
Query Monitoring and Analysis for Database Privacy - A Security
Automata Model Approach

Anand Kumar1,*, Jay Ligatti2, and Yi-Cheng Tu2

1Teradata Corporation, San Diego CA 92127, USA

2Department of Computer Science and Engineering, University of South Florida, Tampa, FL
33620, USA

Abstract

Privacy and usage restriction issues are important when valuable data are exchanged or acquired

by different organizations. Standard access control mechanisms either restrict or completely grant

access to valuable data. On the other hand, data obfuscation limits the overall usability and may

result in loss of total value. There are no standard policy enforcement mechanisms for data

acquired through mutual and copyright agreements. In practice, many different types of policies

can be enforced in protecting data privacy. Hence there is the need for an unified framework that

encapsulates multiple suites of policies to protect the data.

We present our vision of an architecture named security automata model (SAM) to enforce

privacy-preserving policies and usage restrictions. SAM analyzes the input queries and their

outputs to enforce various policies, liberating data owners from the burden of monitoring data

access. SAM allows administrators to specify various policies and enforces them to monitor

queries and control the data access. Our goal is to address the problems of data usage control and

protection through privacy policies that can be defined, enforced, and integrated with the existing

access control mechanisms using SAM. In this paper, we lay out the theoretical foundation of

SAM, which is based on an automata named Mandatory Result Automata. We also discuss the

major challenges of implementing SAM in a real-world database environment as well as ideas to

meet such challenges.

Keywords

Automata; Access Control; Differential Privacy; Security

1 Introduction

Data is often the most valuable asset to its owner or person whose information is captured in

it. Certain information is private and should not be disclosed in any form. Various laws and

mutual agreements between parties require the organizations to set strict policies in

disclosing certain information. For example, laws such as Health Insurance Portability and

*Author to whom all correspondence should be sent.

This work was done at University of South Florida.

HHS Public Access
Author manuscript
Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

Published in final edited form as:
Proc Int Conf Web Inf Syst Eng. 2015 November ; 9419: 458–472. doi:10.1007/978-3-319-26187-4_42.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Accountability Act (HIPAA) mandate the organizations not to disclose personally

identifiable information under any circumstances. In the past, enormous efforts have been

made to control data access, optimize queries, and process queries efficiently. Little efforts

are put to monitor queries to protect against privacy violations occurring through improper

data usage [18].

On the other hand, there is the need to find out inherent patterns in the stored data for

targeted advertising, marketing, and other business purposes. It is achieved through

statistical analysis of the stored data, often done by external analysts. Whether the analysis is

done internally or externally, it should follow the aforementioned rules in leaking private

information. Thus, privacy-preserving data analysis/mining has become an active field of

research and practice. A common practice is to anonymize the data [9] before disclosing to

third party analysts. Unfortunately, the anonymous data sets can be combined with

information from other sources to extract the private information. In one such example of

attacks, users in an anonymized Netix prize data were identified by using an IMDB movie

rating data set [15].

Data protected by mutual agreements and copyright laws needs to be monitored for usages

that may affect the businesses. For example, hobbies information of Facebook users should

not be combined with Google maps location services. Even if the business has access to both

data sets, it should not allow its employees or users to combine them. It may result in

violation of privacy as well as affect the data owners financially. Therefore, monitoring data

usage becomes an important task for organizations [18].

A number of privacy-preserving policies have been defined and enforced in current database

management systems (DBMS) through access control mechanisms (ACM). The main

limitation of these ACMs is that they only enforce “black and white” policies; the user is

either granted access to the information or completely denied. In the presence of such

mechanisms it is challenging to allow third-party analysts to access the database because the

ACMs would have to restrict access to private information. Effective analysis is possible if

some form of data aggregation, from sources who have private information, is made

accessible, without revealing the private information. It is also important to monitor the

accesses made by legitimate users. For example, a valid user may access, out of curiosity,

important information about important personalities (or celebrities). Such unnecessary

accesses should be monitored.

Our vision is to introduce an architecture named security automata model (SAM), shown in

Fig. 1, to enforce privacy policies and restrict data usage. An important feature of the SAM

architecture is that we can enforce many types of database privacy policies within a
single enforcement architecture. The SAM model basically enforces ACMs and other

declared privacy policies on the data and query results. SAM is a query monitor based on

previous work in the area of software security by Ligatti and Reddy, namely, an automata

called Mandatory Result Automata (MRA) [11]. All the actions taken by the DBMS for

processing input queries and then returning their results are inspected before presenting the

results to the user. This inspection feature of SAM is very useful in monitoring authorized

users accessing private information out of curiosity. The results that may generate or help

Kumar et al. Page 2

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

infer confidential information are substituted or perturbed by the monitor through

differential privacy (DP) [5].

SAM works on the basic aggregates supported by state-of-the-art DBMS, while controlling

access through ACMs. The data owner can specify policies on these aggregates rather than

writing their own interfaces to protect the privacy. This eliminates need to inspect, monitor,

and control the programs written by external analysts. The analysts don’t have to have any

knowledge of special parameters and accuracy requirements, to access the data. The major

contributions of this work are:

1. A new privacy enforcement architecture parameterized by various privacy policies.

2. Utilizing SAM to monitor data usage and preserve privacy in databases.

3. Formal model of the architecture using mandatory results automata (MRA).

4. Proof that security mechanisms modeled in our framework can be constructed to

enforce any of a large class of privacy policies.

Details of the problem studied and a brief summary of related work are presented in Section

2 and the privacy architecture is discussed in Section 3. A formal model to enforce policies

and challenges involved are discussed in Section 4. We conclude our paper in Section 5 with

some details of possible future work.

2 Problem Description and Related Work

SAM is designed for protection of data stored in relational database management systems

(RDBMS). The RDBMS would incorporate SAM as an additional layer to monitor the data

usage and preserve privacy. We envision the following three problems to be addressed using

SAM.

1. Monitoring Users: Access to database from both unauthorized and authorized

users must be monitored. The problem of restricting unauthorized users falls into

the realm of ACMs and hence we do not cover it in our work. Some authorized

users may access private data out of curiosity. Such accesses must be monitored

and appropriate action be taken to preserve privacy. Thus, SAM should

automatically audit authorized users accessing data that should not be accessed

during normal operations.

2. Monitoring Data Usage: Often business agreements and terms of usage restrict the

way in which data is used. For example, the use of maps with location data could

be restricted. The users of such data must be monitored and combining one data set

with other should not be allowed. In such cases, prohibited operations on data are

not allowed.

3. Enforcing Policies: Various privacy and data usage policies are expressed as

predicates that are enforced by the mechanism implemented in SAM. The database

administrator declares the policies to be enforced in a query language. Then, SAM

enforces ACMs and declared privacy policies to protect the data.

Kumar et al. Page 3

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Even though various policies are enforced on every query submitted by a user, there is need

to monitor the queries based on history of data accesses. A sequence of relevant queries may

give out private information. Therefore, SAM should enforce policies by looking at the

history of queries submitted to the database. It becomes more challenging when multiple

users collude to access private data. We look at the architecture of SAM to address these

problems.

2.1 Related Work

The problem of security in databases is well studied in the past three decades. The security

mechanisms of the past are categorized into four classes [1, 14]: Conceptual Models, Query

Restriction, Output Perturbation, and Data perturbation. A detailed survey is presented in

[1]. In the recent past an extensible platform for privacy-preserving data analysis has been

studied [12]. There have also been some systems built to enforce privacy-preserving policies

[16, 13]. These systems have focused mainly on providing database interfaces for the

programs of data analysts. The data owner makes settings (specify parameters like privacy

budget etc.) so that the programs don’t reveal the private information. It is often hard to

inspect the bugs and possible privacy breaches in programs written by external agents.

As there are different approaches to preserving privacy in databases, each approach has its

own advantages and disadvantages. In our privacy architecture, we have presented a

monitoring mechanism that we believe combines the best features of these approaches. It is

capable of restricting the queries during normal operation and perturbing the results when it

is absolutely necessary. The data owner can define all the privacy policies and input them to

the monitor. The privacy model enforces the policies while monitoring external programs

for breach in the data privacy. To the best of our knowledge, ours is the first framework for

enforcing many types of database privacy policies within a single enforcement architecture.

3 The SAM Architecture

Any database query can be expressed as a relational algebra expression (or expression in

short) on the values of database table attributes. The set of records RC whose values satisfy

the selection condition C in a given expression is called the query set. The basic aggregates

used as examples in this model are: averages (AVG), sums (SUM), counts (COUNT),

maximums (MAX), and minimums (MIN). The AVG query, and many other statistics, can

be computed from the results of these basic aggregate queries. However, the model can be

extended to support any type of complex statistical queries.

In this section, we present the basic privacy architecture for databases, using security

automata. The runtime policy-enforcement mechanism works by monitoring the queries

submitted to the database and the results returned. Runtime mechanisms are quite popular in

monitoring database access-control policies, firewalls, operating systems, spam filters, web

browsers, etc. We propose a privacy-monitor architecture for DBMS, based on the

mandatory results automata (MRA) [11] to enforce the privacy policies in databases, as

shown in Fig. 2. The monitor is in-lined with the DBMS, interposing on the input queries

and output results. The monitor enforces policies by observing all the input queries and their

results. It transforms all queries and results to ensure that the queries processed by the

Kumar et al. Page 4

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

DBMS and the results to be returned to the users are valid. A valid action is actually a query

or result that satisfies the desired policies of the DBMS. Some of the policies that are

enforced by this architecture are discussed in Section 4.

Monitor Input Queries

Every input query goes through the access control module. Database access is granted only

if the user submitting the query has authorization. Otherwise, the query is rejected. Once

authorized, the query is inspected to see if the number of entities involved does not exceed

the limit set by the database administrator/owner. It is one of the methods to restrict data

access that is possible through a sequence of queries [4]. A history of entities and their

attributes is maintained to check the overlapping entities in the input queries. A new entry is

made in the log of a history tracker whenever a valid input query passes through the entity

check module.

The aggregate queries are modified into their basic components, before submitting to the

DBMS, by the query rewrite module. For example, an AVG query is split into COUNT and

SUM queries. The results of these component queries are monitored to protect privacy.

Monitor Query Results

The results of component queries are inspected by different modules to detect possible

situations in which the private information could be revealed. For example, the result of

COUNT component of the AVG query is inspected by the set size restricter. This module

restricts queries from disclosing results with very few or just one tuple [7]. A valid result is

inspected by the query tracker module for presence of any tracker. A tracker is a query with

auxiliary conditions padded to the original conditions that are invalid (or not allowed by the

DBMS) [3]. A valid response from the query tracker returns results to the user. If the query

set size restricter or the query tracker detect any possibility of revealing private information,

the differential privacy module perturbs the results. Output perturbation [1, 14] is necessary

to make sure that nothing is inferred by the user when the results are delivered. We enforce

this requirement through differential privacy [5, 12].

Definition 1—Differential privacy [5]: Any randomized algorithm f is said to provide ε-

differential privacy if for all data set instances G,H ∈ Dn differing in at most one record,

and any set of possible outputs S ⊆ Range(f),

where D is the domain of data records, and e is Euler’s number (2.71 …)

The parameter ε is called the privacy budget and is a basic requirement for enforcing

differential privacy. The accuracy of the results is inversely proportional to the budget value,

and hence the privacy guarantee. The database owner can fix the budget requirement

through policy predicates that are enforced by SAM. Thus, the analysts do not have to

specify any budget or accuracy requirements. This gives the data owner power to control the

accuracy precisely to protect the private information.

Kumar et al. Page 5

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The history tracker records information about the attribu-tes that are answered in the past

queries. The overlap of attributes and results in a sequence of queries is computed and stored

for future queries [4]. Whenever a query result violates tracker policy, the monitor applies

differential privacy, making it a valid query and protecting the information. The size of the

stored history can be managed by specifying policies on the history tracker. Policies can be

defined to discard the stored information whenever the database is updated. Thus, the history

tracker plays an important role in protecting private information that could otherwise be

accessed through a sequence of queries.

Complex Aggregates

It is often necessary for a DBMS to support user-defined, complex, aggregate queries, such

as standard deviation, cluster center, etc. The private information that can be accessed

through sequences of such complex queries and other standard aggregates needs to be

protected. All the aggregate queries are modified into their basic components. The COUNT

query is always inserted before every complex aggregate by the monitor, to inspect the

number of unique records involved in the aggregate computation. When the number does

not satisfy policies of any of the modules, the monitor should take appropriate action to

apply differential privacy.

An interesting feature of using MRA for enforcing privacy is their ability to support many

policies, such as differential privacy, access control, mechanism to sanitize results, etc. [11].

Policies can be specified in combination to strengthen monitoring process. For example, set-

size-restricter and differential-privacy modules, shown in Fig. 2 can work together to decide

when to perturb the results. It is also possible to plug-in new modules in this architecture to

enforce complex policies, enabling users to tune the level of control. We look into details of

the formal model in the following section.

4 Policy Enforcement

The power of SAM is in enforcing various privacy and data use policies. It has various

modules that can be utilized to enforce policies Effectively. We have identified three classes

of policies that are necessary to protect privacy and data usage: query control, result control,

and access control.

Query control policies identify various entities and attributes involved in the queries and

check for violations of predefined conditions. Number of entities present in the queries can

be monitored to identify any privacy violations. Restrictions related to allowed aggregates

and joins can also be enforced.

Result control policies control the amount of data accessed by restricting the number of

records returned in the query results. A malicious user may issue sequence of queries to

access as much data as possible. However, SAM’s history tracker monitors such activities

and denies access. Often it is important to allow full access to the data for processing

complex aggregates. In such cases, to preserver privacy, differential privacy is applied to

obfuscate the results.

Kumar et al. Page 6

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Access control policies are enforced by any standard RDBMS. However, in order to monitor

authorized users accessing private data (e.g. celebrity), additional information is required.

SAM can store such additional information in a SAM-specific private database and use it to

monitor such activities.

It can be noticed that the requirements of data use restrictions fall into all of the above

mentioned policy categories. Therefore, the problem of monitoring data use is challenging.

Any new policies that can be enforced by SAM fall into one of the above mentioned

categories. It is also important that there is need for a query language to define such policies.

An example policy P1 to dis-allow entities containing user location and hobbies is shown

below.

P1: RESTRICT ENTITIES UserLocation, UserHobbies

P2: CHECK HISTORY (SELECT Entities, Attributes

 FROM History)

 WHERE Query.Entities IN History.Entities AND

 Query.Attributes IN History.Attributes

Policy P2 checks the history of queries and returned results to check if any privacy

violations have occurred. Specifying policies in a user friendly language is one of the

challenges in enforcing data use restrictions and preserving privacy. Size of history could

pose performance issues in efficient query evaluation. In Section 4.4 we discuss few

possible solutions to overcome these difficulties.

4.1 Formal Model

The DBMS can be abstractly defined in terms of the queries it can process (actions) and the

possible results of those queries (results). Any request from users of the DBMS is an

aggregate query to be executed. The response to the queries are results computed by the

system. We represent the set of actions on a database using the metavariable A, and results

to these actions using R. An action can be a query submitted to DBMS. Both sets A and R

are nonempty, possibly countably infinite, and R⋂A = ∅. An event in the DBMS is a query

or a result, and it is denoted using E, where E = A ∪ R.

The sequence of submitting queries to the DBMS and obtaining their results is called an

execution. Each execution x is defined as a sequence of events with event set E. The set of

all finite-length executions possible is denoted by E*. A session is modeled as an execution.

If the session terminates then the execution is finite; otherwise the execution is infinite. Only

one infinite-length execution is allowed per user in our system. We denote the empty

execution as ε. When an execution x′ follows another execution x we denote it by

concatenation, x, x′. When x is a prefix of x′ it is written as x ⪯ x′. Throughout this paper we

abbreviate the formula ∀x′ ∈ E* : x′ ⪯ x ⇒ F as ∀x′ ⪯ x : F. Finally, we notate the final

query in execution x as Qx.

An MRA M is a quadruple denoted as (E, S, q0, δ), where E is the event set over which M

operates, S is the set of possible states (finite or countably infinite) of M, q0 is the initial

Kumar et al. Page 7

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

state, and δ is a transition function of the form δ : S × E → S × E. An MRA in its current

state takes an event, either an input query or result of a query, and transitions to new state

and produces an output. The output can be a valid query to be executed by the query

processor, or the result to be presented to the user (Fig. 2). We write M ⇓ X when M

produces an execution X ⊆ E* for input events that match the sequence of input events in X.

Section 4.2 will define enforcement as requiring an MRA to produce exactly those

executions that the desired policy allows.

MRA treat all actions as synchronous i.e., they finish processing the input action and return

results before accepting the next input for processing. Their ability to transform the results

of actions is novel and crucial for enforcing policies. This behavior is essential in DBMS

and matches our requirement of enforcing privacy-preserving policies.

4.2 Privacy Policies

The SAM is able to enforce any policies that can be defined on the DBMS. In this section

we look into different policies that are to be enforced on the queries. The important aspect of

the MRA-based architecture is that the MRA can adapt itself to the changing queries over

time by enforcing appropriate policies. The policies listed here are well studied in the

literature [1, 2, 12], but have never been enforced collectively for protecting privacy.

A policy is a predicate defined over executions. A session (execution) X ∈ E* is said to

satisfy policy P iff P(X):3

With the Definitions of policies and MRA producing executions we are now ready to define

what it means for an MRA to enforce a policy. Definition 2 says that an MRA M enforces a

policy P exactly when the set of executions M produces equals the set of execution P allows.

Definition 2—An MRA M on a system with event set E enforces policy P iff

We next describe different policies that can be enforced by MRA to protect privacy.

Query and Result Control Policies—In this category of privacy policies, the results

returned by aggregates depend on the types of attributes involved in the queries. If the

attributes involved carry private information, M should enforce the control policies. We

examine broad categories of policies on aggregates that M is able to enforce to protect

privacy.

Definition 3: Any execution x ∈ E* is said to satisfy the query-set-size restriction policy iff

there exists a predicate Ps such that,

3Technically, these policies are called “properties” in the literature on formal security models [10, 11, 17].

Kumar et al. Page 8

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where Rx′ is the query-set (result) of query Qx′, N is the number of records in the database,

and the value of K is restricted by 0 ≤ K ≤ N/2.

Query-set-size policies restrict the size of the query set returned by the query processor, to

control the information disclosed to users [7]. Such policies can prevent results with very

few or just one tuple. The set-size-restricter module of SAM enforces this property.

However, when two queries are executed consecutively to get two query-sets G and H

respectively, the privacy policy can be violated, as the set difference |G − H| = 1. Hence,

additional measures should be taken to protect private data.

Definition 4: Any execution x ∈ E* is said to satisfy the query-set-overlap restriction policy

iff there exists a predicate Po such that,

where Mx′ is the set of entities involved in Qx′ (and similarly Mx″ for Qx″) and O is the

restricted number of overlapping entities.

In this policy, the number of entities that overlap in successive queries are restricted [4].

When a sequence of queries is executed, the policy is either satisfied or not based on the size

of the overlap. Given a minimum query set size K and the number of entity overlaps O

allowed in successive queries, the minimum number of queries required to compromise is

1+(K − 1)O. Our monitor M can be made to look for this number to secure the data. The

entity-check module of SAM is capable of enforcing this policy.

A restricted query result can be calculated with the help of two kinds of trackers [3]. One,

using a general tracker when the query-set-size K ≤ N/4. A policy to preserve privacy in the

presence of a tracker can be enforced with the help of set-size restricter in M by changing

the set-size conditions in Definition 3 to

The second type of tracker, called a double tracker, can reveal private information when the

query-set-size K ≤ N/3. This can be prevented with the help of the query tracker in M

enforcing the desired tracker policy.

Definition 5: Any execution x ∈ E* is said to satisfy the tracker policy iff there exists a

predicate Pt such that,

where Cx′ and Cx″ are the selection conditions of the queries Qx′ and Qx″ respectively, N is

the number of records in the database, and the value of K is restricted by 0 ≤ K ≤ N/3.

Kumar et al. Page 9

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

These trackers speculate the privacy compromise by computing all possible combinations of

the table attributes that may be queried in the future to get answers to restricted queries. The

“query tracker” and “history tracker” modules of M are responsible for enforcing tracker

policies. Any algorithm to track quires can be plugged-in.

Differential Privacy Policies—The data owner can restrict the access and accuracy of

user queries to the DBMS using differential privacy policies. The idea behind this

mechanism is to allow user queries to execute on the actual data, but the results are

perturbed before being delivered to the user. The perturbation is a function (differential

privacy) f(Rx) on the results Rx of any query x ∈ E*. The important goal of perturbation is to

prevent disclosing the correct value(s) of the result(s). Perturbation may include rounding up

(or down) of the resulting values or adding (or subtracting) some pseudo-random numbers

[7].

Definition 6: Any execution x ∈ E* is said to satisfy the differential privacy policy iff there

exists a function f satisfying Definition 1 such that,

where Rx′ is the query-set (result) of Qx′ and is the original result the DBMS returned

for Qx′.

The use of output perturbation satisfies the differential privacy policy, as the actual results

are never disclosed to the users. The differential privacy function f perturbs results of each

query differently, so that inference of private information using multiple queries is

impossible.

The advantages of having differential privacy enforcement in SAM is that the analysts do

not have to have knowledge about the budget requirements and accuracy needs. The data

owner can set exact accuracy and budget requirements to restrict access to private data.

Thus, analysts do not have to invoke special application program interfaces to access data

through differential privacy mechanisms.

Access-Control Policies—There has been a tremendous amount of work done in

enforcing access control policies. Current DBMSs allow users to access different parts of the

data base by enforcing ACMs. The SAM can also enforce these policies, as it is based on

MRA, which are capable of enforcing arbitrary accesscontrol policies by monitoring and

building a history of entire sessions.

The SAM can take advantage of existing ACM in the DBMS to enforce access-control

policies. The underlying MRA M has to request permission from the DBMS before

submitting its executions. The request is actually a verification of permission of the current

query. When the DBMS grants permission, the MRA can take the action of the input query.

This removes the burden of implementing ACMs in SAM. The existing DBMS also does not

require any changes.

Kumar et al. Page 10

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.3 Model Properties

In the previous text, we discussed different policies that can be enforced on database

queries. Now we need an enforcement mechanism that SAM can follow to preserve privacy.

In this section, we show how to enforce the privacy policies defined above by constructing

MRA and proving that these MRA can enforce the policies. Given any query-set-size,

query-set-overlap, query-tracker, or differential-privacy policy P, Theorem 1 shows that an

MRA M can enforce P and Theorem 1’s proof shows how to construct such an M.

Theorem 1—For all policies P such that P is a query-set-size policy, query-set-overlap

policy, query-tracker policy, or differential-privacy policy on a system with event set E,

there exists an MRA M such that M enforces P.

Proof: Given any such policy P, we show how to construct an MRA M = (E, S, q0, δ) that

enforces P on all executions x ∈ E*. Note that δ is a partial function when δ is undefined on

a given input, the MRA cannot transition, so the system Effectively halts.

If P is a query-set-size restriction policy parameterized by N and K as in Definition 3, let M

= (E, {0, 1}, 0, δ), where δ is:

M enforces P because both produce/allow exactly those executions in which all query results

r satisfy the K ≤ |r| ≤ N − K constraint. Hence, the sets of executions produced by M and

allowed by P are equal.

If P is a query-set-overlap restriction policy parameterized by O as in Definition 4, let M =

(E,E*, ε, δ), where δ is:

M enforces P because both produce/allow exactly those executions in which all queries only

contain entity sets that never overlap previous queries’ entity sets in more than O elements.

Hence, the sets of executions produced by M and allowed by P are equal.

If P is a query-tracker policy parameterized by N and K as in Definition 5, let M = (E,E*, ε,

δ), where δ is:

Kumar et al. Page 11

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

M enforces P because both produce/allow exactly those executions in which all queries Q

satisfy at least one of the following three constraints: (1) Q has no projection-condition

attributes in common with previous queries, (2) K ≰ |Re| ≰ N − 2K, or (3) all the previous

query results r satisfy the constraint 2K ≰ |r| ≰ N − K. Hence, the sets of executions

produced by M and allowed by P are equal.

If P is a differential-privacy policy parameterized by perturbation function f as in Definition

6, let M=(E, {0, 1}, 0, δ), where δ is:

M enforces P because both produce/allow exactly those executions in which all query results

are perturbed by the perturbation function f. Hence, the sets of executions produced by M

and allowed by P are equal.

Hence, an MRA can enforce all query-set-size restriction, query-set-overlap restriction,

query tracker, and differential-privacy polices.

4.4 Challenges

The MRA based monitor can secure the database by enforcing the policies defined above. In

this section we discuss some of the challenges in enforcing these policies with MRA, and

possible solutions.

Infinite-Length Executions—An infinite-length execution is one that never terminates.

For simplicity, the Definitions of privacy-preserving policies in Section 4.2 only consider

finite-length executions. However, these Definitions can be generalized to infinite-length

executions straightforwardly by placing the same sorts of query-result constraints on every

query and result in every execution (including those of infinite-length). All the modules of

SAM are capable of monitoring sequences of infinite-length queries, without requiring any

changes to their functionalities.

Colluded Attacks—As explained before, MRA is a synchronous automata allowing only

one input event and producing a result for that event before processing the next. Thus,

concurrent events can’t be processed by the MRA. This leads to a possible attack in which

multiple users collude and share their results. Since the MRA assumes one infinite-length

execution per user, it can protect the private information from only one user, not colluded

users.

A possible solution is to assume the queries from all users as events of a single infinite-

length execution. Queries from all users can be serialized, possibly based on arrival

timestamps. Thus, completely eliminating the possibility of compromise from colluding

users. Another direction to eliminate the risk from colluded attacks is taking advantage of

differential privacy parameters. The database administrators can specify different types of

noise to be added to different users, so the users can’t extract any private information by

Kumar et al. Page 12

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

colluding. There could be some limitations on the number of different types of noises that

can be generated at run time to a large number of users.

User-Defined Aggregates—It is often necessary to allow the analysts to write their own

programs to analyze the data. The data owner can specify differential privacy policies on

such programs. The MRA can enforce these policies directly without requiring any changes

to the underlying architecture. When different types of aggregates are supported, specifying

proper policies becomes a challenging task. The policies should be specified such that the

privacy is preserved. It is analogous to specifying access control policies in standard

databases.

Performance—Maintaining history of queries and results could impact overall

performance of SAM. Logging during query evaluation and log-access for policy

enforcement could overload SAM, impacting overall performance. Enforcing policies online

as well as offline could alleviate the performance problems. Online setting utilizes only

recent past of the history, while offline setting audits to check if any policy violations have

occurred due to recent queries. High performance computing strategies can also be applied

to utilize large portion of the history for faster processing. The problem of leveraging such

strategies is another interesting research challenge.

History tracking is an interesting feature of SAM, which can leverage lineage of queries to

preserve privacy and restrict data usage. Query lineage can be utilized for data usage audits

[6, 8]. It becomes an Effective tool to monitor curious (authorized) users.

5 Conclusions and Future Work

We have presented our vision of a privacy architecture, called SAM, which can enforce

various privacy-preserving policies and restrict data usage in databases. MRA are

constructed to enforce query, result, and access control policies. An interesting feature of

SAM is that it allows accurate query results as long as the privacy is preserved. It can be set

up to begin enforcing differential-privacy policies when none of the other policies are

satisfied. The data owners can specify policies and input to SAM instead of writing their

own database interfaces to preserve privacy. This also alleviates the need for analysts to

specify any special parameters to access the database.

The MRA construction method can be followed to enforce the policies defined in this work.

We believe that the MRA can be an independent component of the database, without

affecting other database modules. Much has to be done to refine the SAM design and ensure

Effective and efficient implementation of the architecture, as discussed in Section 4.4. Here

we want to emphasize the very interesting research topic of studying the possibility of

utilizing these database modules to improve the performance. SAM can be implemented as

part of the DBMS to monitor the results of different database operators. Monitoring

operators inside DBMS would eliminate the need for the query-rewrite module in SAM, as

the partial results can be monitored even before computing the final result. We believe that

the formal architecture presented in this paper is capable of enforcing a wide range of

database policies.

Kumar et al. Page 13

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Acknowledgements

This project is supported by a grant (No. R01GM086707) from the National Institutes of Health (NIH), USA.

References

1. Adam NR, Worthmann JC. Security-control methods for statistical databases: a comparative study.
ACM Computing Surveys. 1989; 21(4):515–556.

2. Agrawal, R.; Srikant, R.; Thomas, D. Proceedings of the Intl. Conf. on Management of Data.
SIGMOD; 2005. Privacy preserving OLAP; p. 251-262.

3. Denning DE, Schlörer J. A fast procedure for finding a tracker in a statistical database. ACM
Transactions on Database Systems. 1980; 5(1):88–102.

4. Dobkin D, Jones AK, Lipton RJ. Secure databases: protection against user influence. ACM
Transactions on Database Systems. 1979; 4(1):97–106.

5. Dwork, C. Proceedings of the Intl. Conf. on Theory and Applications of Models of Computation.
TAMC; 2008. Differential privacy: a survey of results; p. 1-19.

6. Fabbri D, LeFevre K. Explanation-based auditing. Proc. VLDB Endow. 2011; 5(1):1–12.

7. Fellegi IP, Phillips JJ. Statistical confidentiality: Some theory and application to data dissemination.
American Economic Society Measures. 1974; 3(2):101–112.

8. Hasan, R.; Winslett, M. Efficient audit-based compliance for relational data retention; Symposium
on Information, Computer and Communications Security; 2011. p. 238-248.

9. Kushida C, Nichols D, Jadrnicek R, Miller R, Walsh J, Griffin K. Strategies for de-identification
and anonymization of electronic health record data for use in multicenter research studies. Medical
Care. 2012; 50:S82–S101. [PubMed: 22692265]

10. Ligatti J, Bauer L, Walker D. Run-time enforcement of nonsafety policies. ACM Transactions on
Information and System Security. 2009; 12(3):1–41.

11. Ligatti J, Reddy S. A theory of runtime enforcement, with results. Proceedings of the 15th
European conference on Research in computer security. 2010:87–100.

12. McSherry, FD. Proceedings of the Intl. Conf. on Management of data. SIGMOD; 2009. Privacy
integrated queries: an extensible platform for privacy-preserving data analysis; p. 19-30.

13. Mohan, P.; Thakurta, A.; Shi, E.; Song, D.; Culler, D. Proceedings of the Intl. Conf. on
Management of Data. SIGMOD; 2012. Gupt: privacy preserving data analysis made easy; p.
349-360.

14. Muralidhar K, Batra D, Kirs PJ. Accessibility, security, and accuracy in statistical databases: the
case for the multiplicative fixed data perturbation approach. Management Science. 1995; 41(9):
1549–1564.

15. Narayanan, A.; Shmatikov, V. Proceedings of the Symposium on Security and Privacy. S&P;
2008. Robust de-anonymization of large sparse datasets; p. 111-125.

16. Roy, I.; Setty, STV.; Kilzer, A.; Shmatikov, V.; Witchel, E. Proceedings of the Conference on
Networked Systems Design and Implementation. NSDI; 2010. Airavat: security and privacy for
mapreduce; p. 20-20.

17. Schneider FB. Enforceable security policies. ACM Transactions on Information and System
Security. 2000; 3(1):30–50.

18. Upadhyaya, P.; Anderson, NR.; Balazinska, M.; Howe, B.; Kaushik, R.; Ramamurthy, R.; Suciu,
D. Stop that query! the need for managing data use; Conf. on Innovative Data Systems Research;
2013.

Kumar et al. Page 14

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Architecture: Basic monitor model

Kumar et al. Page 15

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Architecture: Detailed MRA

Kumar et al. Page 16

Proc Int Conf Web Inf Syst Eng. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

