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Abstract. Over last decade, research in Web service discovery has brought
a variety of techniques to find out responses for a Web service request.
While the accuracy of matchmaking approaches has continuously im-
proved, human contributions remain a key ingredient of the process. In
this paper, we propose an approach called Crowd4WS (Crowdsourcing
for Web service discovery) to complement and refine matchmaking ap-
proaches by using crowdsourcing techniques. We describe our approach
and present the results of experiments on a known collection of RESTful
services described with hRESTS.
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1 Introduction

Web services discovery has been considered as one of the key challenges for
achieving efficient service oriented computing. During the last decade, the advent
of the semantic Web has led to the development of several semantic matchmaking
techniques and systems [1–5]. Matchmaking process aims to discover the most
relevant services for a user request. Services are ranked according the similarity
scores (a service versus a query). Previous works [6] have shown that matchmak-
ing remains a semi-automatic process, that leading to some false positive results
and still may require some form of human assistance.

More recently, with the rapidly growing of Social Web, Crowdsourcing has
gained momentum and proved useful in many practical applications. In a nut-
shell, crowdsourcing [7] [8] can be considered as a model in which a problem
is divided into sub-problems and distributed among a group of people (called
the crowd or workers). Each sub-problem may result in one or several micro-
task(s), performed by several workers on behalf of some organizations. Tasks are
performed individually or in a collaborative way. Crowdsourcing domains appli-
cations examples are: content classification, objects ranking, image annotation,
etc.

In this paper we describe Crowd4WS (Crowdsourcing for Web service discov-
ery), a crowdsourcing approach and implementation. Given a subset of relevant
precomputed Web services (candidate returned by a matchmaker), and a Web
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service request, Crowd4WS asks the crowd to assess the relevance of the services
candidates. The outcome of the system is a set of Web service(s) that are the
most relevant to a service request. For the experimentation described in this
paper, Crowd4WS takes as an input a subset of relevant Web services generated
by SR-REST, an hybrid matchmaker described in a previous work [9].[]

Despite a reasonable number of crowdsourcing applications and platforms,
to the best of our knowledge, the crowdsourcing computational paradigm has
not been used in the context of the Web services discovery domain: One of the
main reasons being the lack of expertise (experts) in such domain. Given this
context, we believe the contributions of the work described in this paper are as
follows:

(1) we proposed to leverage existing matchmaking techniques/systems with
the involvement of the crowd;

(2) we came up with an approach that can use different models such as, for
example, a probabilistic model to detect faulty workers;

(3) we used real datasets (Web services descriptions) with a real (although
small) set of workers, while many crowdsourcing related work use synthetic data.

The remainder of the paper is organized as follows. Section 2 surveys some
related works on matchmaking approaches and crowdsourcing. In section 3, we
describe a motivating example. Section 4 presents our approach based on crowd-
sourcing for Web service discovery (Crowd4WS). In section 5, we describe the
system architecture and detail the experimental settings and results in section
6. Section 7 concludes the paper.

2 Related Work

Matchmaking To leverage semantic descriptions of Web services, several match-
making approaches have been proposed, most of them exploiting SAWSDL [1]
[10] or OWL-S annotated services [3]. These matchmakers can be logic-based,
non-logic-based or hybrid, i.e., combining of logic and non-logic similarity func-
tions. Recently, RESTful matchmaking approaches and systems have also been
proposed in the literature [9][4]. Such systems, like XAM4SWS [2] for instance,
compare service operations, inputs, outputs and similarities. In [4] a graph-
theoretic approach called semantic flow matching is proposed: the approach
matches REST Web services, specified in WADL (Web Application Descrip-
tion Language) and uses linguistic knowledge and domain-specific heuristics. In
[9], we developed a matchmaking approach based on several similarity measure
functions that exploits different elements of RESTful descriptions.

As studied in [6] matchmaking solutions came back with false positive and
negative results and most of them fail to discover all the relevant services accord-
ing to the user request. Existing matchmakers have to use and combine several
similarity measures and deal with aggregating methods of matching scores to
resolve discovery issues. For example, in [6][11] authors show that many match-
makers do not consider semantic similarity between services (e.g., synonym re-
lations) and an improvement of semantic similarity is still needed.
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Crowdsourcing Crowdsourcing has gained momentum to overcome compu-
tational tasks that require human assistance. Crowdsourcing has been recently
proposed as a solution to a variety of research problems such as ontology align-
ment, schemas matching or images annotation to cite a few. For example, in
[12] authors used crowdsourcing techniques to validate correspondences between
schemas: they designed questions with contextual information that may help
workers to answer. Crowdmap [8] is a system that collects human contribu-
tions via crowdsourced microtasks. For a pair of ontologies, Crowdmap splits
the alignment problem into individual microtasks, publishes them on labor mar-
ket online, collects results and aggregates them. This process has improved the
precision of results returned by an automatic ontology alignment process. In [13],
crowdsourcing has been used to validate the results of automated images search
on mobile devices. Crowdsourcing techniques have also been successfully applied
for several data management problems leading to systems such as CrowdSearch
[14] or CrowdScreen [13]. In [15] Shen et al. deployed crowdsourcing methods for
schema matching. More recently, approaches that use crowdsourcing to assess
entities extracted form Web pages (text) to URIs was proposed in the literature:
ZenCrowd [16] combines probabilistic reasoning with crowdsourcing to exhibit
correspondences from text entities to linked object data.

To summarize, Matchmaking works have shown that there is no ideal match-
ing and matchmaking may still require some form of human assistance. Crowd-
sourcing has gained momentum and proved useful in many practical applications
e.g objects ranking, semantic Web, Linked data, ontology engineering etc. Sys-
tems such as ZenCrowd demonstrate how crowdsourcing can contribute to the
Semantic Web. All these studies have shown the crowdsourcing benefits and
underline the need of human intelligence to effectively handle difficult tasks.

3 Motivating Example

To motivate our approach, let’s consider a simple example, described in [9],
where a user is looking for a Web service that provides information about car
prices. The car price request is described as follow: User request (name: car price,
operation: get price, input: car, output: price).

The process can be summarized as follows:

1. First, we apply SR-REST, an hybrid matchmaker on the car prices example.
This yields a set S = {Toyota car price, auto price color, bicycle price, car
year, car report and car recommended price}, S being considered as the most
relevant services;

2. Looking carefully at S, it is obvious that bicycle price service ( name: bicy-
cle price, operation: get price, input: bicycle, output: price) is a false positive
(a bicycle is not a car), although this service proves highly similar to a car
price service, mainly because the matchmaking algorithm does not require a
total mapping between the inputs/inputs of user’s request and a service [6];
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3. When submitting S to the crowd, services that obviously do not match the
user request, are simply removed, although returned by the matchmaker.

Fig. 1 below illustrates our crowdsourcing process. People, called workers are
asked to perform a specific work, usually decomposed into a set of elementary
tasks called microtasks. A microtask represents a task that could be handled by
a worker in a reasonable amount of time. A single microtask may be performed
by many workers in order to limit the bias of an individual work. In adopting
a crowdsourcing approach, we aim (1) at assessing the results returned by the
matchmaking, and (2) returning a set of ranked Web services.

Fig. 1. Illustration of the Crowdsourcing Process

4 Crowd4WS: Crowdsourcing for Web Service Discovery

Crowd4WS, consists of two main steps (microtasks): (1) Validation step, where
the crowd checks whether a service matches a request, and hence discard irrele-
vant services and (2) Ranking step , where the services are ranked by the crowd
accordingly with an order of preference (relevance).

Validation Given a user’s query R, a set S of n Web services, S ={s1, s2,...,
sn}, and a set W of k workers ({w1 ,...,wk }), the validation step returns a set RS
of relevant services accordingly to three relevance levels RL = {relevant, possi-
bly relevant, irrelevant}. Each worker assigns a relevance score to a si expressing
how relevant is the returned service si to the query R.
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Ranking The crowd will perform a microtask pairwise comparison between
Web services. Each worker has to order the set of services. The symbol > is
used to define the order; for example a > b means that the worker prefers the
object a to the object b (if we consider a and b as two services, a > b means
that a is more relevant then b). This is a preliminary step for inferring a ranking
(total ordering) among the results (Web services). We use also an aggregation
mechanism to aggregate answers collected from crowd. For each microtask we
will apply a set of aggregation functions as described below.

Definition 1 (Results Aggregation): The aggregation process takes as
input the set of all answers collected among the workers. More formally, this is
represented by a matrix A where aij represents the answer of a worker wi for a
service sj .

A=

 a11 · · · a1n
...

...
...

ak1 · · · akn


The result of aggregation process is a set of aggregated values representing

the relevance level assigned for the service si.
Several aggregation techniques are proposed in the literature to compute the ag-
gregated value such as, majority voting [17] and expectation maximization (EM)
[18]. While majority voting aggregates responses for each service independently,
the EM method aggregates simultaneously all responses. The majority voting
collects and aggregates worker answers for each service.
In our work, a ranked list of services would be generated; our aim is to compute
a relevance score for each service. For this reason we will apply an aggregation
method based on the majority voting approach. We define a numerical equiv-
alent for each alternative in order to compute a global score per service, then
services will be ordered according to these scores.

Definition 2 (Aggregation Score): We denote Sc(S) as the aggregation
function applied to compute the score of each candidate Web services from the
worker’s answers. This function is defined as follow:

Sc(si) =

∑k
i=1(ri)

k
. (1)

Where k is the number of workers who have validated service si ; and ri is a
relevance number accordingly to the level chosen by the worker such that:

 ri = 1, if answer=relevant
ri = 0.5, if answer=possibly relevant
ri = 0, if answer=irrelevant.

After aggregating all answers, an ordered list of Web services will be gener-
ated. This list will be submitted to the crowd to rank the services in this list
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from the best to the worst one. This ranking microtask implies both pairwise
comparison between the services and an aggregation of the different results (see
Definition 3).

Definition 3 (Ranking Aggregation): The ”total” ordering of relevant
Web services is given by the aggregation of orders supplied by the workers. The
ordering of a worker wk is denoted by:φl={(i, j), si < sj} l={1,..,k}.
After collecting the answers of all k workers that performed pairwise compar-
isons, we obtain a set φ of ranked Web services, where φ represents the set of
orders given by the k workers and φl represents the order given by a worker l.

φ = ∪φl. (2)

Results collected from the crowd must be aggregated in order to find a total
order. We are using the the Bradley-Terry model [19] [5] that, given two objects
x and y, evaluates the probability that x is preferred to y. More precisely, if
α, β > 0 respectively denote the relevance scores of x and y, this probability is
computed as:

Pr(x < y) =
α

α+ β
(3)

We assume that there are n candidate services {s1, .., sn} and a pool of k workers
{w1, .., wk}. The set of (pairs of) services evaluated by a worker wk is denoted
by Sk = {(i, j) : si < sj}, where si < sj represents that the worker prefers si to
sj , we apply the Bradley-Terry, we have :

Pr(si < sj) =
αi

(αi + αj)
(4)

Where αi is the relevance score of the service si. The score of each service can
be estimated in using maximum likelihood method.

A global ranking over n candidates services can be obtained by sorting the
vector of scores = (α1, · · · , αn) where αi is the score of the service si.

Example We consider the previous example of car price service (see section
3). Table 1 represents the pairwise comparison list (see definition 3) submitted
for ranking to 5 workers. We computed the number of times a service si was
preferred to sj . Then we applied the Bradley and Terry model in using XLSTAT
1, to obtain a final ordering.

A matrix M can be obtained where Mij represents the number of time a
service i is considered as better than a service j.

M =


− 3 4 3
2 − 4 1
1 1 − 2
2 4 3 −

 (5)

1 www.xlstat.com
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Table 1. Pairwise Comparison Results

service 1 service 2 service 1 wins service 2 wins

Auto color price car (s1) Car year price (s2) 3 2

Auto color price car (s1) Toyota car price (s3 ) 4 1

Auto color price car (s1) Car recommended price (s4 ) 3 2

Car year price (s2) Auto color price car (s1) 2 3

Car year price (s2) Toyota car price (s3 ) 4 1

Car year price (s2) Car recommended price (s4 ) 1 4

Toyota car price (s3 ) Auto color price car (s1) 1 4

Toyota car price (s3 ) Car year price (s2) 1 4

Toyota car price (s3 ) Car recommended price (s4 ) 2 3

Car recommended price (s4 ) Auto color price car (s1) 2 3

Car recommended price (s4 ) Car year price (s2) 4 1

Car recommended price (s4 ) Toyota car price (s3 ) 3 2

The choice of the symbol - for the diagonal entries is arbitrary. This matrix
will be used as input to the Bradley and terry model (Definition 3). Results are
presented by table 2 below.

Table 2. Bradely and Terry Aggregation Results

test number of wins number of losses percentage of wins percentage of losses

s1 20 10 66.67 33.33

s2 15 15 50.00 50.00

s3 7 23 23.33 76.67

s4 18 12 60.00 40.00

Based on the percentage of wins, a simple ordering may be obtained: the
”best service” is the one with the best percentage.

5 Crowd4WS Architecture

As depicted in Fig. 2, Crowd4WS takes as inputs a set of Web services generated
by a matchmaker and a user query and submit them to the crowd for validation
and ranking. The output of this crowdsourcing process is a collection of ranked
services corresponding to the user query.
The crowdsourcing workflow consists mainly on: generating microtasks, publish-
ing microtasks, collecting and aggregating workers’ answers.

Microtask generator: generates two kinds of microtask: 1) a validation mi-
crotask and 2) a ranking microtask. The validation microtask is used to
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Fig. 2. System Architecture

verify the similarities between the Web services and the user query. While
the second microtask performs a ranking as described above.

Microtask publisher: posts microtasks to the crowd.

Answers aggregator: collects and aggregates the answers from different work-
ers/microtasks. Answers returned by the crowd might be incorrect for several
reasons, such as tasks misunderstanding, leading to errors or even not to find-
ing the right answer. To solve this problem, we need aggregation mechanisms,
applied in the Answer Aggregation component.

5.1 Microtask User Interface

Workers are provided with two micro task user interfaces.

Validation Microtask Recall that during the validation phase, workers have
to decide how relevant is a service to a query. As illustrated in Fig.3, a micro-
task consists mainly of a question (How relevant is a service ?), relevance being
expressed as relevant, possibly relevant or irrelevant. The information about the
query, the candidate Web service and the alternatives are also displayed to assist
the workers (i.e with a simple click on the More Info field).

Ranking Microtask The goal of the ranking microtask (Fig.4) is to collect
workers preferences on a pairwise comparison basis. The relevant services re-
sulted from the Validation microtask are ranked by the crowd accordingly with
an order of preference (relevance). For each pair of services and a request, work-
ers assign a preference order 1 (being the best) or 2 to indicate that a service is
more relevant than another.
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Fig. 3. Validation Microtask UI

Fig. 4. Ranking Microtask UI
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6 Experimentation

Many crowdsourcing research prototypes use commercial platforms [20], such as
Amazon Mechanical Turk. We find it easier to implement our own system: a
video illustrating the system is accessible 2.

Regarding the workers, we relied on our academic network which is composed
mainly staff (lab members) and students at our university. We implemented a
Web application that generates microtasks questions from the test collection
hREST-TC13 .This collection is derived from SAWSDL-TC1 collection and is
composed of 25 queries (from different domains: communication, food, economy,
medical, travel and education), 895 services and 24 ontologies used to seman-
tically annotate the inputs and outputs parameters of Web services. For each
query a relevant set is provided.

The experimental results are detailed below.

6.1 Experimentation Setup

Configuration Parameters for Crowdsourcing In the crowdsourcing en-
vironment, each microtask should be executed by a number of workers. Based
on common practices in the crowdsourcing context for similar tasks[21] [8], the
number of workers assigned to each task is limited to 5. As microtasks are sim-
ple to accomplish and require only few minutes to be performed, each worker is
asked to fulfill a set of validation (or ranking) tasks.
Experimental results show that it takes between few minutes to receive answers
from each worker (depending on the number of microtasks that should be at-
tributed). In order to evaluate the number of tasks to be assigned to each worker,
we measured the time required to perform a set of microtasks by these workers.
We will pay attention to the time consumed by worker’s to fulfil a set of grouped
microtasks. We varied the number of micro tasks per groups between 1 and 30
microtasks. Fig 5 illustrates the obtained results. In this figure, we show that
the time consumed increased when we have more than 10 microtasks.

Then the user interface design and the time required to execute a microtask
influenced the crowdsourcing results. Our concern is how to improve the user
interface to make more easily the user interaction. Based on these results, we
limited the number of microtasks per group to 6 in order to get the maximum
number of answers.

6.2 Evaluation Results

Worker’s Expertise To evaluate our approach, first we addressed the problem
of the lack of expertise of workers. We have implemented a simple model based
on a quiz as illustrated in Fig 6 to check the expertise of the worker.

2 http://www.lsis.org/sellamis/Projects.html
3 http://semwebcentral.org/projects/hRESTS-tc/
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Fig. 5. Time per Set of microtasks

Fig. 6. Worker’s Quiz
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Workers are asked to answer a set of questions about Web services before
executing validation and ranking microtasks. The results of theirs answers will
be used to measure a degree of expertise. If the worker makes more than one
mistake, he is considered as non expert and the system does not consider her
answers.

Crowdsourcing Evaluation We conducted a series of tests to evaluate the
impact of both validation and ranking processes. We measured the average pre-
cision of the validation process and then the average precision of both validation
and ranking process. For our evaluation, we use precision and recall measures
to evaluate the effectiveness of our approach. These measures are described as

follows: Precision= |A∩B|
B , and Recall= |A∩B|

A Where A is the set of all relevant
services for a request and B the set of all retrieved services for a request. We
then compute the average precision and recall.

Fig. 7. Crowd4WS Precision and Recall (validation and ranking)

As shown in Fig. 7, Ranking microtask has positive impact on the returned
list of services. In fact we note that irrelevant services are at the end of the list
while the most relevant services are at the top of the list. Ranking microtask
improves the precision but gives the same recall as does the validation step.
Based on the definition of recall (i.e the number of relevant services that are
retrieved by the workers) we conclude that crowdsourced ranking discards false
positives but has no impact on the number of relevant retrieved Web services
(the same set approved by the validation microtasks).

Crowdsourcing vs Matchmaking Finally, we compared Crowd4WS with
our previously proposed matchamker SR-REST by measuring their average pre-
cisions and recalls. Fig. 8 shows the obtained results. We noticed that the use of
the crowd to validate services obtained through the matchmaking process leads
to a noteworthy precision improvement. This is due to the fact that irrelevant
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Web services will be discarded as they are judged as impertinent to the user’s
research. The pruning of these services from the set of returned pertinent ser-
vices vindicates the recall improvement.

To summarize, our experiments involved 25 different workers. Overall, they
confirmed our first hypothesis: human intelligence could be used to enhance
precision of automatic Web services discovery approaches. The crowd is able to
detect false positive results given by the matchmaker and discards them from
the set of returned results.

Fig. 8. Crowd4WS vs SR-REST precision and recall

7 Conclusion

The work described in this paper demonstrates that crowdsourcing may comple-
ment and refine matchmaking approaches. The experimental numbers, expressed
in terms of precision, show a worthy improvement with respect to the number
of candidates services provided by the matchmaking process: hence this leaves
hope for further investigation in order to come up with an efficient service dis-
covery platform that combines both matchmaking and crowdsourcing. This work
can be considered as a first step towards hybrid human-automatic Web service
discovery.

As mentioned earlier, we did not use a commercial platform such as AMT,
because we need to rely on a ”service-aware” crowd. Indeed, tagging a Flickr
picture, or recognizing a landmark in a city, are examples of easy tasks; while
deciding whether a Web service matches a user request is a harder task because
one needs to have some expertise in the service oriented computing area. This
remark raises several challenges that need to be tackled such as user’s credibility
(level of expertise), quality of results, etc.
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