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Abstract. A hierarchical clustering algorithm based on Gaussian mix-
ture model is presented. The key difference to regular hierarchical mix-
ture models is the ability to store objects in both terminal and non-
terminal nodes. Upper levels of the hierarchy contain sparsely distributed
objects, while lower levels contain densely represented ones. As it was
shown by experiments, this ability helps in noise detection (modelling).
Furthermore, compared to regular hierarchical mixture model, the pre-
sented method generates more compact dendrograms with higher quality
measured by adopted F-measure.
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1 Introduction

This paper addresses the topic of hierarchical data clustering which is a coun-
tertype to flat clustering. Flat clustering approaches generate groups without
structural connections between them. Hierarchical clustering algorithms gener-
ate groups and arrange them in a tree structured manner. In such a tree structure
(known as a dendrogram) all child clusters are attached to their parent cluster.
Clusters without any further children are called terminal nodes or tree leaves.
Clusters with attached child clusters are called non-terminal or internal nodes.

Hierarchical clustering algorithms can be divided into two categories depend-
ing on the objects attachment to the generated groups. The first category rep-
resents methods that attach objects only to terminal nodes, and non-terminal
nodes of the hierarchy remain empty. This kind of methods are the majority
of hierarchical data clustering methods. It is possible to fill an internal node
with objects, by gathering all objects belonging to its child nodes. The second
category represents methods attaching objects both to internal nodes and tree
leaves. All tree leaves need to have at least one attached object. Internal nodes
can have attached objects or remain empty. The key difference is that if an ob-
ject is attached to the internal node, it is not attached to any of its child nodes.
Methods belonging to this category are the minority. The presented research
addresses this category.
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This paper is organized as follows. In following subsections we give the neces-
sary background of clustering problems. The proposed method is introduced in
the second section. The third section presents the experimental results and com-
parison with regular hierarchical Gaussian mixture model. Finally, the fourth
section summarises this paper.

1.1 Hierarchical approaches to clustering

One of the earliest approaches of hierarchical clustering is hierarchical agglomer-
ative clustering (HAC) [17]. HAC creates a dendrogram with all objects attached
to its leaves. At each level of the hierarchy, two groups are merged. As a result,
the created structure is an unbalanced binary tree. Various merging schemes are
available, e.g., Ward criterion [22], single-link [19] or complete-link [5].

Both binary and non-binary hierarchies can be constructed using various ex-
tensions of the k-means algorithm [10,11]. Usage of hierarchical k-means leads to
two major consequences comparing to flat k-means. First, the clustering process
is much faster because the number of groups in a tree path is much lower. This
is especially important if the number of clusters and the volume of data are
high. Second, the overall quality of clustering tends to be worse, because cluster
centers are not optimized simultaneously. One of the key problems of k-means
clustering (both flat and hierarchical) is estimation of the number of clusters.
There are many attempts to address this issue, e.g. x-means algorithm [18].

Hierarchical clustering using a probabilistic approach is also possible, e.g., [14].
The milestone in probabilistic clustering was the formulation of the expectation
maximization (EM) algorithm [6]. Hierarchical setup of mixture models can be
trained using modified EM [4]. One of the most common choices for mixture
components is multivariate normal distribution.

1.2 Clustering in the presence of noise

Yet another important issue is clustering of data in the presence of noise or
outliers. There are two common solutions to this problem. The first solution
consists of two stages, e.g., [1]. In the initial stage data is filtered in order to
detect and remove outliers. Then in the second stage clusterisation is performed
only on the accepted data. The second solution is to directly incorporate the
noise model into the clustering process. Usually, the type or distribution of noise
or outliers is not known. Various assumptions regarding these distributions have
to be made. Exemplary, DBSCAN [7] and OPTICS [2] clustering algorithms
assume a minimum density of the meaningful data. In probabilistic clustering,
noise can be directly modeled by appropriate mixture components, e.g., [3,9].

1.3 Problem formulation, motivation and contribution

Probabilistic approach to clustering can be formulated using the parametric
model. The key issue is the formulation of an appropriate probability density



function (PDF). There are several forms of the probabilistic density function.
Gaussian mixture model is one of the most prominent [9]. Let the Gaussian
mixture model G with n mixture components be defined as:

G(w, µ,Σ) =

n∑
i=1

wiN(µi, Σi), wi ∈ 〈0, 1〉,
n∑
i=1

wi = 1, (1)

and N(µ,Σ) represents the multivariate normal distribution, w = [w1, ..., wn],
µ = [µ1, ..., µn], Σ = [Σ1, ..., Σn]. In such case clustering problem becomes a
probability density function estimation problem, where PDF parameters maxi-
mize likelihood L:

〈w∗, µ∗, Σ∗〉 = arg max
〈w,µ,Σ〉

L(w, µ,Σ|x1, ..., xm), (2)

where: x1, ..., xm are the data vectors. This is typically solved by the EM algo-
rithm, but other methods are also available, e.g., [8,21,23].

Gaussian mixture model fits to data distributed among several clusters, but
does not model outliers [9]. Data not fitting to the assumed distribution can
be interpreted in several ways, including: noise, measurement errors or sparser
representation of meaningful objects. Statistical modelling of noisy data requires
making assumptions on the noise distribution. The data distribution is usually
combined with noise distribution, e.g., [16].

In the presented approach we follow the third interpretation of the not fitting
data, i.e., sparser representation of meaningful objects. We do not want to reject
the data, we want to model it on some level of the generated hierarchy. Data
bound to the parent clusters should have lesser density comparing to the data
bound to the child clusters. In the paper we show a simple approach to adapt
hierarchical Gaussian mixture model to handle objects attached to any node in
the tree. Similar to noise modelling [3,9] we add an additional mixture com-
ponent to the mixture model. But unlike that approaches, we do not estimate
it, but directly take it from the higher level of the hierarchy. As a consequence,
parameters of the adapted mixture model are estimated in an identical manner
as for the classic mixture model. They can be estimated both using EM or any
other appropriate approach.

2 Proposed approach

The proposed approach is an extension of a hierarchical setup of Gaussian mix-
ture models. At each level of the hierarchy an additional mixture component,
called background component, is introduced. This component is responsible for
capturing outliers at a given level. Unlike all other mixture components, it is not
estimated, but directly inherited from the higher level of the hierarchy. Root level
also has this additional component. Its parameters are estimated (by definition)
from all available data.



2.1 Formal model of the hierarchy

Let us define the model of the hierarchy in a recursive way. Any parent node has
all its child nodes. A tree node T generated from a data set X is defined as:

T (X) : 〈n,GB , B ⊆ X, [T1(X1), ..., Tn(Xn)]〉, (3)

where:

B ∪
n⋃
i=1

Xi = X, ∀i∈[1,n]B ∩Xi = ∅, ∀i,j∈[i,n]i 6= j ⇒ Xi ∩Xj = ∅ (4)

and: n is the maximum number of child nodes (and mixture components), GB
is the Gaussian mixture model with background component N(µB , ΣB):

GB(α,w, µB , µ,ΣB , Σ) = αN(µB , ΣB) + (1− α)G(w, µ,Σ) =

= αN(µB , ΣB) +

n∑
i=1

(1− α)wiN(µi, Σi), (5)

α ∈ 〈0, 1〉, µB = E[X], ΣB = V ar[X], (6)

B ⊆ X is the data subset attached to the node T , related to background mixture
component N(µB , ΣB), T1, ..., Tn are child nodes or void. Mixture component
GB and set B are representing the data that remain in tree node T . They are
the key difference when comparing to classic hierarchical clustering methods.

2.2 Hierarchy generation

Cluster hierarchy generation is done in an recursive way. First, the top level
is generated and its parameters are estimated. Later on, child levels are added
sequentially in breadth-first manner. For each level the process terminates if a
stop criterion is reached. This process is similar to the one used in hierarchical k-
means approach [20]. It allows a dynamic generation of the hierarchical structure.

As shown in the formal model, each level of the hierarchy contains only a sub-
set of the data. The top level starts with all the data. Expectation maximization
method is used to estimate the Gaussian mixture model. Because the proposed
method is iterative, stochastic, and strongly depended on cluster initialization,
several cluster reinitialisations should be performed. Thus the number of cluster
reinitialization R and number of EM iterations N are the parameters.

Clusters initialization is based on choosing random n distinct points from the
data and set them as initial centres µ of new clusters. Initial covariances Σ of
that clusters are the same as parent cluster covariance. Full covariance matrices
are used. When covariance matrix is non-invertible, regularization is introduced.
Mixing coefficients (see eq. 6) are initialized as equal values:

α =
1

n+ 1
, (1− α)wi =

1

n+ 1
. (7)



The denominator takes into account n newly created clusters and a background
cluster. The data is distributed to all mixture components, according to data
probability assignments. A single data instance is assigned to the mixture com-
ponent with highest probability of generating that instance. As a result, some
mixture components, including the background component, may remain empty.
After initialisation, the EM algorithm works through N iterations, changing ini-
tial values of µ,Σ,w and α. After performing R reinitialisations, a solution with
the largest likelihood is chosen (see eq. 2) as the final one.

All mixture components with assigned data instances generate child nodes.
The above process repeats for every generated node. In case a mixture component
does not receive any data, it also does not generate a child node. The child nodes
generation process is terminated when a stop criterion is reached. There are two
stop criteria and each of them terminates the method. The first stop criterion is
connected with the content of current leaf nodes. The clustering process proceeds
only on those leaf nodes that contain at least k different data samples. The
algorithm terminates when there are no leaf nodes to split or all data is assigned
to background mixture component B. The second criterion occurs when provided
W overall number of nodes was created.

3 Experimental verification

Experimental verification of the proposed approach consists of two parts. In
the first part we give illustrative examples to demonstrate the idea behind the
method. Manually prepared toy datasets are used for visualization purposes. In
the second part we test the proposed approach on a set of benchmark datasets
from UCI repository [13]. We choose well-known iris, wine, glass identification
and image segmentation datasets varying in number of classes, attributes and
instances, as shown in Table 1.

Table 1. Original (without additional noise) UCI dataset statistics.

dataset name instances attributes classes

iris 150 4 3
wine 178 13 3

glass identification 214 9 6
image segmentation 2100 19 7

Since the mentioned datasets do not contain any noise points we added them
manually. Noise points are uniformly distributed among original points. In each
dataset, the number of noise points is equal to the half of the number of original
points. The proposed approach is compared to a standard hierarchical set-up of
Gaussian mixture model.

In order to compare the obtained results on the benchmark datasets we use a
metric based on F-measure [12]. It takes a class attribute into consideration and



yield a grouping quality by considering the whole dendrogram, not only a chosen
level. This makes the measure adequate for hierarchical methods. F-measure is
calculated for each generated group B with respect to each class C:

P (Xi, Cc) =
Nic
|Xi|

, R(Xi, Cc) =
Nic
NCc

, (8)

Fic =
2P (Xi, Cc)R(Xi, Cc)

P (Xi, Cc) +R(Xi, Cc)
, (9)

where: Fic – F-measure for i-th group and c-th class, P (Xi, Cc) – precision and
R(Xi, Cc) – recall, for i-th group with respect to c-th class, Nic is the number of
objects from c-th class which are within i-th group, NCc

is the number of object
from c-th class in the entire tree and |Xi| is the number of objects that are within
i-th cluster. Noise points are not regarded as an additional class, they are only
counted in each |Xi|. Given the above definitions, F-measure for a chosen class
Cc is defined as the maximum value of the measure over all nodes of the tree:

F (Cc) = max
i
Fic. (10)

Finally, it is averaged over all classes giving F-Measure for whole hierarchy:

F =
1

N

|C|∑
c=1

NCcF (Cc), (11)

where: |C| is number of classes used in dataset, N is the total number of objects
(including noise points) and NCc

is the number of data objects of class c. Pro-
posed evaluation criterion has the ability to explore hierarchy structure, which
is a key point in the proposed method. F maximum value is 1 and minimum is
0. Better hierarchies have higher F values.

3.1 Manually generated data with noise – an illustration

All results presented in this section are two dimensional toy examples. Their
sole purpose is to illustrate the behavior of the proposed method. The following
examples are presented:

1. three groups with a large central group and a small amount of noise (LC),
2. small circular data clusters with a small amount of noise (LN),
3. small circular data clusters with a large amount of noise (HN).

Both the data and clustering results for the toy datasets are shown in Fig. 1.
The method has some ability to capture less dense data. This data is attached to
the intermediate nodes of the hierarchy. The additional background model com-
ponent captures these instances. In consequence they are automatically bound
to the node related to the background component. At the same time, densely
distributed data is moved to the bottom of the hierarchy. This can be observed
(to some extent) at all presented test cases.



(a) large center (LC) (b) LC, level 1 (c) LC, level 2

(d) low noise (LN) (e) LN, level 1 (f) LN, level 2 (g) LN, level 3

(h) high noise (HN) (i) HN, level 1 (j) HN, level 2 (k) HN, level 3

Fig. 1. Two dimensional toy datasets with a various amount of noise. First column
shows the data points. Second, third and fourth columns show the clustering results
at different levels of the hierarchy. Data attached to proposed background model are
shown as small pixels, data attached to the mixture model are shown as large pixels.

3.2 UCI benchmark datasets

The second part of the experiments addresses the clustering of the UCI bench-
mark datasets. Instances of all processed datasets have both feature vectors and
class assignment. Feature vectors without class information are used in the clus-
tering process. Available class assignment is used in the evaluation process.

Two methods are compared: (1) the proposed Gaussian mixture model with
outlier modelling and (2) classic Gaussian mixture model. The first method is
denoted as B and the second as G. Both methods are trained using the same
expectation-maximization routine. Hierarchies of both models are constructed
in the same manner. Two quality estimates are shown: (1) log-likelihood values



to address data fitting to the distribution, (2) f-measure values to check if the
generated groups are meaningful.

Table 2. Comparison of the proposed model (µB , σB) with the reference Gaussian
mixture model (µG, σG). Both log-likelihood values are F-measure values are shown.
Higher F-measure values are marked in bold.

dataset no of log-likelihood f-measure significance test
name nodes µB σB µG σG µB σB µG σG U winner

iris

2 247 7 107 0 0.59 0.045 0.36 0.000 0 B
3 359 0 288 0 0.75 0.002 0.62 0.000 0 B
4 359 1 355 14 0.75 0.003 0.62 0.000 0 B
5 490 24 429 37 0.77 0.013 0.67 0.061 0 B
6 483 27 503 53 0.77 0.081 0.69 0.062 830 B
7 480 28 584 5 0.77 0.058 0.75 0.001 1385 B
8 601 29 623 23 0.79 0.044 0.74 0.006 697 B
9 629 24 642 29 0.80 0.046 0.80 0.071 3760 B
10 614 19 680 43 0.80 0.046 0.78 0.070 2679 B

wine

2 366 1 307 0 0.40 0.002 0.37 0.000 0 B
3 402 2 392 1 0.42 0.005 0.41 0.005 2033 B
4 403 2 445 21 0.42 0.003 0.41 0.005 1539 B
5 466 8 478 20 0.42 0.005 0.42 0.017 5298 –
6 466 11 529 8 0.42 0.005 0.43 0.016 6188 G
7 470 8 561 8 0.42 0.004 0.44 0.005 10000 G
8 527 19 588 23 0.42 0.010 0.44 0.006 9372 G
9 524 20 599 20 0.42 0.008 0.44 0.008 9766 G
10 531 20 617 31 0.42 0.008 0.44 0.010 9753 G

glass

2 809 1 338 0 0.41 0.000 0.29 0.000 – B
3 1121 1 1121 0 0.40 0.001 0.40 0.000 4950 B
4 1275 28 1227 15 0.45 0.045 0.40 0.000 600 B
5 1299 48 1274 36 0.46 0.044 0.45 0.050 5084 –
6 1314 49 1372 19 0.44 0.043 0.46 0.054 5537 –
7 1469 23 1432 5 0.50 0.008 0.50 0.027 8715 G
8 1477 19 1465 15 0.49 0.022 0.50 0.038 6476 G
9 1495 5 1501 19 0.49 0.010 0.51 0.015 9032 G
10 1532 14 1533 16 0.50 0.013 0.50 0.022 7632 G

segmentation

2 −6605 11 −6678 0 0.29 0.012 0.28 0.000 – –
3 −6466 3 −6481 1 0.50 0.000 0.50 0.001 495 B
4 −6466 3 −5413 154 0.50 0.000 0.50 0.000 600 –
5 −5348 76 −5406 268 0.50 0.001 0.52 0.042 5084 –
6 −5643 1001 −4524 72 0.49 0.017 0.54 0.042 5537 –
7 −5470 710 −4483 115 0.50 0.014 0.56 0.038 8715 G
8 −5257 715 −4388 366 0.50 0.019 0.56 0.038 6476 G
9 −5342 763 −4253 359 0.50 0.026 0.57 0.049 9032 G
10 −5257 850 −3959 278 0.50 0.018 0.58 0.050 7632 G



Performed experiments consider mentioned quality estimators when W pa-
rameter vary between 2 and 10. In all conducted experiments we set n parameter
as a constant equal to 2. First of all, we found the best parameters configuration
(N and R) for each method per single dataset instance and W value. Then, be-
cause of stochastic nature of both methods, we have performed 100 trials for each
of dataset and W parameter value, calculating mean value µ and sample stan-
dard deviation σ. Moreover we conducted the Wilcoxon rank-sum test [15] on
calculated F-measure in order to show the statistic significance of the obtained
results. Statistic value U is calculated with alpha level (α) equal to 0.05. Null
hypotheses H0 are equality of population distributions and alternative hypothe-
ses HA may vary (depending on the corresponding F-measure µ values). When
F-measure mean values µ were different, then we performed a one-tailed test
whereas equal means results in two-tailed. Achieved results are shown in Tab.
2. In that table the winner column shows whether there is statistical evidence
to reject the null hypothesis and assume an alternative one.

Experiments results in Tab. 2 shows that the proposed background compo-
nent improves the quality of generated dendrograms, when considering data class
labels. This is especially visible when maximum number of nodes W is less than
5. Our method, though has the ability of creating compact dendrograms with
better quality than the method without the background component. It is desired,
because shorter trees have better generalisation abilities. Moreover, considering
the iris dataset, the background component helps obtaining higher F-measure
in all cases, comparing to regular hierarchical Gaussian mixture model. Pro-
posed method reaches statistically higher average F-measure results in 16 cases
whereas the regular method wins only 13 times. There have been 7 draws.

4 Summary

A hierarchical grouping method is presented. It has the ability to attach ob-
jects both to terminal and non-terminal nodes. It is an extension of the classic
Gaussian mixture model. The mixture is extended with an additional component
responsible for outlier modelling. Parameters of this mixture component are not
estimated, but directly inherited from higher levels of the hierarchy.

Conducted experiments show that the proposed modification allows to treat
part of the data as sparser representation of meaningful objects. Though upper
levels of hierarchy consist of sparsely distributes data. This can be used in noise or
outliers modelling. Comparison between regular hierarchic GMM and hierarchic
GMM with proposed modification shows that the background component helps
to improve the quality of short hierarchies in real datasets with random noise.
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