
Guiding Testers’ Hands in Monitoring Tools:
Application of Testing Approaches on SIP

Xiaoping Che1, Stephane Maag2, Huu Nghia Nguyen3(B),
and Fatiha Zäıdi4

1 School of Software Engineering, Beijing Jiaotong University, Beijing, China
xpche@bjtu.edu.cn

2 Telecom SudParis, CNRS UMR 5157,
9 rue Charles Fourier, 91011 Evry Cedex, France

stephane.maag@telecom-sudparis.eu
3 Montimage EURL, 39 rue Bobillot, 75013 Paris, France

huunghia.nguyen@me.com
4 Universite Paris-Sud XI, CNRS UMR 8623, Bat 650, 91405 Orsay Cedex, France

fatiha.zaidi@lri.fr

Abstract. The importance and impact of testing are becoming crucial
and strategic for the deployment and use of software and systems. Several
techniques have been defined all along the protocol testing process, that
allow validating multiple facets of a protocol implementation in particu-
lar its conformance to the standardized requirements. Among these test-
ing techniques, the ones denoted as passive are currently often applied.
Indeed, there are non intrusive and based on network observations. In
this paper, we intend to help and guide the protocol testers regarding
their testing choices by considering the functional protocol properties to
check, and the analysis of testing verdicts obtained by applying passive
testing tools. We propose a compared analysis of the application of two
efficient passive testing methodologies through the study of the Session
Initiation Protocol. The results analysis demonstrates that depending on
the properties to test, the way to model them, the way of testing (on-
line/off-line), the available testing time resources, tradeoffs are needed.
Thus, this analysis aims at guiding the testers when tackling the passive
testing of communication protocols.

Keywords: Formal methods · Passive testing · Monitoring · SIP

1 Introduction

While todays communications are essential and a huge set of services is available
online, computer networks continue to grow and novel communication protocols
are continuously being defined and developed. De facto, protocol standards are
required to allow different systems to interwork. Though these standards can be
formally verified [31], the developers may produce some errors leading to faulty
implementations. That is the reason why their implementations must be tested.
c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 105–123, 2015.
DOI: 10.1007/978-3-319-25945-1 7

106 X. Che et al.

Testing is mainly known as the process of checking that a system possesses a set
of desired properties and behaviour. Its importance and impact are becoming
crucial and strategic for the future deployment and use of software and systems.
This can be noticed through the numerous works on testing areas provided by
the research communities of course [30] but also by the industry [11] and the
standardization institutes [12].

Several techniques have been defined all along the protocol testing process.
The main approaches are based on formal models in order, first, to automate
the different test phases but also to ease the development and improvement of
network protocols. Applying formal techniques allow to validate multiple facets
of a protocol implementation such as their reliability, scalability, security, and
in particular its conformance to the standardized requirements [1]. These tech-
niques are mainly split in two categories: Active and Passive techniques. While
the active ones require a stimulation of the Implementation Under Test (IUT)
and an important testing architecture, the passive ones tackled in this work are
based on the observation of input and output events of an implementation under
test at run-time. Basically, passive testing techniques are applied whenever the
state of an IUT cannot be controlled by means of test sequences either because
access to the interfaces of the system is unavailable or a reset of the IUT is
undesired. The term “passive” means that the tests do not disturb the natural
run-time of a protocol as the implementation under test is not stimulated. The
trace, i.e. the record of the event observation, is then compared to the expected
behaviour of the IUT allowing to check its conformance.

When testing the implementation of a network protocol, its behaviour is
defined either by a formal model or by a set of expected functional properties. In
this current work, we consider formal properties to design the expected behaviour
of an implementation under test. However, based on the IUT functionalities,
the architecture, the system in which it will be integrated, a tester is faced
towards the testing methodology to follow, the way to extract relevant protocol
properties, how to express them, which tool to apply, etc. Depending on the
properties to check, the languages to model them, their expressiveness and the
network monitored, the met difficulties could be diverse and the test verdicts
different as well. In this paper, we therefore intend to help and guide the protocol
testers regarding their testing choices by considering the functional properties to
check, and the analysis of testing verdicts obtained by applying testing tools. We
propose a compared analysis of the application of two efficient passive testing
methodologies by taking into account not only the control parts of the protocol
messages but also the data parts. Further, the two chosen techniques proceed
differently: on-line versus off-line. The studied comparison is performed through
the study of an IP Multimedia Subsystem (IMS) based protocol (the Session
Initiation Protocol - SIP). Some traces and formal properties are used as inputs
of two open source tools. The results analysis aims at guiding the testers when
tackling the passive testing of communication protocols.

Our main contributions are the following:

Guiding Testers’ Hands in Monitoring Tools 107

– The study of two different passive testing approaches on a common network
protocol. Based on the same traces sets and functional properties extracted
from the SIP standard, the techniques/tools are applied on a real IMS test
bed.

– A study of the expressiveness of the languages used to model the functional
properties. This allows notably to help the testers when designing certain
kinds of properties.

– The analysis and understanding of both sets of obtained test verdicts. Depend-
ing on some contexts, it allows to raise false negatives and to reduce incon-
clusive verdicts.

– To help guiding the protocol testers while choosing some passive testing tech-
niques for a specific system under test.

The remainder of the paper is organized as follows. Both passive testing
approaches: Datamon and Prop-tester are described in the Sect. 2. We herein
also define the main concepts of protocol messages and traces. In Sect. 3, the
experiments are performed on a real IMS platform from which traces are collected
and formal SIP properties checked on these execution traces. The results analysis
are provided in Section refDiscussion and discussions allowing to guide the testers
are given. Section 5 depicts the related works on the passive testing area and we
conclude in Sect. 6 with future works mentioned.

2 Basics

In this section, we introduce the general definition of messages and traces in
communication protocols. Then, the syntax and semantics of Datamon and Prop-
tester are briefly described with the expression equivalence of both tools.

2.1 Message and Trace

A message in a communication protocol is, using the most general possible view,
a collection of data fields belonging to multiple domains. Data fields in messages
are usually either atomic or compound, i.e. they are composed of multiple ele-
ments (e.g. a URI sip: name@domain.org). Due to this, we also divide the types
of possible domains in atomic, defined as sets of numeric or string values1, or
compound, as follows.

Definition 1. A compound value v of length k > 0, is defined by the set of pairs
{(li, vi) | li ∈ L∧vi ∈ Di∪{ε}, i = 1 . . . k}, where L = {l1, . . . , lk} is a predefined
set of labels and Di are data domains, not necessarily disjoint.

In a compound value, in each element (l, v), the label l represents the func-
tionality of the piece of data contained in v. The length of each compound
value is fixed, but undefined values can be allowed by using ε (null value). A
1 Other values may also be considered atomic, but we focus here, without loss of

generality, to numeric and strings only.

108 X. Che et al.

compound domain is then the set of all values with the same set of labels and
domains defined as 〈L,D1, . . . , Dk〉. Notice that, Di being domains, they can also
be either atomic or compound, allowing for recursive structures to be defined.
Finally, given a network protocol P , a compound domain Mp can generally be
defined, where the set of labels and element domains derive from the message
format defined in the protocol specification. A message of a protocol P is any
element m ∈ Mp.

A trace is a sequence of messages of the same domain (i.e. using the same
protocol) containing the interactions of an entity of a network, called the point
of observation (P.O), with one or more peers during an indeterminate period of
time (the life of the P.O).

Definition 2. Given the domain of messages Mp for a protocol P . A trace is a
sequence Γ = m1,m2, . . . of potentially infinite length, where mi ∈ Mp.

Definition 3. Given a trace Γ = m1,m2, . . ., a trace segment is any finite sub-
sequence of Γ , that is, any sequence of messages ρ = mi,mi+1, . . . ,mj−1,mj(j >
i), where ρ is completely contained in Γ (same messages in the same order). The
order relations {<,>} are defined in a trace, where for m,m′ ∈ ρ,m < m′ ⇔
pos(m) < pos(m′) and m > m′ ⇔ pos(m) > pos(m′) and pos(m) = i, the
position of m in the trace (i ∈ {1, . . . , len(ρ)}).

2.2 Datamon

A syntax based on Horn clauses is used to express properties. The syntax is
closely related to that of the query language Datalog, described in [2], for deduc-
tive databases, however, extended to allow for message variables and temporal
relations. Both syntax and semantics are described in the current section.

Syntax. Formulas in this logic can be defined with the introduction of terms
and atoms, as defined below.

Definition 4. A term is either a constant, a variable or a selector variable. In
BNF: t ::= c | x | x.l.l . . . l where c is a constant in some domain (e.g. a message
in a trace), x is a variable, l represents a label, and x.l.l . . . l is called a selector
variable, and represents a reference to an element inside a compound value, as
defined in Definition 1.

Definition 5. An atom is defined as A ::= p

k
︷ ︸︸ ︷

(t, . . . , t) | t = t | t �= t where t is a
term and p(t, . . . , t) is a predicate of label p and arity k. The symbols = and �=
represent the binary relations “equals to” and “not equals to”, respectively.

In this logic, relations between terms and atoms are stated by the definition
of clauses. A clause is an expression of the form A0 ← A1 ∧ . . . ∧ An, where
A0, called the head of the clause, has the form A0 = p(t∗1, . . . , t

∗
k), where t∗i is a

restriction on terms for the head of the clause (t∗ = c | x). A1 ∧ . . .∧An is called
the body of the clause, where Ai are atoms.

Guiding Testers’ Hands in Monitoring Tools 109

A formula is defined by the following BNF:

φ ::= A1 ∧ . . . ∧ An | φ → φ | ∀xφ | ∀y>xφ
| ∀y<xφ | ∃xφ | ∃y>xφ | ∃y<xφ

where A1, . . . , An are atoms, n ≥ 1 and x, y are variables. Some more details
regarding the syntax are provided in the following:

– The → operator indicates causality in a formula, and should be read as “if-
then” relation.

– The ∀ and ∃ quantifiers, are equivalent to its counterparts in predicate logic.
However, as it will be seen on the semantics, here they only apply to messages
in the trace. Then, for a trace ρ,∀x is equivalent to ∀(x ∈ ρ) and ∀y<x is
equivalent to ∀(y ∈ ρ; y < x) with the ‘<’ indicating the order relation. These
type of quantifiers are called trace temporal quantifiers.

Semantics. The semantics used in our work is related to the traditional Apt-
Van Emdem-Kowalsky semantics for logic programs [10], from which an extended
version has been provided in order to deal with messages and trace temporal
quantifiers.

Based on the above described operators and quantifiers, we provide an inter-
pretation of the formulas to evaluate them to � (‘Pass’), ⊥ (‘Fail ’) or ‘?’ (‘Incon-
clusive’). We formalize properties by using the syntax above described and the
truth values {�, ⊥, ?} are provided to the interpretation of the obtained formu-
las on real protocol execution traces. Due to the space limitation, we will not go
into details of the semantics. However, the interesting reader can refer to [17] in
which all the algorithms are defined.

2.3 Prop-tester

Prop-tester was presented in [27] to verify SOAP messages exchanged between
Web services. It is an online passive testing tool relying on XML Query processor.
In this section we introduce briefly some of its notions and adapt them to be
able to verify SIP messages. Let us start with definition of a message.

Definition 6. Given a finite set of names O, of labels L, and of atomic data
values D, a message m takes the form: o(l1 = v1, . . . , ln = vn), where o ∈
O represents the name of the message. The composite data of the message is
represented by a set {l1 = v1, . . . , ln = vn}, rewritten as (l̄ = v̄) for short, in
which each field of this data structure is pointed by a label li ∈ L and its value
is vi ∈ D.

We define a candidate event (CE) e/φ as a set of messages e that satisfy some
predicate φ that represents either functional conditions or non-functional condi-
tions, e.g., conditions of QoS. The predicate can be omitted if it is true. As the
SIP response messages do not contain operation names but status code numbers,
we then extend our definitions with empty operation name and any operation

110 X. Che et al.

name by ε and ∼ respectively. For example, the INVITE(requestURI = x)/(x =
“sip:ua2@CA.cym.com”) represents any INVITE message whose requestURI is
“http://sip:ua2@CA.cym.com”, while the ∼ (method = x)/(x �= “ACK”) repre-
sents the any message except ACK, and the ε(statusCode = x)/(x ≥ 200 ∧ x <
300) represents any 2xx response.

Definition 7. A property is described by the form:

P ::= Context
d−−→ Consequence (positive)

P ::= Context
d−−→ ¬Consequence (negative)

where d > 0 is an integer, Context is a sequence of CEs, and Consequence is a
set of CEs.

This definition allows to express that if the Context is satisfied then the
Consequence should or should not (depending on the formula type P or ¬P)
be validated after at most d messages. The Context is satisfied when all of its
CEs are satisfied while the Consequence is satisfied when there exists at least
one CE which is satisfied and, the Consequence is not satisfied when all of its
CEs are not satisfied.

Semantics of a Prop-tester property are given by its evaluation on a trace
segment. A verdict is emitted if and only if the context of property is satisfied. If
there is no non-functional conditions, the verdict is either Pass or Inconclusive
depending on the consequence is satisfied or not respectively. The Fail verdict is
emitted only if the consequence is not satisfied and there exists a message which
violates a non-functional condition of the consequence.

The evaluation of a property on an arbitrary (potential infinite) trace Γ is
relied on its evaluation on a segment of Γ as above. In a property, a later CE
may depend on a former one, consequently, the verification of a message may
require the presence of its precedence. Since we can forward only read data in a
continuous stream mode, we need to create buffer which contains some segment
of messages stream, what we call a window. A created window contains firstly
messages validating the context of the property and the d next messages in Γ .
Once a window is created, the verification process on the window can start in
parallel with the other created windows.

3 Experiments

3.1 Description of the Tools

For the experiments, traces were obtained from SIPp [13]. SIPp is an Open
Source implementation of a test system conforming to the IMS, and it is also
a test tool and traffic generator for the SIP protocol, provided by the Hewlett-
Packard company. It includes a few basic user agent scenarios (UAC and UAS)
and establishes and releases multiple calls with the INVITE and BYE meth-
ods. It can also read custom XML scenario files describing from very simple

Guiding Testers’ Hands in Monitoring Tools 111

to complex call flows (e.g. subscription including SUBSCRIBE and NOTIFY
events). It also supports IPv6, TLS, SIP authentication, conditional scenarios,
UDP retransmissions, error robustness, call specific variable, etc. SIPp can be
used to test many real SIP equipments like SIP proxies, B2BUAs and SIP media
servers. The traces obtained from SIPp contain all communications between the
client and the SIP core. Based on these traces and properties extracted from
the SIP RFC, tests were performed using our above mentioned methodologies
and tools. And all the experiments have been performed on one laptop (2.5 GHz
Intel Core i5 with 4 GB RAM).

Fig. 1. Testing framework of Datamon

Datamon. The testing framework of Datamon2 is implemented by using Java.
It is composed of three main modules: (1) Filtering and conversion of collected
traces; (2) Evaluation of tests; and (3) Evaluation of formulas. Figure 1 shows the
way the modules interact and the inputs and outputs from each one. The trace
processing module takes the raw traces collected from the network exchange, and
it converts the messages from the input format. In our particular implementation,
the input trace format is PDML, an XML format that can be obtained from
Wireshark traces. The purpose of the module is to convert each packet in the
raw trace into a data structure (a compound value) conforming to the definition
of a message. This module also performs filtering of the trace in order to only
take into account messages of the studied protocol.

The test evaluation module receives input of a passive test, as well as a trace
from the trace processing module, and produces a verdict from the satisfaction
results of the test and conditional formulas. The formula evaluation module
receives a trace and a formula, along with the clause definitions and returns a
set of satisfaction results for the query in the trace, as well as the messages and
variable bindings obtained in the process.

2 The implementation and the files used for the experiments can be found at http://
www-public.it-sudparis.eu/∼maag/Datamon/web/Datamon.html.

http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html
http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html

112 X. Che et al.

Prop-tester. The architecture of Prop-tester3 is depicted on Fig. 2. The prop-
erty to be tested is translated into an XQuery such that it returns false iff the
property is violated, and true iff the property is validated. A parser4 is con-
structed to parse the log file captured by SIPp tool in pcap format. It extracts
necessary information, then writes these information into an opened pipeline
between the tester and the parser, where it will be verified by an XQuery proces-
sor. The properties to be tested in XQuery form will be executed by MXQuery
processor on the XML pipeline supplying by the parser. A verdict is emitted as
soon as it is found.

Fig. 2. Testing framework of Prop-tester

3.2 Architecture of SIP

The IMS (IP Multimedia Subsystem) is a standardized framework for delivering
IP multimedia services to users in mobility. It was originally intended to deliver
Internet services over GPRS connectivity. This vision was extended by 3GPP,
3GPP2 and TISPAN standardization bodies to support more access networks,
such as Wireless LAN, CDMA2000 and fixed access network. The IMS aims at
facilitating the access to voice or multimedia services in an access independent
way to develop the fixed-mobile convergence. Further, the IMS makes now part
of the LTE core network for the voice and visio over LTE.

The core of IMS network consists on the Call Session Control Functions
(CSCF) that redirect requests depending on the type of service, the Home
Subscriber Server (HSS), a database for the provisioning of users, and the Appli-
cation Server (AS) where the different services run and interoperate. Most com-
munications with the core network and between the services are done using the
Session Initiation Protocol [28]. Figure 3 shows the core functions of the IMS
framework and the inherent protocols.

The Session Initiation Protocol (SIP) is an application-layer protocol that
relies on request and response messages for communication, and it is an essential
part for communication within the IMS framework. Messages contain a header
which provides session, service and routing information, as well as a body part
(optional) to complement or extend the header information. Several RFCs have
been defined to extend the protocol. These extensions are used by services of the
IMS such as the Presence service [3] and the Push to-talk Over Cellular (PoC)
service [4].
3 The tool is freely available at https://github.com/nhnghia/prop-tester.
4 https://github.com/nhnghia/pcap2xml.

https://github.com/nhnghia/prop-tester
https://github.com/nhnghia/pcap2xml

Guiding Testers’ Hands in Monitoring Tools 113

Fig. 3. Core functions of IMS framework

3.3 Properties

In the experiments, a set of properties are tested through Datamon and Prop-
tester, in order to analyse their functionality and performance under different
conditions.

Property 1. Initially, a simple conformance property “For every request there
must be a response” is tested.

Table 1. For every request there must be a response

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 153 0 2 1.652 153 0 2 1.103

2 1000 297 0 0 1.518 297 0 0 1.487

3 2000 575 0 0 3.071 575 0 0 2.246

4 4000 1189 0 1 7.506 1189 0 1 3.190

5 8000 2376 0 1 11.365 2376 0 1 5.480

6 16000 4796 0 1 25.942 4796 0 1 10.106

7 32000 9593 0 0 43.105 9593 0 0 18.728

8 64000 19252 0 1 88.578 19252 0 1 37.128

9 128000 38468 0 1 182.305 38468 0 1 70.390

As Table 1 shows, Datamon and Prop-tester obtain the same number of ‘Pass’
and non-pass verdicts. Since a finite segment of an infinite execution is being
tested in our experiments, it is not possible to declare a ‘Fail ’ verdict in Data-
mon and Prop-tester, for the indeterminacy that testers do not know if it may

114 X. Che et al.

become a ‘Pass’ in the future. As a result, they treat the non-pass verdicts as
‘Inconclusive’ verdicts. In this simple property, there is no essential difference
between the results returned by Datamon and Prop-tester.

Property 2. Therefore, a more complex conformance property “For successfully
established sessions, every INVITE request should be responded with a 200
response” is tested for delving deeper into the differentiation between the tools.

The results shown in Table 2 illustrate that a difference between mechanisms
can result on evaluation times. Although both tools still obtain the same number
of ‘Pass’ and non-pass verdicts, it can be observed that Prop-tester takes much
less evaluation time than Datamon, especially when handling numerous mes-
sages. As introduced in previous sections, Prop-tester introduces a predefined
distance value d into its evaluation process for instantly concluding verdicts.
With the help of this value, Prop-tester will omit comparisons with messages
beyond this distance.

Table 2. For successfully established sessions, every INVITE request should be
responded with a 200 response

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 57 0 11 1.700 57 0 11 1.058

2 1000 119 0 22 4.038 119 0 22 1.385

3 2000 248 0 53 13.505 248 0 53 2.114

4 4000 459 0 123 46.358 459 0 123 2.782

5 8000 926 0 233 180.388 926 0 233 5.019

6 16000 1842 0 440 658.148 1842 0 440 8.476

7 32000 3667 0 905 2559.239 3667 0 905 14.542

8 64000 7230 0 1911 7510.563 7230 0 1911 28.735

9 128000 14511 0 3767 28187.956 14511 0 3767 56.579

Conversely, Datamon has to compare all the following messages till the end
of a trace, in order to confirm the non-existence of a target message. However,
the mechanism used in Prop-tester raises a question: How will Prop-tester react
if target messages appear after the predefined distance d?

Property 3. Before answering to the question, a related property relevant to
time “For each INVITE request, the response should be received within 16s” is
tested for verifying the extensibility of both monitoring tools.

Time relevant properties can be seen as performance requirements which are
different from the conformance requirements tested above, having the ability to
test performance requirements is a crucial step for monitoring tools to extend its

Guiding Testers’ Hands in Monitoring Tools 115

Table 3. For each INVITE request, the response should be received within 16s

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 57 11 0 1.098 57 11 0 1.043

2 1000 119 22 0 3.192 119 22 0 1.383

3 2000 248 53 0 9.841 248 53 0 1.870

4 4000 459 123 0 35.214 459 123 0 2.765

5 8000 926 233 0 131.578 926 233 0 4.533

6 16000 1842 140 0 486.181 1842 440 0 8.069

7 32000 3667 905 0 1728.003 3667 905 0 14.512

8 64000 7230 1911 0 7286.181 7230 1911 0 28.321

9 128000 14511 3767 0 30804.213 14511 3767 0 56.817

functionality. Not surprisingly, as Table 3 shows, both tools can test this perfor-
mance property and they obtain the same results. Nevertheless, non-pass verdicts
are concluded as ‘Fail ’ verdicts which is different from testing the previous con-
formance requirements. Because when testing such performance requirements
with timing constraint, there is no indeterminacy in the trace. Definite verdicts
(‘Pass’ or ‘Fail ’) should be emitted, rather than indefinite ones (‘Inconclusive’).
That is notably the reason why the reader will notice that the results are here
similar to the ones obtained with Property 2 in the way that all ‘Inconclusive’
verdicts of Property 2 are now ‘Fail ’. Besides, Prop-tester still takes the lead in
evaluation time.

Property 4. Back to figuring out the answer raised in Property 2, a more com-
plicated property “Every 2xx response for INVITE request must be responded
with an ACK” is tested.

Different from previous properties, obvious discrepancies between the verdicts
returned from Datamon and Prop-tester can be observed from Table 4. Take a
closer look at trace 6, all the ‘Inconclusive’ verdicts reported from Prop-tester are
caused by missing ‘ACK’ responses. In fact, these ‘ACK’ responses do exist in
the trace, but appear after the predefined d in Prop-tester. Consequently Prop-
tester treats these ‘missing’ ‘ACK’ responses as ‘Inconclusive’ verdicts could be
considered as false negatives. The false negatives also occur in trace 7, 8 and 9
due to the same reason.

These phenomena answer to the question raised in Property 2: the mechanism
used in Prop-tester would lead to inconclusive verdicts if the predefined distance
d is set improperly. In contrast, owing to its rigorous mechanism for obtaining
verdicts, Datamon does not have such problems but its evaluation times are still
far behind Prop-tester.

116 X. Che et al.

Table 4. Every 2xx response for INVITE request must be responded with an ACK

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 57 0 0 1.241 57 0 0 24.805

2 1000 119 0 0 3.884 119 0 0 50.570

3 2000 248 0 0 12.102 248 0 0 103.088

4 4000 459 0 0 45.365 459 0 0 199.890

5 8000 926 0 0 181.758 926 0 0 400.920

6 16000 1842 0 0 658.033 1831 0 11 796.477

7 32000 3666 0 1 2631.765 3588 0 79 1617.233

8 64000 7217 0 13 7501.719 6931 0 299 3204.401

9 128000 14493 0 18 28616.957 13868 0 643 6216.099

Property 5. Furthermore, a sophisticated conformance property “No session
can be initiated without a previous registration” is tested for exploring the func-
tionality of both tools in depth.

Table 5. No session can be initiated without a previous registration

Trace #Messages Datamon

#Pass #Fail #Inc Time(s)

1 500 56 0 1 10.318

2 1000 114 0 5 41.272

3 2000 243 0 5 165.090

4 4000 457 0 2 660.361

5 8000 912 0 14 2531.445

6 16000 1840 0 2 10565.782

7 32000 3659 0 8 40439.623

8 64000 7225 0 5 160578.492

9 128000 14506 0 5 593073.968

Besides different mechanisms, the diverse logic used for formalizing proper-
ties in both tools affect testing results likewise. As shown in Table 5, Datamon
appears its potentiality on formalizing and testing sophisticated properties which
Prop-tester can not handle. Although the evaluation times seem a bit high, it has
to be noticed that the low performance of evaluation is due to memory limita-
tion of the computer we used. If a more powerful server is applied, the evaluation
times will be apparently reduced to satisfying numbers.

Guiding Testers’ Hands in Monitoring Tools 117

4 Discussions and Testers’ Guidance

In this section, we will first point out the drawbacks and advantages of each app-
roach according to different evaluation criteria. Then, we will give some advices
to the tester to guide him depending on his testing objectives.

Fig. 4. Different cases, ReqA, ResB represent for a request and its response respectively.

– The two approaches are property-based passive testing techniques. The prop-
erties are checked on the real execution traces. The Datamon tool is based
on definition of Horn clauses which are closely related to the query Data-
log language. Such formulas are made of atoms and terms. Formulas with
quantifiers and data can be defined. Prop-tester is based on if then clause
where the quantifiers are implicit and data can also be expressed. The main
difference relies on the distance used by Prop-tester. Prop-tester is clearly an
on-line testing tool and it is why such a distance is needed to buffer the traces.
Regarding expressiveness issue, such a distance can be a drawback. Indeed,
if the distance is not explicitly stated in the requirements, the distance is an
artefact used by the testing method. In this case, if the trace does not satisfy
the property because of the distance, an inconclusive verdict is emitted. On
the contrary, if the distance is a constraint of the requirement, a fail verdict
should be emitted. Concerning the property 4 that needs to verify a triple of
SIP messages with a partial order between them (m1 ≤ m2 ≤ m3), Prop-
tester is not able to express it. For that purpose, a combinatorial numbers of
properties has to be written, in this case 50 properties. Moreover, Prop-tester,
as an online tool, is not able to express the property 5 which is a complex
property that relates to a behaviour occurred in the past of the trace.
Except this difference, we demonstrate that the properties expressed by both
tools are LTL+FO equivalent because the part of the formula related to the
distance is always true. The properties equivalence is not shown in this paper
for lack of room. Interested readers can refer to the technical report [8].

– One interesting feature of the Prop-tester tool is that negative property can
be written. We can specify what should never occur in the system. For that
purpose, prop-tester negates positive property.

118 X. Che et al.

– Both approaches have different complexity. In Datamon, the algorithm uses
a recursive procedure to evaluate formulas, coupled with a modification of
SLD (Selective Linear Definite-clause) resolution algorithm [5] for evaluation
of Horn clauses. In the work, it is shown that the worst-case time complexity
for a formula with k quantifiers is O(nk) to analyse the full trace, where
n is the number of messages in the trace. Although the complexity seems
high, this corresponds to the time to analyse the complete trace, and not for
obtaining individual solutions, which depends on the type of quantifiers used.
For instance for a property ∀xp(x), individual results are obtained in O(1),
and for a property ∀x∃yq(x, y), results are obtained in the worst case in O(n).
Finally, it can also be shown that a formula with a ‘→’ operator, where Q are
quantifiers

Q . . .Q
︸ ︷︷ ︸

k

(Q . . .Q
︸ ︷︷ ︸

l

(A1 ∧ . . . ∧ Ap) → Q . . .Q
︸ ︷︷ ︸

m

(A′
1 ∧ . . . ∧ A′

q))

has a worst-case time complexity of O(nk+max(l,m)), which has advantages
with respect to using formulas without the ‘→’ operator. For instance, evalu-
ation of the formula ∀x(∃yp(x, y) → ∃zq(z)) has a complexity of O(n2), while
the formula ∀x∃y∃z(p(x, y) ∧ q(z)) has a complexity of O(n3) in the worst
case [17].
For Prop-tester, the complexity to verify of a property 〈e1, . . . , ek〉 d−−→
{e′

1, . . . , e
′
m} on a trace containing n messages is as follows. Prop-tester for-

wards only read data in a continuous stream mode. The verification is done
on a buffer which contains some fragments of message streams, what we call
a window. The window size is k+d. There are n−k windows. The complexity
is O((n − k) ∗ (k + d)). Since k and d are constant and usually highly smaller
than n, the complexity would be O(n). In the worst case where one wants
buffer the entire trace, i.e., d ≥ n − k, the complexity is O(n2).
The better complexity of Prop-tester is demonstrated in the experiments
that have been conducted. Prop-tester is very performant in time to evaluate
the properties.

– The Datamon tool has been designed to perform off-line analysis. Indeed,
execution traces are recorded and afterwards analysed while Prop-tester is
mainly efficient to perform on-line analysis during the real execution of the
system. To perform on-line testing, the tool needs to have good performance
and as consequence to give rapid answer for the verification process. The
efficiency of Prop-tester is dependent on the efficiency of the XQuery engine
that it relies on.

– Concerning the conformance verdicts emitted by both tools, there exist some
differences in their accuracy. To exhibit this point, we illustrate it with Fig. 4.
For the case 1, the distance d of the Prop-tester tool has no impact on the
verdict as d is greater than the distance p between the request and its response.
As for case 2, it proves the deduction we had in the experiments. When the
distance d is shorter than p, Prop-tester emits ‘Inconclusive’ verdicts.
For the cases 3 to 5, when timing constraints are expressed by the properties,
both tools can emit different verdicts depending on the time requirement t and

Guiding Testers’ Hands in Monitoring Tools 119

the size of the trace n, as illustrated in Table 6. In case 3, it is almost the same
case as case 1. The distance d does not influence on the verdict if d is greater
than the distance p and the time requirement t, both tools return a ‘Fail ’
verdict when the timing constraint is violated. However, in case 4, when the
distance d is shorter than t and p, Prop-tester will emit ‘Inconclusive’ verdicts
while Datamon still can detect the response and emit definite verdicts. For
case 5, let us assume that the response resB is present in the trace but will
appear after the captured trace. For Datamon, if resB appears after n, it will
issue a ‘Fail ’ verdict even if the timing constraint is not violated. Contrarily,
with Prop-tester a ‘Fail ’ verdict can be emitted if the time is elapsed during
the d distance otherwise it will emit an ‘Inconclusive’ verdict.

Table 6. Verdicts of tools under different cases, case 1 and 2 are tested through
property 1, case 3 to 5 are tested through property 3.

Case Datamon Prop-Tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 1 0 0 1.382 1 0 0 2.509

2 1 0 0 1.750 0 0 1 2.562

3 0 1 0 1.022 0 1 0 2.665

4 1 0 0 0.939 0 0 1 2.485

5 0 1 0 0.939 0 0 1 2.485

We have mentioned the advantages and drawbacks of each approach and
their related tools. What is important to point out is for what purpose each
tool has been designed. Datamon is clearly well suited for off-line analysis of a
system while Prop-tester is very efficient for on-line analysis. Regarding this main
feature, the drawbacks and advantages are closely related. As already pointed
out above, the expressiveness is better for Datamon. Indeed, the off-line analysis
allows to express complex properties and even properties that express constraints
on the past of the trace. Obviously, for an on-line analysis which analyses the
stream in a forward manner and with the form of if then clause of Prop-tester
such properties cannot be expressed. Moreover, always due to the form of its
properties, properties expressing relations with several variables (more than two)
cannot be expressed by Prop-tester. Furthermore, Prop-tester needs for its on-
line analysis to determine a d distance. Such a distance can be seen as a constraint
of the requirements and in this case, the verdicts will be impacted. Otherwise,
it must not have an impact on the verdict as it represents an implementation
constraint needed by the approach to limit the stream to be analysed. A very
important strength of Prop-tester relies on its performance which is of very
important interest to test complex system in a continuous way.

Both tools are complementary. Indeed, for a rapid analysis of the running
system, the main behaviours of a system can be tested as the expressiveness is not

120 X. Che et al.

always an issue for some tested systems. It can help to fix rapidly an erroneous
system by providing rapid feedback of discrepancy between the system and what
it is expected to do. Meanwhile, Datamon can be used as a background tool to
carefully analyse recorded system traces and by having more complex properties
that can be checked.

To conclude, Prop-tester can be used as an off-line tool and in this case,
the d distance is no longer used in the expression of the property and as a
consequence some limitations can be overcome. The form of the properties can
also be modified in order to increase the expressiveness. Concerning Datamon,
this tool is clearly not designed to be an on-line tool.

5 Related Work

Formal testing methods have been used for years to prove correctness of imple-
mentations by combining test cases evaluation with proofs of critical properties.
In [14,17] the authors present a description of the state of the art and the-
ory behind these techniques. Within this domain, and in particular for network
protocols, passive testing techniques have to be used to test already deployed
platforms or when direct access to the interfaces is not available. Some examples
of these techniques using Finite State Machine derivations have been used in the
past which are described in [21,25]. Most of these techniques consider only con-
trol portions, in [15,20,29], data portion testing is approached by evaluation of
traces by use of EEFSM (Event-based Extended Finite State Machine), SEFSM
(Simplified Extended Finite State Machine) and IOTS (Input-Output Transition
Systems) models. They focus on testing correctness in the specification states
and internal variable values. Our approach, although inspired by it, is different
in the sense that we test critical properties directly on the trace without any
generation or specification of state models of the tested protocol or functional
properties. A study of the application of invariants to an IMS service was also
presented by us in [17,18].

In [26], the authors defined a methodology for the definition and testing
of time extended invariants, where data is also a fundamental principle in the
definition of formulas and a packet (similar to a message in our work) is the
base container data. In this approach, the satisfaction of the packets to certain
events is evaluated, and properties are expressed as e1

When,n,t−−−−−−→ e2, where e1
and e2 are events defined as a set of constraints on the data fields of packets, n
is the number of packets where the event e2 should be expected to occur after
finding e1 in the trace, and t is the amount of time where event e2 should be
found on the trace after (or before) event e1. This work served as an inspiration
for both approaches described in the current document, however we improved
it by allowing the definition of formulas that test data relations and causality
between multiple messages/packets.

Although closer to runtime monitoring, the authors of [7] propose a frame-
work for defining and testing security properties on Web Services using the
Nomad [9] language, based on previous works by the authors of [22]. As a work

Guiding Testers’ Hands in Monitoring Tools 121

on web services, data passed to the operations of the service is taken into account
for the definition of properties, and multiple events in the trace can be com-
pared, allowing to define, for instance, properties such as “Operation op can
only be called between operations login and logout”. Nevertheless, in web ser-
vices, operations are atomic, that is, the invocation of each operation can be
clearly followed in the trace, which is not the case with network protocols where
operations depend on many messages and sometimes on the data associated with
the messages.

Further, other recent works like [23] present distributed passive testing frame-
works aiming at simplifying and automating service testing. And, techniques
based on “geometric approaches” [19] have been used in continuous distributed
monitoring for analyzing the behaviors of communication protocols.

Besides, some researchers presented a tool for exploring online communica-
tion and analyzing clarification of requirements over the time in [16]. It supports
managers and developers to identify risky requirements. Another interesting tool
is PTTAC [6] which automatizes a formal framework to perform passive testing
for systems where there is an asynchronous communications channel between the
tester and the system. We should also cite the recent extension of PASTE [24]
that performs passive testing of communication systems with temporal con-
straints associated to performance and delays. Though these tools are interest-
ing, they need specific state models or do not allow to analyze data payloads.

6 Conclusion and Perspectives

In this paper, we described two passive testing approaches to test efficiently,
in a non intrusive way, the main properties of a communicating protocol, the
Session Initiation Protocol. The approaches and their associated freely available
tools, Datamon and Prop-tester, allow to test real execution traces provided by
SIPp. Both approaches are based on formal definition of desired properties to be
tested. The performances and accuracy of verdicts for both tools are dependent
on the expressiveness of properties and also on the techniques used, i.e. off- or
on-line techniques. The approaches can be used by a tester in a complementary
way. In one hand, Prop-tester can be used to have rapid testing answer on some
properties to be tested and it can be launched in a continuous way to analyse the
execution traces. On the other hand, Datamon, as a back-end tool, can be used
to test more intensively the protocol with the definition of complex properties
on the recorded traces.

As an immediate perspective line, we expect to integrate more smoothly both
techniques in order to provide to testers more accurate verdicts, by reducing the
number of inconclusive verdicts. Moreover, both tools can take advantage of each
other and then improve for one its expressiveness and for the other its perfor-
mances. Such improvements can be reached by learning from each technique.
Prop-tester has been used for its first time in the testing of such communicating
protocol. We expect to promote the use of such tools to other real-life protocols.

122 X. Che et al.

References

1. ISO/IEC 9646-1: Information technology - open systems interconnection - confor-
mance testing methodology and framework - part 1: General concepts. Technical
report, ISO, January 1994

2. Abiteboul, S., Hull, R., Vianu, V.: Datalog and Recursion, 2nd edn. Addison-
Wesley, Reading (1995)

3. Open Mobile Alliance: Internet messaging and presence service features and func-
tions. Technical report, OMA (2005)

4. Open Mobile Alliance: Push to talk over cellular requirements. Technical report,
OMA (2006)

5. Apt, K., Van Emden, M.: Contributions to the theory of logic programming. J.
ACM (JACM) 29(3), 841–862 (1982)

6. Camacho-Magrinan, M.A., Merayo, M.G., Medina-Bulo, I.: PTTAC: passive test-
ing tool for asynchronous systems. In: Proceedings of SITIS, pp. 223–229 (2014)

7. Cao, T.D., Phan-Quang, T.T., Félix, P., Castanet, R.: Automated runtime verifi-
cation for web services. In: Proceedings of ICWS, pp. 76–82 (2010)

8. Che, X., Maag, S., Nguyen, H.N., Zäıdi, F.: Guiding testers’ hands in monitoring
tools/appendix: expression equivalence of the two approaches. Technical report
RR15001-RS2M, Institut Mines-Telecom/Telecom SudParis, August 2015

9. Cuppens, F., Cuppens-Boulahia, N., Sans, T.: Nomad: a security model with non
atomic actions and deadlines. In: Proceedings of CSFW, pp. 186–196 (2005)

10. Emden, M.V., Kowalski, R.: The semantics of predicate logic as a programming
language. J. ACM 23(4), 733–742 (1976)

11. ETSI/ES 201 873–1: Methods for testing and specification (MTS); the testing and
test control notation version 3; part 1: TTCN-3 core language, v3.2.1. Technical
report, ETSI (2007)

12. European Telecommunications Standards Institute/ETSI TS 134 123–3: Universal
mobile telecommunications system (UMTS); user equipment (UE) conformance
specification; part 3: abstract test suite (ATS). Technical report, ETSI, June 2013

13. Hewlett-Packard: SIPp (2004). http://sipp.sourceforge.net/
14. Hierons, R.M., Krause, P., Luttgen, G., Simons, A.J.H.: Using formal specifications

to support testing. ACM Comput. Surv. 41(2), 176 (2009)
15. Hierons, R.M., Merayo, M.G., Núñez, M.: Passive testing with asynchronous com-

munications. In: Beyer, D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013.
LNCS, vol. 7892, pp. 99–113. Springer, Heidelberg (2013)

16. Knauss, E., Damian, D.: V:Issue:lizer: exploring requirements clarification in online
communication over time. In: Proceedings of ICSE, pp. 1327–1330 (2013)

17. Lalanne, F., Maag, S.: A formal data-centric approach for passive testing of com-
munication protocols. IEEE/ACM Trans. Netw. 21(3), 788–801 (2013)

18. Lalanne, F., Maag, S., de Oca, E.M., Cavalli, A.R., Mallouli, W., Gonguet, A.: An
automated passive testing approach for the IMS PoC service. In: Proceedings of
ASE, pp. 535–539 (2009)

19. Lazerson, A., et al.: Monitoring distributed streams using convex decompositions.
VLDB Endow. 8(5), 545–556 (2015)

20. Lee, D., Miller, R.: Network protocol system monitoring - a formal approach with
passive testing. IEEE/ACM Trans. Netw. 14(2), 424–437 (2006)

21. Lee, D., Netravali, A.N., Sabnani, K.K., Sugla, B., John, A.: Passive testing and
applications to network management. In: Proceedings of ICNP, pp. 113–119 (1997)

http://sipp.sourceforge.net/

Guiding Testers’ Hands in Monitoring Tools 123

22. Li, Z., Jin, Y., Han, J.: A runtime monitoring and validation framework for web
service interactions. In: Proceedings of ASWEC, pp. 70–79 (2006)

23. Lopez, J., Maag, S., Morales, G.: Behavior evaluation for trust management based
on formal distributed network monitoring. World Wide Web 1–19 (2015)

24. Merayo, M.G., Núñez, A.: Passive testing of communicating systems with timeouts.
Inf. Softw. Technol. 64, 19–35 (2015)

25. Miller, R.: Passive testing of networks using a CFSM specification. In: Proceedings
of IPCCC, pp. 111–116 (1998)

26. Morales, G., Maag, S., Cavalli, A.R., Mallouli, W., de Oca, E.M., Wehbi, B.: Timed
extended invariants for the passive testing of web services. In: Proceedings of ICWS,
pp. 592–599 (2010)

27. Nguyen, H.N., Poizat, P., Zäıdi, F.: Online verification of value-passing chore-
ographies through property-oriented passive testing. In: Proceedings of HASE, pp.
106–113 (2012)

28. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: session initiation protocol (2002)

29. Ural, H., Xu, Z.: An EFSM-based passive fault detection approach. In: Petrenko,
A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS,
vol. 4581, pp. 335–350. Springer, Heidelberg (2007)

30. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22, 297–312 (2012)

31. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41, 19:1–19:36 (2009)

	Guiding Testers' Hands in Monitoring Tools: Application of Testing Approaches on SIP
	1 Introduction
	2 Basics
	2.1 Message and Trace
	2.2 Datamon
	2.3 Prop-tester

	3 Experiments
	3.1 Description of the Tools
	3.2 Architecture of SIP
	3.3 Properties

	4 Discussions and Testers' Guidance
	5 Related Work
	6 Conclusion and Perspectives
	References

