
SAT-Based Explicit LTL Reasoning

Jianwen Li1,2, Shufang Zhu2, Geguang Pu2, and Moshe Y. Vardi1

1 Department of Computer Science, Rice University, USA
2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal

University, P. R.China

Abstract. We present here a new explicit reasoning framework for lin-
ear temporal logic (LTL), which is built on top of propositional sat-
isfiability (SAT) solving. As a proof-of-concept of this framework, we
describe a new LTL satisfiability algorithm. We implemented the algo-
rithm in a tool, Aalta v2.0, which is built on top of the Minisat SAT
solver. We tested the effectiveness of this approach by demonstrating
that Aalta v2.0 significantly outperforms all existing LTL satisfiability
solvers.

1 Introduction

Linear Temporal Logic (LTL) was introduced into program verification in [25].
Since then it has been widely accepted as a language for the specification of
ongoing computations [20] and it is a key component in the verification of re-
active systems [4, 14]. Explicit temporal reasoning, which involves an explicit
construction of temporal transition systems, is a key algorithmic component
in this context. For example, explicitly translating LTL formulas to Büchi au-
tomata is a key step both in explicit-state model checking [11] and in runtime
verification [31]. LTL satisfiability checking, a step that should take place before
verification, to assure consistency of temporal requirements, also uses explicit
reasoning [26]. These tasks are known to be quite demanding computationally
for complex temporal properties [11, 26, 31]. A way to get around this difficulty
is to replace explicit reasoning by symbolic reasoning, e.g., as in BDD-based or
SAT-based model checking [23, 22], but in many cases the symbolic approach is
inefficient [26] or inapplicable [31]. Thus, explicit temporal reasoning remains an
indispensable algorithmic tool.

The main approach to explicit temporal reasoning is based on the tableau tech-
nique, in which a recursive syntactic decomposition of temporal formulas drives
the construction of temporal transition systems. This approach is based on the
technique of propositional tableau, whose essence is search via syntactic splitting
[6]. This is in contrast to modern propositional satisfiability (SAT) solvers, whose
essence is search via semantic splitting [19]. The tableau approach to temporal
reasoning underlies both the best LTL-to-automata translator [8] and the best
LTL-satisfiability checker [18]. Thus, we have a situation where in the symbolic
setting much progress is being attained both by the impressive improvement in

ar
X

iv
:1

50
7.

02
51

9v
2

 [
cs

.L
O

]
 1

4
Se

p
20

15

the capabilities of modern SAT solvers [19] as well as new SAT-based model-
checking algorithms [1, 3], while progress in explicit temporal reasoning is slower
and does not fully leverage modern SAT solving. (It should be noted that sev-
eral LTL satisfiability solvers, including Aalta [17], TRP++ [15], and ls4 [30]
do employ SAT solvers, but they do so as an aid to the main reasoning engine,
rather than serve as the main reasoning engine.)
Our main aim in this paper is to study how SAT solving can be fully leveraged in
explicit temporal reasoning. The key intuition is that explicit temporal reasoning
consists of construction of states and transitions, subject to temporal constraints.
Such temporal constraints can be reduced to a sequence of Boolean constraints,
which enables the application of SAT solving. This idea underlies the complexity-
theoretic analysis in [33], and has been explored in the context of modal logic
[12], but not yet in the context of explicit temporal reasoning. Our belief is that
SAT solving would prove to be superior to tableau in that context.
We describe in this paper a general framework for SAT-based explicit temporal
reasoning. The crux of our approach is a construction of temporal transition
system that is based on SAT-solving rather than tableau to construct states and
transitions. The obtained transition system can be used for LTL-satisfiability
solving, LTL-to-automata translation, and runtime-monitor construction.
As proof of concept for the new framework, we use it to develop a SAT-based
algorithm for LTL-satisfiability checking. We also propose several heuristics to
speed up the checking by leveraging SAT solvers. We implemented the algo-
rithm and heuristics in an LTL-satisfiability solver Aalta v2.0. To evaluate its
performance, we compared it against Aalta, the existing best-of-breed LTL-
satisfiability solver [18, 17], which is tableau-based. We also compare it against
NuXmv, a symbolic LTL-satisfiability solver that is based on cutting-edge SAT-
based model-checking algorithms [1, 3], which outperforms Aalta. We show that
our explicit SAT-based LTL-satisfiability solver outperforms both.
In summary, the contributions in this paper are as follows:

– We propose a SAT-based explicit LTL-reasoning framework.
– We show a successful application of the framework to LTL-satisfiability

checking, by designing a novel algorithm and efficient heuristics.
– We compare our new framework for LTL-satisfiability checking with existing

approaches. The experimental results demonstrate that our tool significantly
outperforms other existing LTL satisfiability solvers.

The paper is organized as follows. Section 2 provides technical background.
Section 3 introduces the new SAT-based explicit-reasoning framework. Section
4 describes in detail the application to LTL-satisfiability checking. Section 5
shows the experimental results for LTL-satisfiability checking. Finally Section 6
provides concluding remarks. Missing proofs are in the Appendix.

2 Preliminaries

Linear Temporal Logic (LTL) is considered as an extension of propositional logic,
in which temporal connectives X (next) and U (until) are introduced. Let AP

be a set of atomic properties. The syntax of LTL formulas is defined by:

φ ::= tt | ff | a | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | Xφ
where a ∈ AP , tt is true and ff is false. We introduce the R (release) connec-
tives as the dual of U , which means φRψ ≡ ¬(¬φU¬ψ). We also use the usual
abbreviations: Fa = ttUa, and Ga = ffRa.
We say that a is a literal if it is an atomic proposition or its negation. Through-
out the paper, we use L to denote the set of literals, lower case letters a, b, c, l
to denote literals, α to denote propositional formulas, and φ, ψ for LTL for-
mulas. We consider LTL formulas in negation normal form (NNF), which can
be achieved by pushing all negations in front of only atoms. Since we consider
LTL in NNF, formulas are interpreted here on infinite literal sequences, whose
alphabet is Σ := 2L.
A trace ξ = ω0ω1ω2 . . . is an infinite sequence in Σω. For ξ and k ≥ 1 we use
ξk = ω0ω1 . . . ωk−1 to denote a prefix of ξ, and ξk = ωkωk+1 . . . to denote a suffix
of ξ. Thus, ξ = ξkξk. The semantics of LTL with respect to an infinite trace ξ is
given by:

– ξ |= α iff ξ1 |= α, where α is a propositional formula;
– ξ |= X φ iff ξ1 |= φ;
– ξ |= φ1 U φ2 iff there exists i ≥ 0 such that ξi |= φ2 and for all 0 ≤ j < i,
ξj |= φ1;

– ξ |= φ1 R φ2 iff for all i ≥ 0, it holds ξi � φ2 or there exists 0 ≤ j ≤ i such
that ξj |= φ1.

The closure of an LTL formula φ, denoted as cl(φ), is a formula set such that:
(1). φ is in cl(φ); (2). ψ is in cl(φ) if φ = Xψ or φ = ¬ψ; (3). φ1, φ2 are in cl(φ)
if φ = φ1 op φ2, where op can be ∧,∨, U and R; (4). (Xψ) ∈ cl(φ) if ψ ∈ cl(φ)
and ψ is an Until or Release formula. We say each ψ in cl(φ), which is added
via rules (1)-(3), is a subformula of φ. Note that the standard definition of LTL
closure consists only of rules (1)-(3). Rule (4) is added in this paper due to its
usage in later sections. Note that the size of cl(φ) is linear in the length of φ,
even with the addition of rule (4).

3 Explicit LTL Reasoning

In this section we introduce the framework of explicit LTL reasoning. To demon-
strate clearly both the similarity and difference between our approach and previ-
ous ones, we organize this section as follows. We first provide a general definition
of temporal transition systems, which underlies both our new approach and pre-
vious approach. We then discuss how traditional methods and our new one relate
to this framework.

3.1 Temporal Transition System

As argued in [32, 12], the key to efficient modal reasoning is to reason about
states and transitions propositionally. We show here how the same approach can

be applied to LTL. Unlike modal logic, where there is a clear separation between
formulas that talk about the current state and formulas that talk about successor
states (the latter are formulas in the scope of � or ♦, i.e. G or F in LTL), LTL
formulas do not allow for such a clean separation. Achieving such a separation
requires some additional work.
We first define propositional satisfiability of LTL formulas.

Definition 1 (Propositional Satisfiability). For an LTL formula φ, a propo-
sitional assignment for φ is a set A ⊆ cl(φ) such that

– every literal ` ∈ L is either in A or its negation is, but not both.
– (θ1 ∧ θ2) ∈ A implies θ1 ∈ A and θ2 ∈ A,
– (θ1 ∨ θ2) ∈ A implies θ1 ∈ A or θ2 ∈ A,
– (θ1Uθ2) ∈ A implies θ2 ∈ A or both θ1 ∈ A and (X(θ1Uθ2)) ∈ A. In the

former case, that is, θ2 ∈ A, we say that A satisfies (θ1Uθ2) immediately.
In the latter case, we say that A postpones (θ1Uθ2).

– (θ1Rθ2) ∈ A implies θ2 ∈ A and either θ1 ∈ A or (X(θ1Rθ2)) ∈ A. In the
former case, that is, θ1 ∈ A, we say that A satisfies (θ1Rθ2) immediately.
In the latter case, we say that A postpones (θ1Rθ2).

We say that a propositional assignment A propositional satisfies φ, denoted as
A |=p φ, if φ ∈ A. We say an LTL formula φ is propositionally satisfiable if
there is a propositional assignment A for φ such that A |=p φ.

For example, consider the formula φ = (aUb)∧(¬b). The setA1 = {a, (aUb), (¬b),
(X(aUb))} ⊆ cl(φ) is a propositional assignment that propositionally satisfies φ.
In contrast, the set A2 = {(aUb),¬b} ⊆ cl(φ) is not a propositional assignment.
The following theorem shows the relationship between LTL formula φ and its
propositional assignment.

Theorem 1. For an LTL formula φ and an infinite trace ξ ∈ Σω, we have
that ξ |= φ iff there exists a propositional assignment A ⊆ cl(φ) such that A
propositionally satisfies φ and ξ |= ∧

A.

Since a propositional assignment of LTL formula φ contains the information for
both current and next states, we are ready to define the transition systems of
LTL formula.

Definition 2. Given an LTL formula φ, the transition system Tφ is a tuple
(S, S0, T) where

– S is the set of states s ⊆ cl(φ) that are propositional assignments for φ. The
trace of a state s is s ∩ L, that is, the set of literals in s.

– S0 ⊆ S is a set of initial states, where φ ∈ s0 for all s0 ∈ S0.
– T : S×S is the transition relation, where T (s1, s2) holds if (Xθ) ∈ s1 implies
θ ∈ s2, for all Xθ ∈ cl(φ).

A run of Tφ is an infinite sequence s0, s1, . . . such that s0 ∈ S0 and T (si, si+1)
holds for all i ≥ 0.

Every run r = s0, s1, . . . of Tφ induces a trace trace(r) = trace(s0), trace(s1), . . .
inΣω. In general, it needs not hold that trace(r) |= φ. This requires an additional
condition. Consider an Until formula (θ1Uθ2) ∈ si. Since si is a propositional
assignment for φ we either have that si satisfies (θ1Uθ2) immediately or that
it postpones it, and then (θ1Uθ2) ∈ si+1. If sj postpones (θ1Uθ2) for all j ≥ i,
then we say that (θ1Uθ2) is stuck in r.

Theorem 2. Let r be a run of Tφ. If no Until subformula is stuck at r, then
trace(r) |= φ. Also, φ is satisfiable if there is a run r of Tφ so that no Until
subformula is stuck at r.

We have now shown that the temporal transition system Tφ is intimately related
to the satisfiability of φ. The definition of Tφ is, however, rather nonconstructive.
In the next subsection we discuss how to construct Tφ.

3.2 System Construction

First, we show how one can consider LTL formulas as propositional ones. This
requires considering temporal subformulas as propositional atoms. We now define
the propositional atoms of LTL formulas.

Definition 3 (Propositional Atoms). For an LTL formula φ, we define the
set of propositional atoms of φ, i.e. PA(φ), as follows:

1. PA(φ) = {φ} if φ is an atom, Next, Until or Release formula;
2. PA(φ) = PA(ψ) if φ = (¬ψ);
3. PA(φ) = PA(φ1) ∪ PA(φ2) if φ = (φ1 ∧ φ2) or φ = (φ1 ∨ φ2).

Consider, for example, the formula φ = (a∧ (aUb)∧¬(X(a∨ b))). Here we have
PA(φ) is {a, (aUb), (X(a∨b))}. Intuitively, the propositional atoms are obtained
by treating all temporal subformulas of φ as atomic propositions. Thus, an LTL
formula φ can be viewed as a propositional formula over PA(φ).

Definition 4. For an LTL formula φ, let φp be φ considered as a propositional
formula over PA(φ).

We now introduce the neXt Normal Form (XNF) of LTL formulas, which sepa-
rates the “current” and “next-state” parts of the formula, but costs only linear
in the original formula size.

Definition 5 (neXt Normal Form). An LTL formula φ is in neXt Normal
Form (XNF) if there are no Unitl or Release subformulas of φ in PA(φ).

For example, φ = (aUb) is not in XNF, while (b ∨ (a ∧ (X(aUb)))) is in XNF.
Every LTL formula φ can be converted, with linear in the formula size, to an
equivalent formula in XNF.

Theorem 3. For an LTL formula φ, there is an equivalent formula xnf (φ) that
is in XNF. Furthermore, the cost of the conversion is linear.

Proof. To construct xnf (φ), We can apply the expansion rules (φ1Uφ2) ≡ (φ2 ∨
(φ1 ∧ X(φ1Uφ2))) and (φ1Rφ2) ≡ (φ2 ∧ (φ1 ∨ X(φ1Rφ2))). In detail, we can
construct xnf (φ) inductively:

1. xnf (φ) = φ if φ is tt , ff , a literal l or a Next formula Xψ;
2. xnf (φ) = xnf (φ1) ∧ xnf (φ2) if φ = (φ1 ∧ φ2);
3. xnf (φ) = xnf (φ1) ∨ xnf (φ2) if φ = (φ1 ∨ φ2);
4. xnf (φ) = (xnf (φ2)) ∨ (xnf (φ1) ∧Xφ) if φ = (φ1Uφ2);
5. xnf (φ) = xnf (φ2) ∧ (xnf (φ1) ∨Xφ) if φ = (φ1Rφ2).

Since the construction is built on the two expansion rules that preserve the
equivalence of formulas, it follows that φ is logically equivalent to xnf (φ). Note
that the conversion map xnf (φ) doubles the size of the converted formula φ, but
since the conversion puts Until and Release subformulas in the scope of Next,
and the conversion stops when it comes to Next subformulas, the cost is at most
linear. ut

We can now state propositional satisfiability of LTL formulas in terms of satis-
fiability of propositional formulas. That is, by restricting LTL formulas to XNF,
a satisfying assignment of φp, which can be obtained by using a SAT solver,
corresponds precisely to a propositional assignment of formula φ.

Theorem 4. For an LTL formula φ in XNF, if there is a satisfying assignment
A of φp, then there is a propositional assignment A′ of φ that satisfies φ such
that A′ ∩ PA(φ) ⊆ A. Conversely, if there is a propositional assignment A′

of φ that satisfies φ, then there is a satisfying assignment A of φp such that
A′ ∩ PA(φ) ⊆ A.

Proof. (⇒) Let A be a satisfying assignment of φp. Then let A′ be the set of
all formulas ψ ∈ cl(φ) such that A satisfies (xnf (ψ))p. We clearly have that
A′ ∩ PA(φ) ⊆ A. According to Definition 1 and because φ is in XNF, we have
that A′ is a propositional assignment of φ that satisfies φ.
(⇐) Let A′ be a propositional assignment of φ that satisfies φ. Then let A to
be the assignment that assign true to ψ ∈ cl(φ) precisely when ψ ∈ A′. Again,
we clearly have that, A′ ∩ PA(φ) ⊆ A. According to Definition 1 and because φ
is in XNF, we have that A is a satisfying assignment of φp. ut

Theorem 4 shows that by requiring the formula φ to be in XNF, we can construct
the states of the transition system Tφ via computing satisfying assignments of
φp over PA(φ). Let t be a satisfying assignment of φp and At be the related
propositional assignment of φ generated from t by Theorem 4, the construction
is operated as follows:

1. Let S0 = {At | t |= φp}; and let S := S0,
2. Compute Si = {At | t |= (xnf (

∧
X(si)))

p} for each si ∈ S, where X(si) =
{θ | (Xθ) ∈ si}; and update S := S ∪ Si;

3. Stop if S does not change; else go back to step 2.

The construction first generates initial states (step 1), and then all reachable
states from initial ones (step 2); it terminates once no new reachable state can
be generated (step 3). So S is the set of system states and its size is bounded by
2|cl(φ)|.
Our goal here is to show that we can construct the transition system Tφ by
means of SAT solving. This requires us to refine Theorem 2. A key issue in how
a propositional assignment handles an Until formula is whether it satisfies it
immediately or postpones it. We introduce new propositions that indicate which
is the case, and we refine the implementation of xnf (). Given ψ = (ψ1Uψ2),
we introduce a new proposition v(ψ), and use the following conversion rule:
xnf (ψ) ≡ (v(ψ)∧ψ2)∨((¬v(ψ))∧ψ1∧(X(ψ))). Thus, v(ψ) is required to be true
when the Until is satisfied immediately, and false when the Until is postponed.
Now we can state the refinement of Theorem 2.

Theorem 5. For an LTL formula φ, φ is satisfiable iff there is a finite run
r = s0, s1, . . . , sn in Tφ such that

1. There are 0 ≤ m ≤ n such that sm = sn;
2. Let Q =

⋃n
i=m si. If ψ = (ψ1Uψ2) ∈ Q, then v(ψ) ∈ Q.

Proof. Suppose first that items 1 and 2 hold. Then the infinite sequence r′ =
s0, . . . , sm, (sm+1, . . . , sn)ω is an infinite run of Tφ. It follows from Item 2 that
no Until subformula is stuck at r′. By Theorem 2, we have that r′ |= φ.
Suppose now that φ is satisfiable. By Theorem 2, there is an infinite run r′ of
Tφ in which no Until subformula is stuck. Let r′ = s0, s1, . . . be such a run.
Each si(i ≥ 0) is a state of Tφ, and the number of states is bounded by 2|cl(φ)|.
Thus, there must be 0 ≤ m < n such that sm = sn. Let Q =

⋃n
i=m si. Since no

Until subformula can be stuck at r, if ψ = ψ1Uψ2 ∈ Q, then it is must be that
v(ψ) ∈ Q. ut

The significance of Theorem 5 is that it reduces LTL satisfiability checking to
searching for a “lasso” in Tφ [5]. Item 1 says that we need to search for a prefix
followed by a cycle, while Item 2 provides a way to test that no Until subformla
gets stuck in the infinite run in which the cycle sm+1, . . . , sn is repeated infinitely
often.

3.3 Related Work

We introduced our SAT-based reasoning approach above, and in this section we
discuss the difference between our SAT-based approach and earlier works.
Earlier approach to transition-system construction for LTL formulas, based on
tableau [11] and normal form [18], generates the system states explicitly or im-
plicitly via a translation to disjunctive normal form (DNF). In [18], the con-
version to DNF is explicit (though various heuristics are used to temper the
exponential blow-up) and the states generated correspond to the disjuncts. In
tableau-based tools, cf., [11, 7], the construction is based on iterative syntactic

splitting in which a state of the form A ∪ {θ1 ∨ θ2} is split to states: A ∪ {θ1}
and A ∪ {θ2}.
The approach proposed here is based on SAT solving, where the states cor-
respond to satisfying assignments. Satisfying assignments are generated via a
search process that is guided by semantic splitting. The advantage of using SAT
solving rather than syntactic approaches is the impressive progress in the de-
velopment of heuristics that have evolved to yield highly efficient SAT solving:
unit propagation, two-literal watching, back jumping, clause learning, and more,
see [19]. Furthermore, SAT solving continues to evolve in an impressive pace,
driven by an annual competition3. It should be remarked that an analogous
debate, between syntactic and semantic approaches, took place in the context
of automated test-pattern generation for circuit designs, where, ultimately, the
semantic approach has been shown to be superior [16].
Furthermore, relying on SAT solving as the underlying reasoning technology
enables us to decouple temporal reasoning from propositional reasoning. Tem-
poral reasoning is accomplished via a search in the transition system, while the
construction of the transition system, which requires proposition reasoning using
SAT solving.

4 LTL Satisfiability Checking

Given an LTL formula φ, the satisfiability problem is to ask whether there is
an infinite trace ξ such that ξ |= φ. In the previous section we introduced a
SAT-based LTL-reasoning framework and showed how it can be applied to solve
LTL reasoning problems. In this section we use this framework to develop an
efficient SAT-based algorithm for LTL satisfiability checking. We design a depth-
first-search (DFS) algorithm that constructs the temporal transition system on
the fly and searches for a trace per Theorem 5. Furthermore, we propose several
heuristics to reduce the search space. Due to the limited space, we offer here a
high-level description of the algorithms. Details are provided in Appendix C.

4.1 The Main Algorithm

The main algorithm, LTL-CHECK, creates the temporal transition system of the
input formula on-the-fly, and searches for a lasso in a DFS manner. Several prior
works describe algorithms for DFS lasso search , cf. [5, 18, 28]. Here we focus on
the steps that are specialized to our algorithm.
The key idea of LTL-CHECK is to create states and their successors using
SAT techniques rather than traditional tableau or expansion techniques. Given
the current formula φ, we first compute its XNF version xnf (φ), and then use
a SAT solver to compute the satisfying assignments of (xnf (φ))p. Let P be
a satisfying assignment for (xnf (φ))p; from the previous section we know that
X(P) = {θ |Xθ ∈ P} yields a successor state in Tφ. We implement this approach

3 See http://www.satcompetition.org/

in the getState function, which we improve later by introducing some heuristics.
By enumerating all assignments of (xnf (φ))p we can obtain all successor states
of P . Note, however that LTL-CHECK runs in the DFS manner, under which
only a single state is needed at a time, so additional effort must be taken to
maintain history information of the next-state generation for each state P .
As soon as LTL-CHECK detects a lasso, it checks whether the lasso is accepting.
Previous lasso-search algorithms operate on the Büchi automaton generated from
the input formula. In contrast, here we focus directly on the satisfaction of Until
subformulas per Theorem 5. We use the example below to show the general idea.
Consider the formula φ = G((Fb) ∧ (Fc)). By Theorem 3, xnf (φ) = xnf (Fb) ∧
xnf (Fc)∧Xφ, where xnf (Fb) = ((b∧v(Fb))∨(¬v(Fb)∧X(Fb))) and xnf (Fc) =
((c∧v(Fc))∨(¬v(Fc)∧X(Fc))). Suppose we get from the SAT solver an assign-
ment of (xnf (φ))p P = {v(Fb),¬v(Fc), b,¬c,¬X(Fb), X(Fc), Xφ}. By Theorem
4, we create a satisfying assignment A′ that includes all formulas in cl(φ) that are
satisfied by P , and we get the state s0 = P ∪{φ, Fb, Fc, (Fb)∧ (Fc)}. To obtain
the next state, we start with X(s0) = {Fc, φ}, compute xnf (Fc∧ φ) and repeat
the process. After several steps LTL-CHECK may find a path s0 −→ s1 −→ s0,
where s1 = {φ, Fb, Fc, (Fb) ∧ (Fc),¬v(Fb), v(Fc),¬b, c,X(Fb),¬X(Fc), Xφ}.
Now s0 and s1 form a lasso. Let Q = s0 ∪ s1. Both Fb and Fc are in Q, and also
v(Fb) and v(Fc) are in Q. By Theorem 5, φ is satisfiable.

4.2 Heuristics for State Elimination

While LTL-CHECK uses an efficient SAT solver to compute states of the system
in the getState function, this approach is effective in creating states and their
successors, but cannot be used to guide the overall search. To find a satisfying
lasso faster, we add heuristics that drive the search towards satisfaction. The key
to these heuristics is smartly choosing the next state given by SAT solvers. This
can be achieved by adding more constraints to the SAT solver. Experiments show
these heuristics are critical to the performance of our LTL-satisfiability tool.
The construction of state in the transition system always starts with formu-
las. At the beginning, we have the input formula φ0 and we take the following
steps: (1) Compute xnf (φ0); (2) Call a SAT solver to get an assignment P0 of
(xnf (φ0))p; and (3) Derive a state P ′0 from P0. Then, to get a successor state,
we start with the formula φ1 =

∧
X(P ′0), and repeat steps (1-3). Thus, every

state s is obtained from some formula φs, which we call the representative for-
mula. Note that with the possible exception of φ0, all representative formulas
are conjunctions. Let φs =

∧
1≤i≤n θi be the representative formula of a state s;

we say that θi(1 ≤ i ≤ n) is an obligation of φ if θi is an Until formula. Thus, we
associate with the state s a set of obligations, which are the Until conjunctive
elements of φs. (The initial state may have obligations if it is a conjunction.) The
approach we now describe is to satisfy obligations as early as possible during the
search, so that a satisfying lasso is obtained earlier. We now refine the getState
function, and introduce three heuristics via examples.
The getState function keeps a global obligation set, collecting all obligations so
far not satisfied in the search. The obligation set is initialized with the obligations

φ0
s0

φ1s1 φ2
s2

φ3
s3

O = ∅

O = ∅
Reset O = {Fa, F¬a} O = {F¬a} O = ∅

Reset O = {Fa}

v(Fa) v(F¬a)

×

×

×

Fig. 1. A satisfiable formula. In the figure φ0 = G((Fa)∧(F¬a)), φ1 = ((Fa)∧(F¬a)∧
φ0), φ2 = ((F¬a)∧φ0) and φ3 = ((Fa)∧φ0). These representative formulas correspond
to states s0, s1, s2, s3, respectively.

of the initial formula φ0. When an obligation o is satisfied (i.e., when v(o) is true),
o is removed from the obligation set. Once the obligation set becomes empty in
the search, it is reset to contain obligations of current representative formula φi.
In Fig. 1, we denote the obligation set by O. O is initialized to ∅, as there is no
obligation in φ0. O is then reset in the states s1 and s3, when it becomes empty.

The getState function runs in the ELIMINATION mode by default, in which
it obtains the next state guided by the obligations of current state. For satisfiable
formulas, this leads to faster lasso detection. Consider formula φ = G((Fa) ∧
(F¬a)). Parts of the temporal transition system Tφ are shown in Fig. 1. In the
figure, O is reset to {(Fa), (F¬a)} in state s1, as these are the obligations of
φ1. To drive the search towards early satisfaction of obligations, we obtain a
successor of s1, by applying the SAT solver to the formula (xnf (φ1) ∧ (v(Fa) ∨
v(F¬a)))p, to check whether Fa or F¬a can be satisfied immediately. If the
returned assignment satisfies v(Fa), then we get the success state s2 with the
representative formulas φ2, and (Fa) is removed from O. Then the next state
is s3 with the representative formula φ3, which removes the obligation (F¬a).
since O becomes empty, it is reset to the obligations {Fa} of φ3. Note that in
Fig. 1, there should be transitions from s2 to s1 and from s3 to s2, but they are
never traversed under the ELIMINATION mode.

The getState function runs in the SAT PURSUING mode when the obliga-
tion set becomes empty. In this mode, we want to check whether the next state
can be a state that have been visited before and after that visit the obligation set
has become empty. In this case, the generated lasso is accepting, by Theorem 5. In
Fig. 1, the obligation set O becomes empty in state s3. Previously, it has become
empty in s1. Normally, we find a success state for s3 by applying the SAT solver
to (xnf (φ3))p. To find out if either s0 or s1 can be a successor of s3, we apply the
SAT solver to the formula (xnf (φ3) ∧ (X(φ0) ∨X(φ1)))p. Since this formula is
satisfiable and indicates a transition from s3 to s1 (Xφ1 can be assigned true in

the assignment), we have found that trace(s0), (trace(s1), trace(s2), trace(s3))ω

satisfies φ. In the figure, the transitions labeled x represent failed attempts to
generate the lasso when O becomes empty. Although failed attempts have a
computational cost, trying to close cycles aggressively does pay off.
The getState function runs in the CONFLICT ANALYZE mode if all for-
mulas in the obligation set are postponed in the ELIMINATION mode. The goal
of this mode is to eliminate “conflicts” that block immediate satisfaction of obli-
gations. To achieve this, we use a conflict-guided strategy. Consider, for example,
the formula φ0 = a∧(Xb)∧F ((¬a)∧(¬b)). Here the formula ψ = F ((¬a)∧(¬b))
is an obligation. We check whether ψ can be satisfied immediately, but it fails.
The reason for this failure is the conjunct a in φ, which conflicts with the obli-
gation ψ. We identify this conflict using a minimal unsat core algorithm [21]. To
eliminate this conflict, we add the conjunct ¬Xa to φ, hoping to be able to satisfy
the obligation immediately in the next state. When we apply the SAT solver to
(xnf (φ) ∧ (¬Xa))p, we obtain a successor state with the representative formula
φ1 = (b∧ψ), again with ψ as an obligation. When we try to satisfy ψ immediately,
we fail again, since ψ conflicts with b. To block both conflicts, we add ¬Xb as an
additional constraint, and apply the SAT solver to (xnf (φ) ∧ (¬Xa) ∧ (¬Xb))p.
This yields a successor state with the representative formula φ2 = ψ. Now we
are able to satisfy ψ immediately, and we are able to satisfy φ with the finite
path φ −→ φ1 −→ φ2.
As another example, consider the formula φ = (G(Fa) ∧ Gb ∧ F (¬b)). Since
F (¬b) is an obligation, we try to satisfy it immediately, but fail. The reason for
the failure is that immediate satisfaction of F (¬b) conflicts with the conjunct
Gb. In order to try to block this conflict, we add to φ the conjunct ¬XGb, and
apply the SAT solver to (xnf (φ) ∧ ¬XGb)p. This also fails. Furthermore, by
constructing a minimal unsat core, we discover that (xnf (Gb) ∧ ¬X(Gb))p is
unsatisfiable. This indicates that Gb is an “invariant”; that is, if Gb is true in a
state then it is also true in its successor. This means that the obligation F (¬b)
can never be satisfied, since the conflict can never be removed. Thus, we can
conclude that φ is unsatisfiable without constructing more than one state.
In general, identifying conflicts using minimal unsat cores enables both to find
satisfying traces faster, or conclude faster that such traces cannot be found.

5 Experiments on LTL Satisfiability Checking

In this section we discuss the experimental evaluation for LTL satisfiability check-
ing. We first describe the methodology used in experiments and then show the
results.

5.1 Experimental Methodologies

The platform used in the experiments is an IBM iDataPlex consisting of 2304
processor cores in 192 Westmere nodes (12 processor cores per node) at 2.83
GHz with 48 GB of RAM per node (4 GB per core), running the 64-bit Redhat

7 operating system. In our experiments, each tool runs on a single core in a single
node. We use the Linux command “time” to evaluate the time cost (in seconds)
of each experiment. Timeout was set to 60 seconds, and the out-of-time cases
are set to cost 60s.
We implemented the satisfiability-checking algorithms introduced in this paper,
and named the tool Aalta v2.04. We compare Aalta v2.0 with Aalta v1.2, which
is the latest explicit LTL-satisfiability solver (though it does use some SAT
solving for acceleration) [17]. (The SAT engine used in both Aalta v1.2 and
Aalta v2.0 is Minisat [9].) In the literature, Aalta v1.2 is shown to outperform
other existing explicit LTL solvers, so we omit the comparison with these solvers
in this paper. Two resolution-based LTL satisfiability solvers, TRP++ [15] and
ls4 [30], also utilize SAT solving, and we include them in our comparison.
As shown in [26], LTL satisfiability checking can be reduced to model check-
ing. While BDD-based model checker were shown to be competitive for LTL
satisfiability solving in [26], they were shown later not to be competitive with
specialized tools, such as Aalta v1.2 [18]. We do, however, include in our com-
parison the model checker NuXmv [2], which integrates the latest SAT-based
model checking techniques. It uses Minisat as the SAT engine as well. Although
standard bounded model checking (BMC) is not complete for the LTL satisfiabil-
ity checking, there are techniques to make it complete, for example, incremental
bounded model checking (BMC-INC) [13], which is implemented in NuXmv. In
addition, NuXmv implements also new SAT-based techniques, IC3 [1], which
can handle liveness properties with the K-liveness technique[3]. We included IC3
with K-liveness in our comparison.
To compare with the K-liveness checking algorithm, we ran NuXmv using the
command “check ltlspec klive -d”. For the BMC-INC comparison, we run NuXmv
with the command “check ltlspec sbmc inc -c”. Aalta v2.0 and Aalta v1.2 tools
were run using their default parameters. For the other tools, ls4 runs with “-r2l”
and TRP++ runs with “-sBFS -FSR”. Since the input of TRP++ and ls4 must
be in SNF (Separated Normal Form [10]), an SNF generator is required for run-
ning these tools. A generator translate is available from the TRP++ website5.
The parameters of translate are “-s -r”.
In the experiments we consider the benchmark suite from [27], referred to as
schuppan-collected. This suite collects formulas from several prior works, includ-
ing [26], and has a total of 7446 formulas (3723 representative formulas and
their negations). (Testing also the negation of each formula is in essence a check
for validity.) In our experiments, we did not find any inconsistency among the
solvers that did not time out.

5.2 Results

The experimental results are shown in Table 1. In the table, the first column lists
the different benchmarks in the suite, and the second to eighth columns display

4 It can be downloaded at www.lab205.org/aalta.
5 http://cgi.csc.liv.ac.uk/~konev/software/trp++/

Table 1. Experimental results on the Schuppan-collected benchmark. Each cell lists a
tuple 〈t, n〉 where t is the total checking time (in seconds), and n is the total number
of unsolved formulas.

Formula type ls4 TRP++
NuXmv-
BMCINC

Aalta v1.2
NuXmv-
IC3-Klive

Aalta v2.0
without heuristics

Aalta v2.0
with heuristics

/acacia/example 155 0 192 0 1 0 1 0 8 0 1 0 1 0

/acacia/demo-v3 68 0 2834 38 3 0 660 0 30 0 630 0 3 0

/acacia/demo-v22 60 0 67 0 1 0 2 0 4 0 2 0 1 0

/alaska/lift 2381 27 15602 254 1919 26 4084 63 867 5 4610 70 1431 18

/alaska/szymanski 27 0 283 4 1 0 1 0 2 0 1 0 1 0

/anzu/amba 5820 92 6120 102 536 7 2686 40 1062 8 3876 60 928 4

/anzu/genbuf 2200 30 7200 120 782 11 3343 54 1350 13 5243 94 827 4

/rozier/counter 3934 62 4491 44 3865 64 3928 60 3988 65 3328 55 2649 40

/rozier/formulas 167 0 37533 523 1258 19 1372 20 664 0 1672 25 363 0

/rozier/pattern 2216 38 15450 237 1505 8 8 0 3252 17 8 0 9 0

/schuppan/O1formula 2193 34 2178 35 14 0 2 0 95 0 2 0 2 0

/schuppan/O2formula 2284 35 2566 41 1781 28 2 0 742 7 2 0 2 0

/schuppan/phltl 1771 27 1793 29 1058 15 1233 21 753 11 1333 21 767 13

/trp/N5x 144 0 46 0 567 9 309 0 187 0 219 0 15 0

/trp/N5y 448 10 95 1 2768 46 116 0 102 0 316 0 16 0

/trp/N12x 3345 52 45739 735 3570 58 768 48 705 0 768 0 175 0

/trp/N12y 3811 56 19142 265 4049 67 7413 110 979 0 7413 100 154 0

/forobots 990 0 1303 0 1085 18 2280 32 37 0 2130 30 524 0

Total 32014 463 163142 2428 24769 376 31208 450 14261 126 31554 455 7868 79

the results from different solvers. Each result in a cell of the table is a tuple 〈t, n〉,
where t is the total checking time for the corresponding benchmark, and n is the
number of unsolved formulas due to timeout in the benchmark. Specially the
number “0” in the table means all formulas in the given benchmark are solved.
Finally, the last row of the table lists the total checking time and number of
unsolved formulas for each solver.
The results show that while the tableau-based tool Aalta v1.2, outperforms ls4
and TRP++, it is outperformed by NuXmv-BMCINC and NuXmv-IC3-Klive,
both of which are outperformed by Aalta v2.0, which is faster by about 6,000
seconds and solves 47 more instances than NuXmv-IC3-Klive.
Our framework is explicit and closest to that is underlaid behind Aalta v1.2.
From the results, Aalta v2.0 with heuristic outperforms Aalta v1.2 dramati-
cally, faster by more than 23,000 seconds and solving 371 more instances. One
reason is, when Aalta v1.2 fails it is often due to timeout during the heavy-
duty normal-form generation, which Aalta v2.0 simply avoids (generating XNF
is rather lightweight).
Generating the states in a lightweight way, however, is not efficient enough. By
running Aalta v2.0 without heuristics, it cannot perform better than Aalta v1.2,
see the data in column 5 and 7 of Table 1. It can even be worse in some bench-
marks such as “/anzu/amba” and “anzu/genbuf”. We can explain the reason
via an example. Assume the formula is φ1 ∨ φ2, the traditional tableau method
splits the formula and at most creates two nodes. Under our pure SAT-reasoning
framework, however,it may create three nodes which contain φ1∧¬φ1 or ¬φ1∧φ2,
or φ1 ∧ φ2. This indicates that the state space generated by SAT solvers may in
general be larger than that generated by tableau expansion.
To overcome this challenge, we propose some heuristics by adding specific con-
straints to SAT solvers, which at the mean time succeeds to reduce the searching

space of the overall system. The results shown in column 8 of Table 1 demon-
strate the effectiveness of heuristics presented in the paper. For example, the
“/trp/N12/” and “/forobots/” benchmarks are mostly unsatisfiable formulas,
which Aalta v1.2 and Aalta v2.0 with heuristic do not handle well. Yet the unsat-
core extraction heuristic, which is described in the CONFLICT ANALYZE mode
of getState function, enables Aalta v2.0 with heuristic to solve all these formu-
las. For satisfiable formulas, the results from “/anzu/amba/” and “/anzu/
genbuf” formulas, which are satisfiable, show the efficiency of the ELIMINA-
TION and SAT PURSUING heuristics in the getState function, which are nec-
essary to solve the formulas.
In summary, Aalta v2.0 with heuristic performed best on satisfiable formulas,
solving 6750 instances, followed in order by NuXmv-BMCIMC (6714), NuXmv-
IC3-Klive (6700), Aalta v1.2 (6689), ls4 (6648), and TRP++ (4711). For unsatis-
fiable formulas, NuXmv-IC3-Klive performs best, solving 620 instances, followed
in order by Aalta v2.0 with heuristic (617), NuXmv-BMCINC (356), ls4 (335),
Aalta v1.2 (309), and TRP++ (307). Detailed statistics are in Appendix D.
Note that NuXmv-IC3-Klive is able to solve more cases than Aalta v2.0 with
heuristic in some benchmarks, such as “/lift” and “/schuppan/phltl” in which
unsatisfiable formulas are not handled well enough by Aalta v2.0. Currently,
Aalta v2.0 requires large number of SAT calls to identify an unsatisfiable core.
In future work we plan to use a specialized MUS (minimal unsatisfable core)
solver to address this challenge.

6 Concluding Remarks

We described in this paper a SAT-based framework for explicit LTL reasoning.
We showed one of its applicaitons to LTL-satisfiability checking, by proposing
basic algorithms and efficient heuristics. As proof of concept, we implemented an
LTL satisfiability solver, whose performance dominates all similar tools. In Ap-
pendix E we demonstrate that our approach can be extended from propositional
LTL to assertional LTL, yielding exponential improvement in performance.
Extending the explicit SAT-based approach to other applications of LTL rea-
soning, is a promising research direction. For example, the standard approach
in LTL model checking [34] relies on the translation of LTL formulas to Büchi
automata. The transition systems Tφ that is used for LTL satisfiability checking
can also be used in the translation from LTL to Büchi automata. Current best-
of-breed translators, e.g., [8, 11, 7, 29] are tableau-based, and the SAT approach
may yield significant performance improvement.
Of course, the ultimate temporal-reasoning task is model checking. Explicit
model checkers such as SPIN [14] start with a translation of LTL to Büchi
automata, which are then used by the model-checking algorithm. An alternative
approach is to construct the automaton on-the-fly using SAT techniques, using
the framework developed here. Current symbolic model-checking tools, such as
NuXmv, do rely heavily on SAT solvers to implement algorithms such as BMC
[13] or IC3 [1]. The success of the SAT-based explicit LTL-reasoning approach for

LTL satisfiability checking suggests that this approach may also be successful in
SAT-based model checking. This remains a highly intriguing research possibility.

References

1. A. Bradley. SAT-based model checking without unrolling. In Ranjit Jhala and
David Schmidt, editors, Verification, Model Checking, and Abstract Interpretation,
volume 6538 of Lecture Notes in Computer Science, pages 70–87. Springer Berlin
Heidelberg, 2011.

2. R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuxmv symbolic model checker. In CAV, pages
334–342, 2014.

3. K. Claessen and N. Sörensson. A liveness checking algorithm that counts. In
Gianpiero Cabodi and Satnam Singh, editors, FMCAD, pages 52–59. IEEE, 2012.

4. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

5. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

6. M. d’Agostino. Tableau methods for classical propositional logic. In Handbook of
tableau methods, pages 45–123. Springer, 1999.

7. N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for
linear temporal logic. In Proc. 11th Int. Conf. on Computer Aided Verification,
volume 1633 of Lecture Notes in Computer Science, pages 249–260. Springer, 1999.

8. A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library
using transition-based generalized büchi automata. In Proc. 12th Int’l Workshop on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
pages 76–83. IEEE Computer Society, 2004.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2003.

10. M. Fisher. A normal form for temporal logics and its applications in theorem-
proving and execution. Journal of Logic and Computation, 7(4):429–456, 1997.

11. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembiski and M. Sredniawa, editors,
Protocol Specification, Testing, and Verification, pages 3–18. Chapman & Hall,
1995.

12. F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics
from propositional decision procedure - the case study of modal K. In Proc. 13th
Int’l Conf. on Automated Deduction, volume 1104 of Lecture Notes in Computer
Science, pages 583–597. Springer, 1996.

13. K. Heljanko, T. Junttila, and T. Latvala. Incremental and complete bounded model
checking for full PLTL. In K. Etessami and S. Rajamani., editors, Computer Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages 98–111.
Springer Berlin Heidelberg, 2005.

14. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

15. U. Hustadt and B. Konev. Trp++ 2.0: A temporal resolution prover. In In Proc.
CADE-19, LNAI, pages 274–278. Springer, 2003.

16. T. Larrabee. Test pattern generation using boolean satisfiability. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 11(1):4–15, 1992.

17. J. Li, G. Pu, L. Zhang, M. Y. Vardi, and J. He. Fast LTL satisfiability checking
by SAT solvers. CoRR, abs/1401.5677, 2014.

18. J. Li, L. Zhang, G. Pu, M. Vardi, and J. He. LTL satisfibility checking revisited.
In The 20th International Symposium on Temporal Representation and Reasoning,
pages 91–98, 2013.

19. S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness to practical
success. Commun. ACM, 52(8):76–82, 2009.

20. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, 1992.

21. J. Marques-Silva and I. Lynce. On improving MUS extraction algorithms. In
K. Sakallah and L. Simon, editors, Theory and Applications of Satisfiability Testing
- SAT 2011, volume 6695 of Lecture Notes in Computer Science, pages 159–173.
Springer Berlin Heidelberg, 2011.

22. K. McMillan. Interpolation and SAT-based model checking. In Jr. Hunt, WarrenA.
and Fabio Somenzi, editors, Computer Aided Verification, volume 2725 of Lecture
Notes in Computer Science, pages 1–13. Springer Berlin Heidelberg, 2003.

23. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

24. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

25. A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on Foun-
dations of Computer Science, pages 46–57, 1977.

26. K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking. Int’l J. on Software Tools
for Technology Transfer, 12(2):123–137, 2010.

27. V. Schuppan and L. Darmawan. Evaluating LTL satisfiability solvers. In Proceed-
ings of the 9th international conference on Automated technology for verification
and analysis, AVTA’11, pages 397–413. Springer-Verlag, 2011.

28. S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In Proc.
11th Int’l Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science 3440, pages 174–190. Springer, 2005.

29. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Proc.
12th Int. Conf. on Computer Aided Verification, volume 1855 of Lecture Notes in
Computer Science, pages 248–263. Springer, 2000.

30. M. Suda and C. Weidenbach. A PLTL-prover based on labelled superposition with
partial model guidance. In Automated Reasoning, volume 7364 of Lecture Notes in
Computer Science, pages 537–543. Springer Berlin Heidelberg, 2012.

31. D. Tabakov, K.Y. Rozier, and M. Y. Vardi. Optimized temporal monitors for
SystemC. Formal Methods in System Design, 41(3):236–268, 2012.

32. M. Vardi. On the complexity of epistemic reasoning. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science, pages 243–252, Piscataway, NJ,
USA, 1989. IEEE Press.

33. M.Y. Vardi. Unified verification theory. In B. Banieqbal, H. Barringer, and
A. Pnueli, editors, Proc. Temporal Logic in Specification, volume 398, pages 202–
212. Springer, 1989.

34. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st IEEE Symp. on Logic in Computer Science, pages 332–
344, 1986.

A Proof of Theorem 1

Proof. If A propositionally satisfies φ and ξ |= ∧
A, then ξ |= φ, as φ ∈ A.

For the other direction, assume that ξ |= φ. Let A = {θ ∈ cl(φ) : ξ |= θ}.
Clearly, φ ∈ A. It remains to prove that A is a propositional assignment, which
we show by structural induction.

– For ` ∈ L either ξ |= ` or ξ 6|= `, so either ` ∈ A or (¬`) ∈ A.
– If ξ |= (θ1 ∧ θ2), then ξ |= θ1 and ξ |= θ2, so both θ1 ∈ A and θ2 ∈ A.
– If ξ |= (θ1 ∨ θ2), then ξ |= θ1 or ξ |= θ2, so either θ1 ∈ A or θ2 ∈ A.
– If ξ |= (θ1Uθ2), then either ξ |= θ2, in which case, θ2 ∈ A, or ξ |= θ1 and
ξ |= (X(θ1Uθ2), in which case θ1 ∈ A and (X(θ1Uθ2)) ∈ A.

– If ξ |= (θ1Rθ2), then ξ |= θ2, in which case θ2 ∈ A, and either ξ |= θ1 and
ξ |= (X(θ1Rθ2)), in which case θ1 ∈ A and (X(θ1Rθ2)) ∈ A.

ut

B Proof of Theorem 2

Proof. for the first claim, let r be s0, s1, . . . and ri = si, si+1, . . . (i ≥ 0). Assume
that no Until subformua is stuck at r. We prove by induction that trace(ri) |= ψ
for ψ ∈ si. It follows that trace(r) |= φ.

– Trivially, for a literal ` ∈ si we have that trace(ri) |= `.
– If (θ1 ∧ θ2) ∈ si , then θ1 ∈ si and θ2 ∈ si. By induction, trace(ri) |= θ1 and
trace(ri) |= θ2, so trace(ri) |= (θ1 ∧ θ2). The argument for (θ1 ∨ θ2) ∈ si is
analogous.

– If (Xθ) ∈ si, then θ ∈ si+1. By induction, trace(ri+1) |= θ, so trace(ri) |=
(Xθ)

– If (θ1Uθ2) ∈ si, then θ2 ∈ si or both θ1 ∈ si and (X(θ1Uθ2)) ∈ si, which
implies that (θ1Uθ2) ∈ si+1. Since (θ1Uθ2) is not stuck at r, there is some
k ≥ i such that θ2 ∈ sk, and θi ∈ sj for i ≤ j ≤ k. Using the induction
hypothesis and the semantics of Until, it follows that trace(ri) |= (θ1Uθ2).

– If (θ1Rθ2) ∈ si, then θ2 ∈ si and either θ1 ∈ si or (X(θ1Rθ2)) ∈ si, which im-
plies (θ1Rθ2) ∈ si+1. It is possible here for (θ1Rθ2) to be postponed forever.
So for all k ≥ i, we have that either θ2 ∈ sj or there exists i ≤ j ≤ k such
that θi ∈ sj . Using the induction hypothesis and the semantics of Release,
it follows that trace(ri) |= (θ1Rθ2).

It follows that if there is a run r of Tφ such that no Until subformul is stuck at
r then φ is satisfiable.
In the other direction, assume that φ is satisfiable and there is an infinite trace
ξ ∈ Lω such that ξ |= φ. Let ξ = P0, P1, . . ., and let ξi = Pi, Pi+1, As in the
proof of Theorem 1, define Ai = {θ ∈ cl(φ) : ξi |= θ}. As in the proof of Theorem
1, each Ai is a propositional assignment for φ, and, consequently a state of Tφ.
Furthermore, the semantics of Next implies that we have T (Ai, Ai+1) for i ≥ 0.
Furthermore, the semantics of Until ensures that no Until is stuck in the run
A0, A1, ut

C Implementation of LTL-Satisfiability Checking
Algorithms

C.1 Main checking algorithm

The main algorithm checks the satisfiability of the input formula on the fly. It
implements a depth-first search to identify the lasso described in Theorem 5. Al-
gorithm 1 shows the details of the main algorithm which is named LTL-CHECK.

Algorithm 1 LTL Main Checking Algorithm: LTL-CHECK

Require: An LTL formula φ.
Ensure: SAT or UNSAT.
1: if φ = tt (or φ = ff) then
2: return SAT (or UNSAT);
3: end if
4: Let φ = xnf (φ): make φ ready for SAT solver;
5: CALL getState(φ): get one system state P from φ;
6: while P is existed do
7: Let ψ =

∧
X(P) be the next state of φ;

8: if ψ is in explored then
9: CALL getState(φ) again: get another P ;

10: Continue;
11: end if
12: if ψ is visited then
13: if model(ψ) is true then
14: return SAT;
15: end if
16: else
17: Push ψ to visitedS , and push P to visitedP ;
18: if LTL-CHECK (ψ) is SAT then
19: return SAT;
20: end if
21: Pop ψ from visitedS , and pop P from visitedP ;
22: end if
23: CALL getState(φ) again: get another P ;
24: end while
25: Push φ to explored;
26: return UNSAT;

In Algorithm 1, the function xnf (φ) (in Line 4) is implemented according to
Theorem 3. It returns the next normal form of φ. The function getState takes
an input LTL formula φ and outputs another system state φ′ from φ. We have
that T (CF (φ), X(CF (φ′))), which means that X(CF (φ′)) is one of next states
of φ. As mentioned previously, these can be obtained from the assignments of
(xnf (φ))p. Another main task of getState is to return a different state never
returned before in every invocation. More details are shown in Algorithm 2.

The main algorithm maintains three global lists: visitedS , visitedP and explored,
which record visited state, visited assignments and explored states respectively.
So, visitedS [i+1] is a next state of visitedS [i] (i ≥ 0), and visitedP [i+1] is an as-
signment of

∧
X(visitedP (i)). Note explored states are those all of the successors

are visited but no satisfying model is found. So explored states are unsatisfiable
formulas. The function model function (in Line 13) is to check whether the cycle
found (containing ψ) is accepting. It is evaluated according to Theorem 5.

Algorithm 2 Implementation of getState

Require: an LTL formula φ;
Ensure: a new state of φ;
1: Let α be
φp ∧ (

∧
ψ∈explored ¬(Xψ)p)1 ∧ (

∧
ψ∈history ¬ψ

p)2;
2: if α is satisfiable then
3: Let P be an assignment of α;
4: history = history ∪ {

∧
P};

5: return P ;
6: else
7: return null
8: end if

At the very beginning CHECK checks whether the formula is tt or ff (Line
1-3), in which cases the satisfiability can be determined immediately. Then it
computes the next normal form of input formula φ (Line 4), acquiring a state P
from (xnf (φ))p (Line 5). If P is not existed (Line 6), i.e. φ is checked unsatisfiable
after exploring all its next states, then it is pushed to explored (Line 25) and
LTL-CHECK returns UNSAT (Line 26). Otherwise, LTL-CHECK makes sure
that the chosen new next state ψ of φ is not explored (Line 8-11). Later it checks
whether ψ has been visited before (Line 12). If so a cycle has been found and
the model function is invoked to check whether a satisfying model is found as
well (Line 13-15). If this fails then another P is required for further checking
(Line 23). If ψ is not visited yet, it is pushed into visited and CHECK is invoked
recursively by taking ψ as the new input (Line 17,18). If ψ is checked to be SAT
so does φ, else ψ is popped from visited (Line 21) and CHECK selects another
P for further checking (Line 23). One may find the algorithm can terminate as
soon as all states from (xnf (φ))p are constructed.
The task of getState is not only to return a system state for the input formula,
but also to guarantee every invoke by taking φ as input it does not return
the state already created. To achieve this, we introduce another set history
to store all states already created so far for each current formula φ. Then the
assignment of α in Algorithm 2 can make the assignment distinguished with
those ever created before. Note in Line 1, the expression labeled 1 erases those
states already explored, which are shown to be unsatisfiable. And the expression
labeled 2 guarantees those assignments that already appeared before cannot be
chosen again. By adding these two constraints it avoids SAT solvers to create

duplicated assignments. The notation null in Line 7 represents the state required
is not existed.
However, simply avoidance to generate duplicated states is not efficient enough
for checking on a state space that is exponential larger than the original size of
input formula. In the following section we present some heuristics to guide SAT
solvers to return the assignment we prefer as soon as possible.

C.2 Guided State Generation

Recall our basic reasoning theorem (Theorem 5), the principle we judge whether
a cycle can form a satisfying model is to check the satisfaction of Until formulas
in CF (ψ)6, where ψ is a state in the cycle. So an intuitive idea to speed up the
checking process is to locate such a satisfying cycle as soon as possible. As the
satisfying cycle keeps satisfying the satisfaction of Until formulas, we follow this
way and always try to ask SAT solvers to return assignments that can satisfy
some Until formulas in CF (ψ) where ψ is the current state.

Algorithm 3 Implementation of the ELIMINATION mode

Require: an LTL formula φ and a global set U ;
Ensure: a new state of φ;
1: if U is ∅ then
2: Turn into the SAT PURSUING mode.
3: Reset U to be U(φ), where φ is the current state and U(φ) ⊆ CF (φ) is the set

of Until formulas.
4: end if
5: Let P be an assignment of

(xnf (φ))p ∧
∨
V (U) ∧

∧
ψ∈explored ¬(X(ψ))p, where V (U) = {v(u) | u ∈ U};

6: if P is empty then
7: Turn into the CONFLICT ANALYZE mode.
8: else
9: Update U = U\S, where S = {u | v(u) ∈ P and u ∈ U};

10: return P;
11: end if

We now redesign the getState function in three modes, which focus on different
tasks. The ELIMINATION mode tries to fulfill the satisfaction of Until formulas
in a global set, the SAT PURSUING mode is to pursue a satisfying cycle, and
the CONFLICT ANALYZE mode is to pursue an unsatisfiable core if all Until
formulas remained in the set are postponed. The getState function runs in the
ELIMINATION mode by default. The implementation of the ELIMINATION
mode is shown in Algorithm 3.
In the ELIMINATION mode a global get U is used to keep the Until formulas
postponed so far. It is initialized as U(φ), which is the set of Until formulas

6 CF (ψ) denotes the set of conjuncts of ψ by taking it as an And formula.

in CF (φ) (φ is the input formula). The task of the ELIMINATION mode is
to check whether some elements in U can be satisfied (Line 5). If U becomes
empty, the SAT PURSUING mode is invoked to seek a satisfiable cycle (Line
1,2). If the SAT PURSUING mode does not succeed, the set U is reset to U(ψ),
where ψ is the current state. Then the attempt to satisfy the elements in U is
invoked again (Line 5). Now if the attempt is successful then U is updated and
the assignment found is returned to LTL-CHECK and getState terminates (Line
9,10). Otherwise, it turns into the CONFLICT ANALYZE mode. Note the two
constraints added in Line 5 enables SAT solvers to prune those states which
postpone all elements in U and whose next states are already explored.

Algorithm 4 Implementation of the SAT PURSUING mode

Require: an LTL formula φ and a global set U ;
Ensure: a next state of φ;
1: Let

ψ =


visisted[0](φ) if U = ∅ for the first time;

otherwise,∨
i≤pos visisted[i] pos is the previous position

when U becomes ∅.
2: Let P be an assignment of

(xnf (φ) ∧X(ψ))p ∧
∧
λ∈explored ¬(X(λ))p;

3: if P is not empty then
4: return P ;
5: else
6: Turn back into the ELIMINATION mode.
7: end if

To find a satisfying cycle, the SAT PURSUING mode tries to check whether
there is a visited state whose position in visitedS is less or equal than the posi-
tion where U becomes empty in previous time. Specially if U becomes empty for
the first time then only the initial state can be considered. Line 1 of Algorithm 4
assigns the disjunction of these states to be a constraint ψ. Then line 2 shows the
inquiry to SAT solvers to get an assignment whose next state appears before U
becomes empty in previous time. If the inquiry succeeds, the SAT PURSUING
mode returns the assignment found to LTL-CHECK, and getState terminates
(Line 4). Otherwise the SAT PURSUING mode turns back to the ELIMINA-
TION mode for further processing (Line 6).

Consider the visited state ψ whose position in visitedS is the one before where
U becomes empty (If U becomes empty for the first time, then ψ must be the
input formula φ). So the cycle formed by the SAT PURSUING mode succeeds
to satisfy all Until formulas in CF (ψ) – since U is reset to be U(ψ) after ψ and
all elements in U are satisfied when U becomes empty again. Thus according to
Theorem 5 a satisfying model is found.

C.3 Unsat Core Extraction

It may happen that all elements in U are postponed in the ELIMINATION
mode. Then the function turns into the CONFLICT ANALYZE mode, trying
to figure out whether 1). ψ is finally satisfied; or 2). ψ is postponed forever. The
trivial way to check all reachable states of φ postpone ψ is proven not efficient
due to its large cost, so we must introduce a more clever methodology.

Now let’s dig into the reason why ψ is postponed in φ. ψ is postponed in φ iff
the formula xnf (φ) ∧ v(ψ) is unsatisfiable. So there must be a minimal unsat
core S1 ⊆ CF (φ) such that

– xnf (
∧
S1) ∧ v(ψ) is unsatisfiable; and

– for each S′1 ⊂ S1, xnf (
∧
S′1) ∧ v(ψ) is satisfiable.

Note there are already works on computing such minimal unsat core (see [21]),
and we can directly apply them here.

Now the task changes to check whether there exists a next state φ1 of φ that
can avoid the appearance of S1, i.e. S1 6⊆ CF (φ1). We can achieve this via
SAT solvers by feeding them the formula xnf (φ) ∧ ¬X(

∧
S1). If the formula is

satisfiable, then the modeling assignment is the next state that can avoid S1;
Otherwise, there must be a minimal unsat core S2 ⊆ CF (φ) to

∧
S1, making

xnf (
∧
S2) ∧ ¬X(

∧
S1) is unsatisfiable – as S1 to ψ. Then the task changes to

check whether the avoidance of S2 can be achieved in the next state of φ . . .

This is a recursive process and one can see we may maintain a sequence of
minimal unsat cores ρ = S1, S2, . . . during computing the next state of φ. Then
the question raises up that if there is no other next state other than itself for
current state φ, how can it terminate the minimal-unsat-core computation?

Let θi = ψ ∧∧
1≤j≤i Sj , i.e. the formula which conjuncts ψ and minimal unsat

cores from S1 to Si. Apparently it holds θi+1 ⇒ θi(i ≥ 1) and what we expect
more for finding a next state is θi 6⇒ θi+1. Once θi ⇒ θi+1 holds as well, it
indicates θi is the unsat core we want to capture Until formula ψ is postponed
forever from φ. Actually the reason is under this case we can prove that, xnf (θi)∧
¬X(θi) is unsatisfiable which means ψ will be postponed in all reachable states
of φ.

Assume a next state φ1 of φ is found according to above strategy and a sequence
ρ = S1, S2, . . . , Sk(k ≥ 1) is maintained. Now φ1 tries to avoid Sk−1 in its next
state – Note Sk is not in CF (φ1) but Sk−1 is. (If k = 1 then φ1 tires to avoid ψ in
its next state). The corresponding formula is xnf (φ1)∧¬X(Sk−1). This attempt
may not succeed, and there may be another minimal unsat core S′k (not Sk) to
Sk−1. We must also maintain this information in the sequence. So it turns out
the sequence we have to maintain is the sequence of set of minimal unsat cores,
i.e. ρ = Q1, Q2, . . . , Qk where each Qi is a set of minimal unsat cores.

For example consider φ = (aU¬b) ∧ b ∧ Xb ∧ XXb, we can see easily ψ =
aU¬b is postponed currently and Q1 = {{b}}. Moreover Q2 = {{Xb}} and
Q3 = {{XXb}}. According to our strategy above, we first try to avoid elements
in Q3, that is to check xnf (φ) ∧ ¬X(

∨
S∈Q3

∧
S). Then we get the next state

φ1 = (aU¬b) ∧ b ∧ Xb. Similarly we get φ2 = (aU¬b) ∧ b and φ3 = aU¬b. By
then we know ψ = aU¬b is not postponed.
For the formula φ = Fa ∧ G¬a, we know ψ = Fa is postponed currently and
Q1 = {{Fa,G¬a}}. Since we know that θ1 = ψ ∧∨

S∈Q1

∧
S = Fa ∧ G¬a and

θ1 ∧ ¬Xθ1 is unsatisfiable – which means an unsat core is already found and ψ
will be postponed from φ forever. So we can terminate by returning unsatisfiable
and the unsat core Fa ∧G¬a.
For a more complicated example we consider φ = F (¬a∧¬b)∧a∧G((a→ Xb)∧
(b→ Xa)). The Until formula ψ = F (¬a∧¬b) is postponed currently and Q1 =
{{a}}. To avoid the elements in Q1 in next state, i.e. xnf (φ)∧¬X(

∨
S∈Q1

∧
S),

we can get the next state φ1 = F (a ∧ b) ∧ b ∧G((a→ Xb) ∧ (b→ Xa)). Now ψ
is also postponed due to b ∈ CF (φ1), and we update Q1 = {{a}, {b}}. Then we
collect existed states φ, φ1 together into set Sts, and try to avoid elements in Q1

in the next state of states – the formula is (
∨
φ∈Sts xnf (φ))∧¬X(

∨
S∈Q1

∧
S). But

this attempt still fails. So we getQ2 = {{a,G((a→ Xb)∧(b→ Xa))}, {b,G((a→
Xb)∧(b→ Xa))}}. As we see θ2 = ψ∧(

∨
S∈Q1

∧
S)∧(

∨
S∈Q2

∧
S) is an invariant,

i.e. xnf (θ2) ∧ X¬θ2 is unsatisfiable, so we know θ2 is the unsat core and φ is
unsatisfiable.
Now we start to define the sequence we maintain in the CONFLICT ANALYZE
mode, which we call avoidable sequence.

Definition 6 (Avoidable Sequence). For an LTL formula φ and ψ is an
Until subformula of φ, the avoidable sequence of ψ is a sequence ρ = Q0, Q1, . . .,
where Qi ⊆ 2cl(φ) and

– Q0 = {{ψ}};
– For i ≥ 0, let θi =

∧
0≤j≤i(

∨
S∈Qj

∧
S) then S′ ∈ Qi+1 (S′ ⊆ cl(φ)) if,

1. (θi ∧ ¬X(θi)) is satisfiable;
2. (

∧
S′) ∧ (θi ∧ ¬X(θi)) is unsatisfiable;

3. For each S′′ ⊂ S′, (
∧
S′′) ∧ (θi ∧ ¬X(θi)) is satisfiable.

Specially, we say ρ is an unavoidable sequence if there is k > 0 such that θk ⇒
θk+1.

The avoidable sequence is an abstract way to represent set of states that post-
pone ψ. If a state φ′ in the transition system Tφ satisfies φ′ ⇒ θi, then φ′ is
represented by θi. Let Sθi(Sθi+1

) be the set of states represented by θi(θi+1), it
is easy to see Sθi+1

⊆ Sθi due to θi+1 ⇒ θi. For example, assume the avoidable
sequence ρ = {{a}}, {{b}}, then we know θ1 = a and θ2 = a∧ b. Apparently the
state a ∧ ¬b can be represented by θ1, but not by θ2. Since the set of states in
Tφ is finite, so the avoidable sequence must also be finite.

Lemma 1. For an LTL formula φ and ψ is an Until subformula of φ, the avoid-
able sequence of ψ is finite.

Specially when ρ is an unavoidable sequence, i.e. θk−1 ⇒ θk(k > 0), it means es-
sentially Sθi = Sθi+1

. We can prove that in this case θi covers all states postpone
ψ forever. Before that we introduce the following lemma.

Lemma 2. For an LTL formula φ and ψ is an Until subformula of φ, if ρ =
Q0, Q1, . . . , Qk(k ≥ 1) is an unavoidable sequence of ψ, then it holds that xnf (θk)∧
¬X(θk) is unsatisfiable.

Proof. Since ρ is an unavoidable sequence, so Sθk−1
= Sθk . Assume λ is a state

represented by Sθk−1
, and it is also in Sk if there is S ∈ Qk such that S ⊆ CF (λ).

Now let’s recall the meaning of elements in Qk. Since S ∈ Qk so it satisfies
xnf (λ∧∧S)∧¬X(θk−1) is unsatisfiable. This means the reason (minimal unsat
core) causing all next states of λ are also in Sθk are contained by λ itself. Thus it
indicates all next states of states in Sθk−1

are also in Sθk , which formally means
xnf (θk) ∧ ¬X(θk) is unsatisfiable. ut

Algorithm 5 Implementation of the CONFLICT ANALYZE mode

Require: an LTL formula φ postpone all Until formulas in U ;
Ensure: a finite path satisfies at least one element of U or an unsat core;
1: Get some reachable states from φ and put them into Sts (including φ);
2: Let ρ = {{U}} and pos = 0;
3: Let θpos =

∧
0≤i≤pos

∨
S∈ρ[i]

∧
S;

4: while true do
5: while (xnf (

∨
Sts) ∧ ¬X(θpos))

p is satisfiable do
6: Let P be the assignment and add X(P) to Sts;
7: pos = pos− 1 and update θpos (pos is changed);
8: if pos < 0 then
9: return the finite path leading from φ to X(P);

10: end if
11: end while
12: Add computed set of minimal unsat cores to ρ[pos+1] (if ρ[pos+1] is not existed,

then extend it);
13: pos = pos+ 1 and update θpos;
14: while xnf (

∨
Sts) ∧ ¬X(θpos) is unsatisfiable do

15: Add computed set of minimal unsat cores to ρ[pos + 1] (if ρ[pos + 1] is not
existed, then extend it);

16: pos = pos+ 1 and update θpos;
17: if xnf (θpos) ∧ ¬X(θpos) is unsatisfiable then
18: return θpos as the unsat core;
19: end if
20: end while
21: Let P be the assignment of (xnf (

∨
Sts) ∧ ¬X(θpos))

p and add X(P) to Sts;
22: pos = pos− 1 and update θpos;
23: end while

Let Sρ be the set of states represented by the avoidable sequence ρ, then we
have

Theorem 6. For an LTL formula φ and ψ is an Until subformula of φ, if ρ is
an unavoidable sequence of ψ, then all states represented by Sρ are unsatisfiable.

Proof. From Lemma 2 we know all next states of states in Sρ are also in Sρ. And
since every state represented by Sρ can postpone ψ, so all states in Sρ together
can postpone ψ forever. Thus all states represented by Sρ are unsatisfiable. ut

Now we present the improved algorithm for CONFLICT ANALYZE mode. The
algorithm maintains the information of avoidable sequence in the mode and
utilizes it to locate the result. We should claim that, computing elements of
avoidable sequence is relatively expensive so far, and especially for extending
the length of the sequence. Consider that if finally the Until formula turns out
to be satisfiable, then it may wast time to maintain unnecessary long sequence.
To balance these situations, our algorithm starts from a set of states reachable
from the initial postponed state rather than only itself, in which case it can
increase the possibility to find the Until formula satisfiable earlier.
Note that Let ρ = Q0, Q1, . . . , Qk and we use ρ[i] to represent Qi in the algo-
rithm. The variable pos points to the position of ρ in which the elements should
be avoided currently. The notation X(P) means the set of Next formulas in P
(they form the next state indeed). In Line 1, users can decide by themselves the
number of reachable states and how to acquire them.

D More experiments on LTL-Satisfiability Checking

Table 2. Experimental results on the Schuppan-collected benchmark for satisfiable
formulas. Each cell lists a tuple 〈t, n〉 where n is the total number of solved formulas
and t is the total checking time for solving these n cases (in seconds).

Formula type ls4 TRP++ NuXmv-BMCINC Aalta v1.2 NuXmv-IC3-Klive Aalta v2.0

/acacia/example 152 49 192 50 0 50 1 50 8 50 1 50

/acacia/demo-v3 748 40 554 34 3 72 3 72 30 72 3 72

/acacia/demo-v22 60 20 67 20 0 20 2 20 4 20 1 20

/alaska/lift 487 22 322 16 282 238 4084 163 529 233 367 229

/alaska/szymanski 27 8 43 4 0 8 1 8 2 8 0 8

/anzu/amba 0 0 0 0 116 95 2686 65 582 94 273 98

/anzu/genbuf 0 0 0 0 122 109 3343 79 570 107 422 116

/rozier/counter 1214 90 1851 108 25 88 928 60 88 87 289 114

/rozier/formulas 163 3890 6087 3370 88 3890 1372 3890 649 3890 28 3890

/rozier/pattern 936 260 1230 251 1025 480 8 488 2232 471 9 488

/schuppan/O1formula 49 10 51 10 7 27 2 27 59 27 1 27

/schuppan/O2formula 77 10 89 10 98 24 2 27 253 27 0 27

/schuppan/phltl 87 5 33 4 135 17 233 10 78 18 1 17

/trp/N5x 81 371 83 371 10 371 309 360 145 371 12 371

/trp/N5y 334 234 331 234 8 234 16 234 84 234 10 234

/trp/N12x 4425 268 1639 65 33 625 768 620 531 625 94 625

/trp/N12y 3173 118 3062 111 29 313 413 313 318 313 12 313

/forobots 696 53 914 53 3 53 280 53 27 53 30 53

Total 12718 5448 16556 4711 1994 6714 14451 6689 6189 6700 1554 6750

This section shows more experimental results on LTL-satisfiability checking.
First we complete the results in Table 1 and list the results on satisfiable and

Table 3. Experimental results on the Schuppan-collected benchmark for unsatisfiable
formulas. Each cell lists a tuple 〈t, n〉 where n is the total number of solved formulas
and t is the total checking time for solving these n cases (in seconds).

Formula type ls4 TRP++ NuXmv-BMCINC Aalta v1.2 NuXmv-IC3-Klive Aalta v2.0

/acacia/example 0 0 0 0 0 0 0 0 0 0 0 0

/acacia/demo-v3 0 0 0 0 0 0 0 0 0 0 0 0

/acacia/demo-v22 0 0 0 0 0 0 0 0 0 0 0 0

/alaska/lift 73 22 3 2 77 8 384 10 38 34 544 30

/alaska/szymanski 0 0 0 0 0 0 0 0 0 0 0 0

/anzu/amba 0 0 0 0 0 0 0 0 0 0 0 0

/anzu/genbuf 0 0 0 0 0 0 0 0 0 0 0 0

/rozier/counter 0 0 0 0 0 0 0 0 0 0 0 0

/rozier/formulas 4 110 66 107 29 91 40 100 15 110 1 110

/rozier/pattern 0 0 0 0 0 0 0 0 0 0 0 0

/schuppan/O1formula 103 10 27 9 7 27 2 27 36 27 2 27

/schuppan/O2formula 106 9 16 3 3 2 2 27 69 20 5 27

/schuppan/phltl 64 4 19 3 22 4 89 4 15 7 36 4

/trp/N5x 62 109 62 109 17 100 139 88 42 109 8 109

/trp/N5y 113 46 104 45 0 0 130 10 18 46 16 46

/trp/N12x 0 0 0 0 56 117 456 20 174 175 64 174

/trp/N12y 277 6 180 4 0 0 34 13 95 67 238 67

/forobots 293 25 388 25 2 7 280 10 10 25 32 23

Total 1102 323 906 307 215 356 1556 309 512 620 946 617

unsatisfiable formulas separately, which are respectively shown in Table 2 and
Table 3. Slightly different with Table 1, each cell of these two tables lists a tuple
〈t, n〉 where n is the total number of solved formulas and t is the total checking
time for solving these n cases (in seconds). In these two table Aalta v2.0 is
tested by using heuristics. The separation may help readers understand better
of checking performance on satisfiability and unsatisfiability.

In additional to the schuppan-collected benchmarks, we also tested all solvers
on the random conjunction formulas, which is proposed in [18]. A random con-
junction formula RC(n) has the form of

∧
1≤i≤n Pi(v1, v2, . . . , vk), where n is the

number of conjunctive elements and Pi(1 ≤ i ≤ n) is a randomly chosen pattern
formula used frequently in practice7. The motivation is that typical temporal as-
sertions may be quite small in practice. And what makes the LTL satisfiability
problem often hard is that we need to check large collections of small temporal
formulas, so we need to check that the conjunction of all input assertions is sat-
isfiable. In our experiment, the number of n varies from 1 to 30, and for each
n a set of 100 conjunctions formulas are randomly chosen. The experimental
results are shown in Fig. 2. It shows that Aalta v2.0 (with heuristic) performs
best among tested solvers, and comparing to the second best solver (NuXmv),
it achieves approximately the 30% speed-up.

7 http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

Fig. 2. Results for LTL-satisfiability checking on Random Conjunction Formulas.

E SMT-based Temporal Reasoning

An additional motivation to base explicit temporal reasoning on SAT solving
is the need to handle LTL formulas with assertional atoms, that is, atoms that
are non-boolean state assertions, e.g., assertions about program variables, such
as k ≤ 10. Existing explicit temporal-reasoning techniques abstract such as-
sertions as propositional atoms. Consider, for example, the LTL formula φ =∧

1≤i≤n F (k = i), which asserts that k should assume all values between 1 and
n. By abstracting k = i as pi, we get the formula φ′ =

∧
1≤i≤n Fpi, but the

transition system for the abstract formula has 2n states, while the transition
system for the original formula has only n states. This problem was noted, but
not solved in [31], but it is obvious that reasoning about non-Boolean assertions
requires reasoning at the assertion level. Basing explicit temporal reasoning on
SAT solving, would enable us to lift it to the assertion level by using Satisfia-
bility Modulo Theories (SMT) solving. SMT solving is a decision problem for
logical formulas in combinations of background theories expressed in classical
first-order logic. Examples of theories typically used are the theory of real num-
bers, the theory of integers, and the theories of various data structures such as
lists, arrays, bit vectors, and others. SMT solvers have shown dramatic progress
over the past couple of decades and are now routinely used in industrial software
development [24].

So far, we described how to use SAT solving for checking satisfiability of propo-
sitional LTL formulas. And in this section we show that our approach can be
extended to reason assertional LTL formulas. In many applications, we need
to handle LTL formulas with assertional atoms, that is, atoms that are non-
boolean state assertions, e.g., assertions about program variables. For example,
Spin model checker uses temporal properties expressed in LTL using assertions
about Promela state variables [14]. Existing explicit temporal-reasoning tools,
e.g., SPOT [8], abstract such assertions as propositional atoms.
Recall that we utilize SAT solvers in our approach to compute assignments of
formulas φp (with φ is in XNF). The states of transition system are then obtained
from these assignments. When φ is an assertional LTL formula, the formula φp is
not a propositional formula, but a Boolean combination of theory atoms, for an
appropriate theory. Thus, our approach is still applicable, except that we need
to replace the underlying SAT solver by an SMT solver.
Consider, for example the formula φ = (F (k = 1) ∧ F (k = 2)). The XNF of
φ, i.e. xnf (φ), is ((v(F (k = 1)) ∧ (k = 1)) ∨ (¬v(F (k = 1)) ∧ XF (k = 1))) ∧
((v(F (k = 2))∧ (k = 2))∨ (¬v(F (k = 2))∧XF (k = 2))). If we use a SAT solver,
we can obtain an assignment such as A = {(k = 1), v(F (k = 1)),¬XF (k =
1), (k = 2), v(F (k = 2)),¬XF (k = 2)}, which is consistent propositionally, but
inconsistent theory-wise. This can be avoided by using an SMT solver. Generally
for a formula φn =

∧
1≤i≤n F (k = i), there are O(2n) states generated in the

transition system by the SAT-based approach, but only n states need to be
generated. This can be achieved by replacing the SAT solver in our approach
by an SMT solvers. The performance gap between the SAT-based approach and
the SMT-based approach would be exponential. Indeed, SPOT performance on
the formulas φn is exponential in n.
As proof of concept, we checked satisfiability of the formulas φn, for n =
1, . . . , 100, by Aalta v2.0. We then replaced Minisat by Z3, a state-of-the-art
SMT solver [24]. The performance results show indeed an exponential gap be-
tween the SAT-based approach and the SMT-based approach, which is shown in
Fig. 3. (Of course, we also gain in correctness: the formula F (k = 1 ∧ k = 2) is
satisfiable when considered propositionally, but unsatisfiable when considered as-
sertionally.) Applying SMT-based techniques in other temporal-reasoning tasks,
such as translating LTL to Büchi automata [11] or to runtime monitors [31], is
a promising research direction.

0 20 40 60 80 100

20

40

60

80

100

C
h

e
c
k
in

g
 T

im
e

(s
e

c
)

Size of n

SAT checking

SMT checking

Fig. 3. Results for LTL-satisfiability checking on
∧

1≤i≤n F (k = i).

