, i, o′, s′) 2 hS is a deterministic transition if for any transition (s, i, o′
′, s′′) 2 hS we have o′′= o′ and s′′= s′. For a given FSM S, we define the determin-
istic projection Sd of S as follows. Sd and S have the same set S of states. For a
transition (s, i, o′, s′) 2 hS, (s, i, o′, s′) 2 hdS, if and only if (s, i, o′, s′) is a deterministic
transition in S. Id and Od consist of the inputs and outputs used in the transitions in hdS.
Intuitively, Sd is the same FSM as S where the deterministic transitions are preserved
but all other transitions are removed. Hence, Sd is a deterministic FSM by definition. It
is easy to see that an adaptive DS for Sd can be directly used as an adaptive DS for S as
well, and it will be a deterministic adaptive DS in the sense that only the deterministic
transitions are used throughout the application of the adaptive DS in S. In the lucky
case that Sd is a complete deterministic FSM, the existence check and the adaptive DS
construction algorithms given in [3] can be directly applied. However, in general, Sd is
a partially specified deterministic FSM. Moreover, in the worst case the transition
relation of Sd can be empty, and in this case, the question of existence of an ADS for
S remains open.

Although there usually is a complexity jump for the algorithms when one considers
partially specified FSMs, this is not the case for the problems related to adaptive DS. In
[13] a polynomial time algorithm is provided to check if a partially specified FSM has
an adaptive DS or not. In this paper, we adapt this algorithm for efficient derivation of
an ADS for a nondeterministic FSM that requires a partial deterministic projection.
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We also improve the upper bound on the length of such ADS compared to the one
given in [13]. In fact, the approach given in [13] is based on constructing a complete
deterministic FSM C(Sd) from a given partially specified deterministic FSM Sd such
that there exists an adaptive DS with the height H for C(Sd) iff there exists an adaptive
DS with height H – 1 for C(Sd). The number of states in C(Sd) is 2n, where n is the
number of states in Sd. Therefore, it is possible to check if there exists an adaptive DS
for Sd (and hence a deterministic ADS for S) in O(pnlgn) time [3], where p is the
cardinality of Id.

If there exists an adaptive DS for C(Sd), one can then use the LY algorithm (the
adaptive DS construction algorithm given in [3]) to construct an adaptive DS. Although
[13] provides an upper bound of π2n2/3 for the height H of the adaptive DS constructed
for C(Sd), using the result in [14], the LY algorithm actually constructs an adaptive DS
with the height at most H = 2n2 – n for C(Sd). Therefore, the height of the adaptive DS
for Sd is at most H – 1 = 2n2 – n – 1.

Note that the LY algorithm does not aim for the minimization of the adaptive DS it
constructs. However, there exist heuristics for the minimization of adaptive DSs with
respect to different metrics (e.g. height, total external path length, etc.) for complete
deterministic FSMs [10]. Since C(Sd) is a complete deterministic FSM, one can
directly use these heuristics in order to construct minimized adaptive DSs for C(Sd),
and hence for the nondeterministic FSM S. Note that S can be nonobservable as well.

4 Minimizing Adaptive HS for Nondeterministic FSMs

In this section, we discuss how to optimize the procedure for deriving an adaptive HS
for an observable FSM S. The procedure is taken from [9] while the complexity of the
related problem is given in [15]. The homing test case derivation strategy is based on
the condition that each state pair of S is adaptively homing. In other words, there exists
a homing test case for S if there exists an adaptive homing sequence for each subset {si,
sj} � S of states of the observable nondeterministic FSM S. A test case Pi,j is a homing
test case for the subset {si, sj} � S of states if for every input/output sequence α/β
defined in Pi,j, the α/β-successor of the subset {si, sj} � S has at most one state.

If there exists a homing test case for the FSM S then the set S is a homing set and the
test case P is a homing test case for the set S or the test case P homes states of the set
S. Otherwise, the set S is not homing. The homing test case for the set S = {s1,.., sn} is
derived iteratively. As mentioned above, Pi,j is a homing test case for the subset (pair)
{si, sj} � S of FSM states. The procedure starts with a homing test case P1,2 for the set
{s1, s2}, then state s3 is added to the subset {s1, s2} � S. Each input/output sequence α/β
that is defined in the test case P1,2 is applied at state s3. If the sequence α/β is defined at
state s3, then the deadlock state q in the test case P1,2 is replaced with a test case Pq,z,
where q is the α/β-successor of state pair {s1, s2}, while z is the α/β-successor of state s3.
All the input/output sequences α/β′ that are defined at state s3 but not defined in the test
case P1,2 are also included into the test case P1,2,3. Proceeding in this way by iteratively
adding the remaining states s4, s5, …, sn, the test case P1,2,...,n is derived.

We note that there exist various homing test cases Pi,j for the same state pair
{si, sj} � S. Therefore, the first optimization step can be to consider a somehow optimal
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test case Pi,j that is chosen for the first state pair and for those test cases Pq,z that are
appended iteratively, when P1,2,...,n is being derived. On the other hand, the length of
the resulting test case can significantly depend on the choice of state sj that is added to
the test case P1,2,...,j–1 . Thus, the second optimization criterion can be on an optimal
choice of the next state sj when the test case P1,2,...,j–1 is already constructed. We further
discuss how these two ideas can be taken into account to effectively derive a test case
P1,2,...,n. We mention that when optimizing the length of the corresponding adaptive
HS, represented as a test case, we focus on optimizing not only the height of the
corresponding tree but also the number of transitions in the acyclic FSM.

The first type of heuristics is related to making an optimal choice between possible
initial state pairs {si, sj} � S, i < j, as well as defining the best homing test case Pi,j for
this pair. As it is shown in [9], the length of the overall homing test case P 1,2,...,

nsignificantly depends even on the first input to be included into the test case P1,2. As
the test case P 1,2,...,j is defined based on the test case P 1,2,...,j–1 , the height/the number
of transitions of it significantly depends on the number of sequences that are defined in
the test case P 1,2,...,j–1 and in state sj that will be added to the root of the corresponding
successor tree. That is the reason why we suggest to choose a pair {si, sj} � S to start
with in such a way that its homing test case Pi,j is a homing test case for some other
state pairs. It is naturally to assume that the more state pairs are ‘covered’ by a homing
test case Pi,j , the better is the resulting test case P1,2,...,n. Therefore, we suggest to
choose the first state pair {si, sj} � S, i < j, such that there exists a homing test casePfor
this pair that homes as much state pairs in S as possible.

The idea behind the second optimization step is the same as in the previous case. In
particular, we suggest choosing the next state sj to be added to a test case P 1,2,...,j–1 in
such a way that the number of input/output sequences that are defined in P 1,2,...,j–1 and
are not defined at state sj would be minimal. This fact can help to reduce the number of
homing test cases Pq,z that have to be appended at each state z, where z is the α/β-
successor of state sj, and q is the α/β-successor of the set {s1, …, sj - 1}. Moreover, as
for each pair of states {q, z} there can exist various adaptive homing test cases, the best
choice of the test case Pq,z can affect the overall height / transition number of the test
case P 1,2,...,n. Therefore, it is also necessary to consider which test case Pq,z should be
chosen for an intermediate state pair {q, z} � S.

We mention that both optimization steps for deriving an adaptive homing test case
P 1,2,...,n need to be thoroughly estimated. On one hand, theoretical investigation on
FSM classes that have shorter adaptive HS need to be elaborated, and on the other,
experimental evaluation on the efficiency of proposed heuristics needs to be performed.

5 Conclusion

In this paper, we proposed two heuristic methods for optimizing the size of adaptive DS
and adaptive HS for nondeterministic FSMs. The topic of such optimization is always
motivated by the fact that the length of such sequences is exponential for nondeter-
ministic FSMs. Moreover, related decision problems on the existence of such
sequences even for the preset case are known to be PSPACE-complete. We note that
this current work in progress only presents the ideas behind optimization criteria and
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optimization techniques to achieve shorter resulting trees for adaptive DS or HS. As a
future work, we plan to perform experimental evaluation over machines of various
types (random, protocol specifications, etc.) to estimate the efficiency of the proposed
techniques.
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