Skip to main content

Efficient Private Set Intersection Cardinality in the Presence of Malicious Adversaries

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9451))

Abstract

In this paper, we study Private Set Intersection Cardinality (PSI-CA) protocols and propose two new constructions of PSI-CA. While one of these constructions is secure in the standard model, the other one is secure in the random oracle model (ROM). The security is under the Decisional Diffie-Hellman (DDH) assumption against malicious adversaries. Our proposed PSI-CA protocols are the first to achieve linear communication and computation complexities and secure against malicious adversaries. Furthermore, each of our PSI-CA constructions can be converted to PSI without losing any of the above stated properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 86–97. ACM (2003)

    Google Scholar 

  2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  4. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: An efficient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 789–800. ACM (2013)

    Google Scholar 

  9. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  10. Fiat, Amos, Shamir, Adi: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, Andrew M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  11. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Goldreich, O.: Foundations of cryptography: vol. 2, basic applications. Cambridge University Press (2004)

    Google Scholar 

  13. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic prfs. IACR Cryptology ePrint Archive 2015, 4 (2015)

    Google Scholar 

  14. Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without random oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277–294. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on ot extension. USENIX Security 14, 797–812 (2014)

    Google Scholar 

  18. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule mining. J. Comput. Secur. 13(4), 593–622 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Debnath, S.K., Dutta, R. (2015). Efficient Private Set Intersection Cardinality in the Presence of Malicious Adversaries. In: Au, MH., Miyaji, A. (eds) Provable Security. ProvSec 2015. Lecture Notes in Computer Science(), vol 9451. Springer, Cham. https://doi.org/10.1007/978-3-319-26059-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26059-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26058-7

  • Online ISBN: 978-3-319-26059-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics