
Genetic Algorithm Application for Enhancing
State-Sensitivity Partitioning

Ammar Mohammed Sultan, Salmi Baharom(&),
Abdul Azim Abd Ghani, Jamilah Din, and Hazura Zulzalil

Software Engineering and Information System Department,
Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
ammar.alsultan@hotmail.com,

{salmi,azim,jamilahd,hazura}@upm.edu.my

Abstract. Software testing is the most crucial phase in software development
life cycle which intends to find faults as much as possible. Test case generation
leads the research in software testing. So, many techniques were proposed for
the sake of automating the test case generation process. State sensitivity parti-
tioning is a technique that partitions the entire states of a module. The generated
test cases are composed of sequences of events. However, there is an infinite set
of sequences with no upper bound on the length of a sequence. Thus, a lengthy
test sequence might be encountered with redundant data states, which will
increase the size of test suite and, consequently, the process of testing will be
ineffective. Therefore, there is a need to optimize those test cases generated by
SSP. GA has been identified as the most common potential technique among
several optimization techniques. Thus, GA is investigated to integrate it with the
existing SSP. This paper addresses the issue on deriving the fitness function for
optimizing the sequence of events produced by SSP.

Keywords: Genetic Algorithm (GA) � State-Sensitivity partitioning (SSP) �
Test case � Sequence of events � Data state

1 Introduction

Amongst software development life cycle (SDLC) phases, software testing is the most
crucial one [1]. It intends to execute the software and find faults as much as possible.
Generally, test case generation dominates the research in software testing while other
research areas include test execution and test oracles. Hence, a number of techniques
were proposed for improving the effectiveness and efficiency of faults detection.
State-sensitivity portioning (SSP) is one of them [2–4].

SSP employs Parnas formal specifications in order to test a module that consists of
one or more access programs, which share the same data structure. The output depends
on the event triggered, input parameters, conditions and actions. Thus, test data for a
module might consist of event sequences (or test sequences) rather than a single event.
For the sake of avoiding the exhaustive testing of a module’s entire states, SSP par-
titions the entire states according to their sensitiveness toward events, conditions and

© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 249–256, 2015.
DOI: 10.1007/978-3-319-25945-1_16

actions. Test sequences are selected manually based on all-transitions coverage crite-
rion. However, the sequence of events can be very lengthy and might contain redundant
data states, which makes the testing expensive and relatively ineffective.

In the literature, many optimization techniques have been suggested. One technique
is search techniques [5, 6] and, among them, genetic algorithm (GA) has been iden-
tified as the most common for generating test cases [7]. The success stories of GA
inspired us to adopt GA in our work. Similar to other search techniques, the adoption of
GA requires the derivation of fitness function [8]. Thus, this paper describes the
on-going research that addresses the issue of deriving a fitness function in order to
search within the population of states produced by SSP sequence of events. The
remainder of this paper is organized as follows: an overview of SSP is presented in the
next section; followed by a general overview on GA. Next, the fitness function
application in SSP is being described followed by a case study. Finally, the last section
summarizes the paper along with the conclusion.

2 State-Sensitivity Partitioning (SSP)

A module may consist of one or more access programs that share the same data
structure. Its behavior is depending on the event triggered, the value of input param-
eters and conditions. Consequently, generating test cases for such a module might
involve a large number of data states, which grows exponentially in terms of the
number of program variables. For example, approximately 10^20 tests (2^32 X 2^32)
have to be performed in order to test the correctness of two variables A and B of 32 bit
integers, as in [9]. Hence, it would take more than 30,000 years of testing with the
assumption of performing 10^8 tests per second. Therefore, it is impossible to explore
the space of entire states with limited time resources and memories.

SSP is a test case generation technique for modules [2–4]. The states are partitioned
based on state’s sensitivity towards events, conditions (pre-conditions) and actions
(post-conditions). The goal is to group all states that behave similarly towards access-
programs (events), conditions and actions (either sensitive or insensitive) together.

SSP has six sequential steps, which are: (i) identifying sensitive access programs,
(ii) partitioning states into equivalence classes, (iii) constructing a state transition
model, (iv) selecting test cases based on all-transition coverage criteria, (v) adding the
insensitive events to the end of each selected test case and (vi) applying boundary value
analysis (BVA) technique in order to select the input parameters. Nonetheless, each test
case from the fourth step must be represented by at least one sequence of events.
The SSP sequence of events has to be selected randomly as long as it follows the
specified conditions of the constructed state transition model in step three (3). Below is
an example.

2.1 Example

In order to grasp the idea of SSP, let’s consider the example of circular queue. Circular
queue has three access programs, which are: add(), remove(), and front(). The former

250 A.M. Sultan et al.

two access programs are sensitive as they modify the data states during their execution
while the latter is insensitive as it does not modify the data states. According to SSP,
the entire data states are partitioned into equivalence classes based on the number of
identified sensitive access programs. So, the circular queue has four possible partitions.
In the third step, a state transition model is constructed as in Fig. 1.

Once the state transition diagram is constructed, all-transitions coverage criteria
will be used for selecting test cases. Table 1 lists the ten test cases obtained from the
state transition model. Each test case will be represented by at least one sequence of
events. Then, the insensitive events is going to be added to the end of the sequence.
Lastly, the BVA technique is applied in order to determine the value of input
parameter. With the assumption that maximum length of the circular queue is five, here
are some examples of test sequences produced by SSP.

TC1: _.add(1).front()

TC2: _.remove().front()
TC3: _.add(1).add(−1).remove().add(1295644148).add(−1295644148).front()
TC4: _.add(0).add(Integer.Max_value).add(Integer.Min_value).add(1).add(−1).front()

As the SSP sequence of events is selected randomly, any sequence follows the
conditions specified by the state transition model is valid. For example, a sequence of
events for adding an item to a full queue might include adding twenty items; removing
eighteen items, adding fifty more, removing fifty two, adding ten more, removing ten,
adding one more and checking the result. Hence, the sequence of events might be
lengthy and contain redundant data states. The lengthy sequence with redundant states
makes testing expensive and ineffective. Also, there is a redundancy occurs between
two or more test sequences (i.e. sequence of events), where a test sequence is subset
from other sequence(s). Therefore, there is a need to optimize the test suites through
removing redundant data states. Among the available techniques, search techniques are
the most common for obtaining optimized test suites.

Fig. 1. State transition model for circular queue

Genetic Algorithm Application for Enhancing State-Sensitivity Partitioning 251

3 Genetic Algorithm (GA)

The applications of search techniques in the domain of software testing grew dra-
matically as they save efforts and times. For test cases generation, GA is the most
common amongst all search techniques. It is a population based metaheuristic tech-
nique that follows the theory of natural evolution by Darwin. In GA, the optimal
solutions evolved through applying reproduction and selection operations on popula-
tions over successive generations [10]. The typical GA consists of five repetitive steps
that continue till the stopping criteria is met. The stopping criteria is either finding an
optimum solution or reaching the maximum number of iterations. The GA steps are:
(1) random initialization of population that contains candidate solutions. Each solution
is represented as a chromosome or sequence of variables [11]; (2) evaluation of new
candidate solutions, if the stopping criteria is not met; (3) selection of promising
candidate solutions based on fitness function. Fitness function is used for evaluating the
solution in terms of its ability to solve the problem; (4) crossover; and (5) mutation.

GA performs search in parallel, which leads to fast calculations. Consequently,
software testing leads the GA applications compared with other SDLC phases. This
includes different disciplines such as test cases generation [7, 12], test cases prioriti-
zation within test suites [13], and test suites reductions [11].

However, prior to apply GA for optimizing the test cases, there is a need to derive
the fitness function. Besides, the invocation of each event in the sequence may lead to
different states. Therefore, there is a need to grasp the changes of states and search

Table 1. The test cases for circularqueue program

P Event Pre-condition Post-condition

1. 1 Add len = 0 dataQ’[rear’] = x, rear’ = (’rear + 1)%QSIZE,
len’=’len + 1

2. 1 Remove len = 0 dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len

3. 2 Add len = QSIZE dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len

4. 2 Remove len = QSIZE dataQ’[rear’] = x, front’ = (’front + 1)%
QSIZE, len’=’len–1

5. 3 Add 0 < len < QSIZE –

1
dataQ’[rear’] = x, rear’ = (’rear + 1)%QSIZE,
len’=’len + 1

6. 3 Add len = QSIZE – 1 dataQ’[rear’] = x, rear’ = (’rear + 1)%QSIZE,
len’=’len + 1

7. 3 Remove 1 < len < QSIZE dataQ’[rear’] = x, front’ = (’front + 1)%
QSIZE, len’=’len–1

8. 3 Remove len = 1 dataQ’[rear’] = x, front’ = (’front + 1)%
QSIZE, len’=’len–1

9. 4 Add len < 0 &&
len > QSIZE

dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len

10. 4 Remove len < 0 &&
len > QSIZE

dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len

252 A.M. Sultan et al.

within for good solutions to be used in GA next iterations. In the next section, the
derivation of fitness function is described.

4 Fitness Function Application in SSP

Fitness function plays an important role in guiding the search within a population of
solutions. It judges whether a potential solution presents a good candidate and, hence,
has to be used in GA next iterations. The fitness function comes from existing software
metrics followed by several refinements according to the results [8].

Anyhow, SSP sequences of events produced a group of states which are unique and
redundant states. In order to optimize SSP, we aim to remove the redundant states.
There are two types of redundancies: (1) redundancy in test case level and (2) redun-
dancy in test suite level. Therefore, the calculation of fitness function has to take both
types into consideration. We introduce two score namely test case states minimization
(TCSM) and test suite states minimization (TSSM). The fitness function is:

Fitness ¼ TCSM þ TSSM ð1Þ

4.1 Test Cases States Minimization (TCSM)

TCSM aims to remove redundant states on the test case level, such as the states
encountered when trying to add to after reaching the maximum in circular queue or
removing when there is no item to be removed. In order to calculate TCSM, there is a
need to differentiate between unique and redundant states per sequence of events.
A score of TCSM is calculated based on the following equation:

TCSM ¼ USC þ RSC ð2Þ

where USC is the unique states score per sequence of events and RSC is the redundant
states score per sequence of events. Let A be a set of unique states in a sequence of
events. The calculations for USC is shown in the following equation:

USC ¼
XjAj

i¼1

A
MAX

� �

i
¼ 1

MAX
þ 1

MAX
þ . . .þ 1

MAX
ð3Þ

where |A| is the cardinality for set A, which counts the number of unique states in the
sequence of events and MAX is the maximum number of items that can be added to the
data structure. For the calculation of RSC, let B be the set of redundant states in a
sequence of events where B � A and B\A = B. The calculation for RSC as follows:

RSC ¼
XjBj

i¼1

�B
MAX

� �

i
¼ � 1

MAX
� 1
MAX

� . . .� 1
MAX

ð4Þ

Genetic Algorithm Application for Enhancing State-Sensitivity Partitioning 253

where |B| is the cardinality for set B, which counts the number of redundant states per
sequence of events. Obviously, the score of TCSM can produce a negative value,
which indicates that the sequence is unlikely to be in the GA next generations.

4.2 Test Suites States Minimization (TSSM)

TSSM focuses on removing redundancies between sequences of events in the test
suites. This is due to the fact that some sequences of events are subsets from others. So,
for a set C = {tc1, tc2… tcn} of test cases (tc), the TSSM is calculated as follows:

TSSM ¼ TCO
jCj ð5Þ

where |C| is the cardinality for set C, which counts the number of test cases in the
population and TCO is a test case occurrence, which counts the occurrences of a
specific sequence within the suite. In order to calculate TCO, every sequence (test case)
is considered as an individual set such as: {tc1}, {tc2}, {tcn}. If k is the counter for
counting the occurrence of similar test cases, the sets are compared as follows:

8tcn�1�tcn; k ¼ kþ 1; ð6Þ

5 Case Study

Assume that the following test suite is produced from the SSP technique based on the
circular queue example.

TC1: _.add(1).front()

TC2: _.remove().front()
TC3: _.add(1).add(−1).remove().add(1295644148).add(−1295644148).add(0).add(1).add

(−1).front()
TC4: _.add(0).add(Integer.Max_value).add(Integer.Min_value).add(1).add(−1).front()
TC5: _.remove().remove().front()

To get the fitness, Eq. (1) will be used. However, the values may be greater than or
equal to one. So, there is a need to use the average fitness as follows:

Average Fitness ¼ Fitness
Total Fitness

ð7Þ

where Total Fitness is the summation of all fitness values in the population. Table 2
shows the fitness along with the average fitness for the population above.

The results show that test cases with events close to the maximum number of items
that can be added to the data structure. Hence, TC3 got the highest value followed by

254 A.M. Sultan et al.

TC4. Besides, the test cases with redundant events, such as TC5, obtain the lowest
value.

6 Conclusion

The integration of SSP and GA is promising in order to optimize sequence of events.
Prior to any application, there is a need to derive a fitness function that guides the
search for solutions within a population. This is a part of an on-going research which
aims to enhance the effectiveness of test case generation technique for testing a module
with internal memory. We believe that the adoption of GA can improve the effec-
tiveness of SSP to overcome the redundancy issues in SSP and consequently will
produce optimized test cases.

References

1. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher
Education, New York (2010)

2. Baharom, S., Shukur, Z.: Module documentation based testing using Grey-Box approach.
In: ITSim 2008. International Symposium on Information Technology, 2008 (2008)

3. Baharom, S., Shukur, Z.: State-Sensitivity Partitioning technique for module documentation-
based testing. In: Business Transformation through Innovation and Knowledge Management
an Academic Perspective. Istanbul, Turkey (2010)

4. Baharom, S., Shukur, Z.: An experimental assessment of module documentation-based
testing. Inf. Softw. Technol. 53(7), 747–760 (2011)

5. Alsmadi, I., et al.: Effective generation of test cases using genetic algorithms and
optimization theory. J. Commun. Comput. 7(11), 72–82 (2010)

6. Kulkarni, N.J., et al.: Test case optimization using artificial bee colony algorithm. In:
Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) Advances in
Computing and Communications. Communications in Computer and Information Science,
vol. 192, pp. 570–579. Springer, Heidelberg (2011)

7. Ali, S., et al.: A systematic review of the application and empirical investigation of
search-based test case generation. IEEE Trans. Softw. Eng. 36(6), 742–762 (2010)

8. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engineering:
techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) Empirical Software
Engineering and Verification. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012)

Table 2. The fitness values

ID SC TSM Fitness Average fitness

TC1 0.2 0.4 0.6 0.15
TC2 0.2 0.4 0.6 0.15
TC3 1.2 0.2 1.4 0.35
TC4 1 0.2 1.2 0.3
TC5 0 0.2 0.2 0.05
TOTAL 4 1

Genetic Algorithm Application for Enhancing State-Sensitivity Partitioning 255

9. Gannon, J.D., Purtilo, J., Zelkowitz, M.V.: Software Specification: A Comparison of Formal
Methods. Ablex Publishing Company, Norwood (1994)

10. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. University of Michigan, Ann
Arbor (1975)

11. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case prioritization.
IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

12. McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verification
Reliab. 14(2), 105–156 (2004)

13. Conrad, A.P., Roos, R.S., Kapfhammer, G.M.: Empirically studying the role of selection
operators duringsearch-based test suite prioritization. ACM (2010)

256 A.M. Sultan et al.

	Genetic Algorithm Application for Enhancing State-Sensitivity Partitioning
	Abstract
	1 Introduction
	2 State-Sensitivity Partitioning (SSP)
	2.1 Example

	3 Genetic Algorithm (GA)
	4 Fitness Function Application in SSP
	4.1 Test Cases States Minimization (TCSM)
	4.2 Test Suites States Minimization (TSSM)

	5 Case Study
	6 Conclusion
	References

