
Understanding VSIDS Branching Heuristics
in Conflict-Driven Clause-Learning SAT Solvers

Jia Hui Liang, Vijay Ganesh, Ed Zulkoski,
Atulan Zaman, and Krzysztof Czarnecki

University of Waterloo, Waterloo, Canada

Abstract. Conflict-Driven Clause-Learning (CDCL) SAT solvers cru-
cially depend on the Variable State Independent Decaying Sum (VSIDS)
branching heuristic for their performance. Although VSIDS was proposed
nearly fifteen years ago, and many other branching heuristics for SAT
solving have since been proposed, VSIDS remains one of the most effec-
tive branching heuristics. Despite its widespread use and repeated at-
tempts to understand it, this additive bumping and multiplicative decay
branching heuristic has remained an enigma.
In this paper, we advance our understanding of VSIDS by answering the
following key questions. The first question we pose is “what is special
about the class of variables that VSIDS chooses to additively bump?”
In answering this question we showed that VSIDS overwhelmingly picks,
bumps, and learns bridge variables, defined as the variables that con-
nect distinct communities in the community structure of SAT instances.
This is surprising since VSIDS was invented more than a decade before
the link between community structure and SAT solver performance was
discovered. Additionally, we show that VSIDS viewed as a ranking func-
tion correlates strongly with temporal graph centrality measures. Putting
these two findings together, we conclude that VSIDS picks high-centrality
bridge variables. The second question we pose is “what role does multi-
plicative decay play in making VSIDS so effective?” We show that the
multiplicative decay behaves like an exponential moving average (EMA)
that favors variables that persistently occur in conflicts (the signal) over
variables that occur intermittently (the noise). The third question we
pose is “whether VSIDS is temporally and spatially focused.” We show
that VSIDS disproportionately picks variables from a few communities
unlike, say, the random branching heuristic. We put these findings to-
gether to invent a new adaptive VSIDS branching heuristic that solves
more instances than one of the best-known VSIDS variants over the SAT
Competition 2013 benchmarks.

1 Introduction

The Boolean satisfiability (SAT) problem [14] is the quintessential NP-complete
problem, a class of decision problems conjectured to be computationally hard.
Yet, impressively, modern sequential Conflict-Driven Clause-Learning SAT solvers [15,
9, 32, 34, 6] are able to solve large instances obtained from real-world applica-
tions [29, 3]. Although hundreds of techniques and heuristics have been proposed

ar
X

iv
:1

50
6.

08
90

5v
3

 [
cs

.L
O

]
 1

4
Se

p
20

15

over the last five decades to solve the Boolean SAT problem [2, 3], modern SAT
solvers rely crucially only on a handful of them. Of these, the two most important
are Conflict-Driven Clause-Learning with backjumping (CDCL) [34] and Vari-
able State Independent Decaying Sum (VSIDS) branching heuristic [36]. Many
systematic experiments have been performed to ascertain the veracity of this ob-
servation [29]. Additionally, not only is VSIDS one of the most effective branching
heuristics, but many other well-known high-performing branching heuristics are
simply variants of VSIDS. Researchers have proposed some theoretical explana-
tions for the impact of clause-learning on the performance of the modern SAT
solvers: clause-learning allows SAT solvers to polynomially simulate general res-
olution propositional proof system [39, 5, 7]. However, our understanding of the
role played by VSIDS heuristic has previously been limited. The motivation for
the research presented in this paper is to achieve a better scientific understand-
ing of VSIDS. We focus on two well-known variations of VSIDS, namely cVSIDS
and mVSIDS, described in Section 2.

Our Scientific Findings and Contributions. In this paper we ask the fol-
lowing questions regarding the behavior of VSIDS.1 First, what is special about
the class of variables that VSIDS chooses to additively bump? (Answered by
Contributions I and III.) Second, what role does multiplicative decay play in
making VSIDS so effective? (Answered by Contribution IV.) Third, is VSIDS
temporally and spatially focused? (Answered by Contribution II.)

Contribution I: Bridge Variables and VSIDS. Community structure is a
property exhibited in many real-world graphs, particularly in social networks,
where the graph can be partitioned into groups of vertices, called communities,
such that each group is densely connected within itself but sparsely connected
with other groups. Recent research has shown that the community structure
quality of the SAT input correlates with faster solving time [38]. We show that
bridge variables connecting distinct communities in the community structure of
a SAT instance [21] are high priority targets for both the branching heuristic
and clause-learning, which suggests one possible explanation for this correlation.

Contribution II: Community-focused Search and VSIDS. We define two
terms, spatial focus and temporal focus, to describe how a branching heuristic
focuses on certain regions of the search space during solving, with respect to
the underlying community structure. We refer to this form of locality as focused
search, to distinguish it from local search performed by stochastic local search
solvers [25]. We show that mVSIDS is more focused than cVSIDS and random
branching according to these metrics.

Contribution III: Exponentially-smoothed Temporal Graph Central-
ity and VSIDS correlate strongly. Third, we show that VSIDS rankings
correlate strongly with the variable rankings induced by exponentially smoothed
temporal graph centrality (TGC) measures over the temporal variable incidence
graphs (TVIG) of the original and learnt clauses of an input SAT instance. This

1 All code and experimental data sets are available from our website: https://github.
com/JLiangWaterloo/vsids.

https://github.com/JLiangWaterloo/vsids
https://github.com/JLiangWaterloo/vsids

correlation remains strong throughout the run of the solver. The TVIG extends
the well-known variable incidence graph over Boolean formulas by incorporat-
ing the dynamically evolving aspect of the learnt clause database inside a SAT
solver and uses exponential smoothing to focus on recently learnt clauses. TGC
is the temporal version of the widely-used graph centrality measures, such as
degree and eigenvector centrality, which are used to identify important vertices
in a graph. The definitions are inspired by recent research on temporal aspects
of social networks [22, 42]. For example, the timed PageRank algorithm [42]
is used to discover important publications that are likely to be referenced in
the future. We show that VSIDS typically selects variables with high temporal
degree centrality and temporal eigenvector centrality. The above-mentioned find-
ings essentially tell us that we have a single family of mathematically-precise
graph-theoretic measures, namely TGC, that succinctly characterizes both the
additive bump and multiplicative decay components of VSIDS family of heuris-
tics. Variables that have high centrality correspond to variables in “recent” learnt
clauses that are “highly-constrained” and get additively bumped. Variables that
are not “persistently” highly-constrained, i.e., do not occur frequently in recent
learnt clauses get decayed away quickly. Putting together Contributions I and
III, we conclude that VSIDS picks high-centrality bridge variables.

Contribution IV: Exponential Moving Average and Multiplicative De-
cay in VSIDS. Fourth, we show that the multiplicative decay in VSIDS is a
form of exponential moving average, and provide a plausible explanation as to
why this is crucial to the effectiveness of VSIDS.

Contribution V: A Novel Adaptive Branching Heuristic. Our findings
led to a new VSIDS called adaptVSIDS that adapatively adjusts the exponential
moving average (a form of adaptive moving average) depending on the quality of
the learnt clauses. We show that adaptVSIDS outperforms mVSIDS, by solving
2.4% more instances over the SAT Competition 2013 benchmarks.

2 Background

Here we describe VSIDS and the variable incidence graph of a CNF formula.

The VSIDS Branching Heuristic and Variants. The term VSIDS refers to
a family of branching heuristics widely used in modern CDCL SAT solvers that
rank all variables of a Boolean formula during the run of a solver. As things stand
today, VSIDS is significantly more effective than other well-known heuristics
such as DLIS [33], MOM [18], Jeroslow-Wang [28], and BOHM [12]. VSIDS was
a major breakthrough when first introduced as part of the Chaff solver [36]. The
key idea is to collect statistics over learnt clauses to guide the direction of the
search, where recent learnt clauses are favored. The key characteristics of VSIDS
is the additive bumping and multiplicative decay behavior, described in more
details below. Another positive characteristic of VSIDS is its low computational
overhead. We focus on two of the more well-known variants of VSIDS, namely,
the variant from Chaff [36] and the variant from MiniSAT version 2.2.0 [15]. We

refer to these variants as cVSIDS and mVSIDS respectively. Both variants have
the common characteristics listed below.

Activity Score, Initialization and VSIDS Ranking. VSIDS assigns a float-
ing point number, called activity, to each variable in the Boolean formula. At
the begining of a run of a solver, the activity scores of all variables are typically
initialized to 0. We refer to the ranking of variables according to their activity
scores in the decreasing order as the VSIDS ranking. VSIDS picks the variable
with the highest activity to branch on.
Additive Bump and Multiplicative Decay. When the solver learns a clause,
a set of variables is chosen, and their activities are additively increased, typically
by 1. The quantum of this increase is called the (additive) bump. At regular
intervals during the run of the solver, the activities of all variables are multiplied
by a constant 0 < α < 1 called the (multiplicative) decay factor.

cVSIDS. The activities of variables occurring in the newest learnt clause are
bumped up by 1, immediately after the clause is learnt. The activities of all
variables are multiplied by a constant 0 < α < 1. The decay occurs after every i
conflicts. We follow the policy used in recent solvers like MiniSAT and use i = 1.
mVSIDS. The activities of all variables resolved during conflict analysis that
lead to the learnt clause (including the variables in the learnt clause) are bumped
up by 1. The activities of all variables are decayed as in cVSIDS 2.

Variable Incidence Graph (VIG). The VIG of a CNF formula F is defined
as follows: vertices of the graph are the variables in the formula. For every clause
c ∈ F we have an edge between each pair of variables in c. In other words, each
clause corresponds to a clique between its variables. The weight of an edge is

1
|c|−1 where |c| is the length of the clause. VIG does not distinguish between

positive and negative occurrences of variables. We combine all edges between
each pair of vertices into one weighted edge by summing the weights. More
precisely, the VIG of a CNF formula F is a weighted graph defined as follows:
set of vertices V = V ar, set of edges E = {xy | x, y ∈ c ∈ F}, and the weight
function w(xy) =

∑
x,y∈c∈F

1
|c|−1 .

3 Contribution I and II: Community-focused Search,
Bridge Variables, and VSIDS

In this section, we describe the experimental setup, methodology, and results to
show the connection between VSIDS and community structure.

The Hypotheses. Here we state the three hypotheses that we tested in this
section: 1) Bridge Experiment: VSIDS disproportionately picks, bumps, and
learns the bridge variables, 2) Spatial Focus Experiment: VSIDS dispropor-
tionately picks from a smaller number of communities rather than a large fraction

2 MiniSAT’s actual implementation is slightly different, but has the same effect. Rather
than decaying the activities of every variable, it increases the bump quantum of all
future conflicts instead [8].

of the communities of a SAT instance, and 3) Temporal Focus Experiment:
VSIDS typically picks from recently-seen communities.

Community Structure of the Graph of SAT Instances, and Bridge
Variables. The concept of decomposing graphs into natural communities [13, 43]
arose in the study of complex networks such as the graph of biological systems.
Informally, a network or graph is said to have community structure if the graph
can be decomposed into sub-graphs where the sub-graphs have more internal
edges than outgoing edges [38]. We say that a graph has a “good” community
structure if the percentage of intra-community edges is significantly higher than
inter-community edges. We refer to these inter-community edges as bridges, and
the vertices connected by such edges as bridge vertices. In the context of the
community structure of the VIG of a Boolean formula, bridge vertices are called
bridge variables. We refer the reader to these papers [13, 43] for a more formal
introduction to community structure of graphs.

Recently there has been some interesting discoveries regarding the impact of
community on CDCL SAT solver performance [38]. Specifically, the authors of
the paper [38] showed that the running time of CDCL solvers is strongly corre-
lated with community structures of SAT instances. In light of these discoveries,
it was but natural for us ask the question whether VSIDS somehow exploits the
community structure of SAT instances. What we discovered and explain below
is that VSIDS disproportionately picks, bumps, and learns the bridge variables
in the community structure of SAT instances.

Temporal and Spatial Focused Search. We further define two terms, spa-
tial focus and temporal focus, to describe how a branching heuristic gravitates
towards certain regions of the search space during solving, with respect to the
underlying community structure. We say a branching heuristic is spatially fo-
cused if it disproportionately picks variables from a small set of communities,
when normalized for size, throughout the entire run of the solver. A branching
heuristic exhibits temporal focus if it typically picks a new decision variable from
a small fixed-size window of recently-seen communities.

Experimental Setup and Methodology. Experiments were performed over
the 1030 instances from SAT Competition 2013 [3], after simplification using
MiniSAT simplifying-solver. We use the Louvain method [10] to compute the
communities of the VIG of the input SAT formulas. There are many community-
detecting algorithms to choose from and we picked Louvain because it scales well
with the size of input graphs. For each instance, the Louvain method is given an
hour to compute and save the communities it finds. The community information
is then given to a modified MiniSAT 2.2.0 so it can track the bridge variables.
Due to the high cost, we only compute the communities once at the start.

For the Bridge-Experiment , we ran the instances using a modified MiniSAT
with a timeout of 5000 seconds, as per the SAT Competition 2013 rules. Before
MiniSAT begins its CDCL loop, it reads in the community information stored
by the Louvain method. The solver then scans through its the initial input
clauses and checks which variables share at least one clause with another variable
residing in a different community and marks them as bridge variables. Whenever

our modified version of MiniSAT 1) picks a decision variable, 2) bumps a variable,
and 3) learns a clause over a variable during the search, it checks whether the
variable is a bridge variable. If so, the solver updates its internal counters to
keep track of the number of bridge variables in the each of the 3 scenarios.
At the end of the run, the solver outputs the percentage of variables that are
bridge in each of these scenarios. This additional code adds little overhead and
does not change the behavior of MiniSAT. We are simply instrumenting the
solver to collect statistics of interest. For the Temporal-Experiment and Spatial-
Experiment , we additionally modified MiniSAT to record all decision variables
to a file, in order to post-process the data. We allowed a 10000 second timeout
for these experiments due to this additional overhead.

The Reporting of Results. In the Bridge-Experiment , for each instance, we
compute the percentage of decision variables, bumped variables, learnt clause
variables, and number of variables that are also bridges. Then we averaged these
percentages over the three SAT 2013 Competition benchmark categories (appli-
cation, combinatorial, and random) and reported these numbers.

For the Spatial-Experiment , for every community i, we compute a commu-
nity score csi = picks from(i)/order(i), where picks from(i) is the number
of times the solver branched on a variable from community i and order(i)
is the size of community i in terms of variables. We then use the Gini coef-
ficient [20], a statistical measure of inequality, to compute our spatial score
ss = gini(csi for i ∈ communities). A score of 1 indicates total disparity (e.g.
all picks are from one community), whereas zero indicates total equality. Higher
scores therefore favor our hypothesis. We report the average ss value for each
benchmark category. The intuition behind this experiment and the use of the
Gini coefficient here (used in measuring the inequality of wealth distribution
in countries) is that it is an effective method for computing how unequally a
branching heuristic favors some communities over others. Using this metric we
show for example that VSIDS disproportionately favors a small set of commu-
nities (highly unequal distribution of picks) versus random branching heuristic
(largely equal distribution of picks).

For the Temporal-Experiment , we define our window size ws to be 10% of
the total number of communities, rounded up to the nearest integer. For all
instances, our window contains the set of communities from the ws most recent
decisions (note that the set may have less than ws elements). At every decision,
we increment a counter window hits if the current variable is from a community
in the window. We assign a temporal score ts = window hits/decisions for
each instance. We report the average ts value for each benchmark category. The
key idea behind this experiment is to test the hypothesis that VSIDS branching
favors picking from recently picked-from communities, versus random which does
not display such temporal locality.

Results and Interpretations of Bridge Variable Experiment. Table 1
shows that bridge variables are highly favored in MiniSAT by its branching
heuristic, conflict analysis, and clause-learning. It is a surprising result that
bridge variables are favored even though the heuristics and techniques in Min-

Category
% of

variables
that are bridge

% of
picked variables
that are bridge

% of
bumped variables

that are bridge

% of
learnt clause variables

that are bridge

Application 61.0 79.9 71.6 78.4
Combinatorial 78.2 87.6 84.3 88.2

Table 1: MiniSAT’s CDCL and mVSIDS techniques prefers to pick, bump, and
learn over bridge variables.

Category mVSIDS cVSIDS random

Application 0.592 0.560 0.216
Combinatorial 0.275 0.261 0.099
Random 0.029 0.023 0.006

(a) Spatial-Experiment average ss score.

Category mVSIDS cVSIDS random

Application 0.580 0.551 0.268
Combinatorial 0.505 0.473 0.265
Random 0.269 0.268 0.219

(b) Temporal-Experiment average ts score.

Table 2: (a) VSIDS heuristics are more spatially focused than random branching.
(b) VSIDS heuristics tend to pick from recently-picked communities.

iSAT have no notion of communities. While bridge variables certainly make up
a large percent of variables, the percent of picked bridge variables is even higher.
Table 1 includes only the instances where the Louvain implementation completed
before timing out. In total, 229/300 instances in the application category and
238/300 instances in the hard combinatorial category are included in the Table 1.
In the random category, every variable is a bridge, hence the results are omitted.
This is expected because it is highly improbable to generate random instances
where a variable is not neighboring another variable outside its community.

Recent research suggests that CDCL solvers take advantage of good commu-
nity structure in SAT instances [38] leading to faster solving time. The reason for
this phenomenon is not fully understood. One possibility is that good commu-
nity structure lends itself to divide-and-conquer because the bridges are easier to
cut (i.e., satisfy). More precisely, the solver can focus its attention on the bridges
by picking the bridge variables and assigning them appropriate values. When it
eventually assigns the correct values to enough bridges, the VIG is divided into
multiple components, and each component can be solved with no interference
from each other. Even if the VIG cannot be completely separated, it may still
be beneficial to the cut bridges between communities so that these communities
can be solved relatively independently.

Results and Interpretations of Temporal and Spatial Focused Search
Experiments. Table 2a depicts the average Gini coefficient for the Spatial-
Experiment . Both VSIDS techniques exhibit much more inequality relative to
random branching for the application and combinatorial instances, indicating
that VSIDS may be attempting to hone in on certain communities. The very
low values for random instances indicate that none of the branching heuristics
typically favor certain communities, likely due to the poor community structures
exhibited by such instances. Table 2b demonstrates that VSIDS techniques are
much more temporally focused on average than random branching. It is com-
monly believed that VSIDS improves the search locality [32, 37] which in turn
improves solver performance. However, this term search locality has previously

been not rigorously defined. We precisely defined spatial focus and temporal
focus, and show that VSIDS displays high search locality in terms of these defi-
nitions.

4 Contribution III: Experimental Evidence Supporting
Strong Correlation Between TGC and VSIDS

In this section, we describe the experiments to support the hypothesis that the
VSIDS variants cVSIDS and mVSIDS, viewed as ranking functions, correlate
strongly with both temporal degree centrality and temporal eigenvector cen-
trality according to Spearman’s rank correlation coefficient and top-k measures.
Combining the results of this section with Contribution I (namely, VSIDS picks,
bumps and learns over bridge variables), we conclude that VSIDS picks high-
centrality bridge variables.

Temporal Variable Incidence Graph (TVIG). To incorporate the temporal
aspect of learnt clauses we introduce temporal variable incidence graph (TVIG)
here, that extends the VIG by encoding temporal information into its structure.
In the TVIG, every clause is labeled with a timestamp denoted t(c). The t(c) is
equal to 0 if c is a clause from the original input formula, otherwise t(c) is equal
to the number conflicts up to the learning of c. We refer to the difference between
the current time t and the timestamp of a clause t(c) as the age of the clause:
age(c) = t− t(c). Fix an exponential smoothing factor 0 < α < 1. The TVIG is
a weighted graph constructed in the same manner as the VIG except the weight

of an edge is αage(e)

|c|−1 . Like the VIG, multiple edges between a pair of vertices are

combined into one weighted edge. More precisely, the TVIG of a clause database
at time t is defined in the same way as VIG except with a modified weight

function that takes the ages of clauses into account: w(xy) =
∑
x,y∈c∈F

αage(c)

|c|−1 .

Observe that the TVIG evolves throughout the solving process: as new learnt
clauses are added, new edges are added to the graph, and all the ages increase.
As an edge’s age increases, its weight decreases exponentially with time assuming
no new learnt clause contains its variables. In many domains, it is often the case
that more recent data points are more useful than older data points.

(Temporal) Degree and Eigenvector Centrality. A graph centrality mea-
sure is a function that assigns a real number to each vertex in a graph. The num-
ber associated with each vertex denotes its relative importance in the graph [19,
16, 41]. For example, the degree centrality [16] of a vertex in a graph is de-
fined as the degree of the vertex. The eigenvector centrality of a vertex in a
graph is defined as its corresponding value in the eigenvector of the greatest
eigenvalue of the graph’s adjacency matrix. We similarly define the temporal
versions of degree and eigenvector centrality. The key idea needed to define tem-
poral graph centrality measures is to incorporate temporal information inside
the TVIG. The temporal degree centrality (TDC) and (resp. temporal eigenvec-
tor centrality (TEC)) of a vertex at time t is defined as the degree centrality
(resp. eigenvector centrality) of the vertex in the TVIG at time t.

Experimental Setup and Methodology. We implemented the VSIDS vari-
ants and TGC measures in MiniSAT 2.2.0 [15]. All the experiments were per-
formed using MiniSAT on all 1030 Boolean formulas obtained from all three
categories (application, combinatorial, and random) of the SAT Competition
2013 [3]. Before beginning any experimentation, the instances are first simplified
using MiniSAT’s inbuilt preprocessor with the default settings. All experiments
were performed on the SHARCNET cloud [4], where cores range in specs be-
tween 2.2 to 2.7 GHz with 4 GB of memory, and 4 hour timeout. We use 100
iterations of the power iteration algorithm [23] to compute TEC, and 1 iteration
for TDC. We use MiniSAT’s default decay factor of 0.95 for VSIDS. We also use
0.95 as the exponential smoothing factor for the TVIG. We take measurements
on the current state of the solver after every 5000 iterations, where an iteration
is defined as a decision or a conflict. Observe that we take measurements dynam-
ically as the solver solves an instance, and not just once at the beginning. Such
a dynamic comparison gives us a much better picture of the correlation between
two different ranking functions or measures than a single point of comparison.

Methodology for Comparing Rankings based on Spearman’s Rank
Correlation Coefficient. For each set of experiments, for each SAT instance,
for every measurement made, we compute the Spearman’s rank correlation coef-
ficient [40] between the VSIDS and TGC rankings. Spearman’s rank correlation
coefficient is a widely-used correlation coefficient in statistics for measuring the
degree of relationship between a pair of rankings. The strength of Spearman’s
correlation is conventionally interpreted as follows: 0.00–0.19 is very weak, 0.20–
0.39 is weak, 0.40–0.59 is moderate, 0.60–0.79 is strong, 0.80–1.00 is very strong.
We compute the average of the Spearman’s correlation over the execution of a
SAT solver on each instance. We follow the standard practice of applying the
Fisher transformation [17] when aggregating the correlations.

Methodology for Comparing Rankings based on Top-k. Let v be the
unassigned variable with the highest ranked according to some VSIDS variant.
Let i be the position of variable v according to a specific TGC ranking, ex-
cluding assigned variables. Then the top-k measure is 1 if i ≤ k, otherwise 0.
The rationale for this metric is that SAT solvers typically only choose the top-
ranked unassigned variable, according to the VSIDS ranking, to branch on. If
the VSIDS top-ranked unassigned variable occurs very often among the top-k
ranked variables according to TGC, then we infer that VSIDS picks variables
that are highly ranked according to TGC. In our experiments, we used various
values for k. Again, we compute the average of top-k measure over the execution
of a SAT solver on each instance.

The Reporting of Results. For every pair of rankings, one from the VSIDS
family and the other from the TGC family, we report the top-k measure and
Spearman’s rank correlation coefficient between the pair of rankings every 5000
iterations. On termination, we compute the average for the instance. We take all
the instance averages and average them again, and report the average of the av-
erages. The final numbers are labeled as “mean top-k” or “mean Spearman”. For
example, a mean top-10 of 0.912 is interpreted as “for the average instance in the

cVSIDS vs TDC mVSIDS vs TDC
Application Combinatorial Random Application Combinatorial Random

Mean Spearman 0.818 0.946 0.988 0.629 0.791 0.864
Mean Top-1 0.884 0.865 0.949 0.427 0.391 0.469
Mean Top-10 0.912 0.898 0.981 0.705 0.735 0.867

Table 3: Results of comparing VSIDS and TDC.

cVSIDS vs TEC mVSIDS vs TEC
Application Combinatorial Random Application Combinatorial Random

Mean Spearman 0.790 0.926 0.987 0.675 0.764 0.863
Mean Top-1 0.470 0.526 0.794 0.293 0.304 0.418
Mean Top-10 0.693 0.746 0.957 0.610 0.670 0.856

Table 4: Results of comparing VSIDS and TEC.

experiment, 91.2% of the measured top-ranked variables according to VSIDS are
among the 10 unassigned variables with the highest centrality”. Likewise, a high
mean Spearman implies the average instance has a strong positive correlation
between VSIDS and TGC rankings.

Results and Interpretations. In Table 3 (resp. Table 4), we compare VSIDS
and TDC (resp. TEC) rankings. The data shows a strong correlation between
VSIDS and TDC, in particular, the 0.818 mean Spearman between cVSIDS and
TDC is high. The metrics are lower with TEC, but the correlation remains
strong. mVSIDS has a better mean Spearman with TEC than TDC in the ap-
plication category. We have also conducted this experiment with non-temporal
degree/eigenvector centrality and the resulting mean Spearman and mean top-k
are significantly lower than their temporal counterparts.

It is commonly believed that VSIDS focuses on the “most constrained part
of the formula” [24], and that this is responsible for its effectiveness. However,
the term “most constrained part of the formula” has previously not been well-
defined in a mathematically precise manner. One intuitive way to define the
constrainedness of a variable is to analyze the Boolean formula, and count how
many clauses a variable occurs in. The variables can then be ranked based on
this measure. In fact, this measure is the basis of the branching heuristic called
DLIS [33], and was once the dominant branching heuristic in SAT solvers. We
show that graph centrality measures are a good way of mathematically defining
this intuitive notion of syntactic “constrainedness of variables” that has been
used by the designers of branching heuristics. Degree centrality of a vertex in
the VIG is indeed equal to the number of clauses it belongs to, hence it is a good
basis for guessing the constrained variables for the same reason. Eigenvector
centrality extends this intuition by further increasing the ranks of variables close
in proximity to other constrained variables in the VIG. Additionally, as the
dynamic structure of the VIG evolves due to the addition of learnt clauses by
the solver, the most highly constrained variables in a given instance also change
over time. Hence we incorporated learnt clauses and temporal information into
the TVIG to account for changes in variables’ constrainedness over time.

Besides the success of branching heuristics like VSIDS and DLIS, there is
additional evidence that the syntactic structure is important for making good
branching decisions. For example, Iser et al. discovered that initializing the

VSIDS activity based on information computed on the abstract syntax tree of
their translator has a positive impact on solving time [27]. In a different pa-
per [38], the authors have shown that the graph-theoretic community structure
strongly influences the running time of CDCL SAT solvers. This is more evidence
of how CDCL SAT solver performance is influenced by syntactic graph proper-
ties of input formulas. Finally, by combining the results of this section with
Contribution I, we conclude that VSIDS picks high-centrality bridge variables.

5 Contribution IV: Exponential Moving Average and
Multiplicative Decay

In this section, we argue that the multiplicative decay aspect of the VSIDS
branching heuristic is a form of exponential moving average (EMA) [11]. It is
the inclusion of multiplicative decay in VSIDS that gives it its distinctive feature
of focusing its search based on recent conflicts. The original Chaff paper [36] and
patent [35] rather cryptically mentioned that VSIDS acts like a “low-pass filter”.
They do not specify what signals are being fed to this filter, and why the high-
frequency components are being filtered out and discarded.

In his paper [8], Armin Biere was perhaps the first to articulate the idea that
additive bumping of variable scores can be viewed as a signal (a square wave,
to be more precise) over the run of the solver. More precisely, at every time
step, the signal of a variable is 1 if it is bumped, or 0 otherwise. Armin Biere
formalized normalized VSIDS [8] as sn = (1 − f) ×

∑n
k=1 δk × fn−k. sn is the

normalized VSIDS activity of a variable v after the nth conflict. δk = 1 if variable
v was bumped in the kth conflict, otherwise δk = 0. f is the decay factor.

While Huang et al. [26] referred to VSIDS as an EMA, we will show this ex-
plicitly. We not only characterize VSIDS as an EMA explicitly, but also describe
why this is crucial to the effectiveness of VSIDS as a branching heuristic. In the
next section we leverage this connection between EMA and VSIDS to propose
an adaptive VSIDS branching heuristic inspired by an adaptive version of EMA.

EMA is a form of exponential smoothing, used in getting rid of noise (vari-
ables whose VSIDS scores are akin to high-frequency signals) in time series data
(the signals due to VSIDS scores). Exponential smoothing is a class of tech-
niques to mitigate the effect of random noise in time series data for the purpose
of analysis and forecasting. Armin Biere’s normalized VSIDS equation can be
rewritten to the following recursive formula: sn = (1− f)× δn + f × sn−1. This
formula fits exactly the definition of Brown’s simple exponential smoothing, also
known as exponential moving average. Therefore normalized VSIDS is exactly
an EMA over the δ time series. The EMA causes VSIDS to favor variables that
“persistently” occur in “recent” conflicts. A rationale why this is effective could
be as follows: A conflict essentially points to faulty judgment by the solver in
assigning values to variables. If a set of variables are at the root of a faulty judg-
ment and thus occurs in a conflict, then they would repeatedly occur in related
faulty judgments and hence in related conflicts. Variables that occur persistently
in “recent” conflicts could be a good guess for the root cause of those conflicts.

Hence, perhaps the most effective search strategy is to focus on determining this
root cause. The learnt clauses that result from such a strategy improve in quality
with time, until such time that the root cause of a set of faulty judgment has
been determined and enshrined as a learnt clause.

6 Contribution V: A Faster Branching Heuristic Based
On Adaptive Moving Average

In this section, we report on our design of a better VSIDS based on the knowledge
that VSIDS decay is a form of EMA. The EMA is integral to VSIDS performance
as a branching heuristic, and now that the connection between EMA and VSIDS
is established, all the literature on EMA and other time series data analysis are
directly applicable to VSIDS.

Adaptive Moving Average. Given that VSIDS decay is a form of EMA, we
studied the literature of EMA from the financial domain [31], where it is known
that the fixed decay factor can be undesirable. A moving average with a large
decay factor would lag behind fast moving markets whereas a small decay factor
would fail to smooth out a lot of noise. Kaufman [31] noted that a fixed decay
factor performs poorly when the market volatility changes. He devised adaptive
moving average where the decay factor (also known as smoothing constant) is
determined by the market volatility to minimise lag and noise. By fluctuating
the decay factor when necessary, adaptive moving average is better than EMA
at uncovering trends in the market.

Just like how markets can go up and down, a CDCL SAT solver can go up
and down in “productivity” over time. For example, Audemard and Simon [6]
discovered that a learnt clause with lower literals blocks distance (LBD) [6] is
of higher quality. LBD of a clause is defined to be the number of decision lev-
els that its variables span. If the solver is in a search space that produces many
learnt clauses with low LBD, then we want to encourage the solver to stay within
that search space. We do so by adjusting the VSIDS decay factor to be closer
to 1, i.e., decay slower. On the other hand, if the solver is in a search space
that produces many learnt clauses with high LBD, it is best to choose a smaller
decay factor, i.e., decay faster. Based on this insight, we devised a new VSIDS
heuristic called adaptVSIDS by extending mVSIDS with an adaptive moving
average. adaptVSIDS maintains a floating-point number lbdema equal to the
exponential moving average of the learnt clause LBDs. lbdema is updated after
every learnt clause and this number will be used to adjust the decay factor of the
variables’ activities. In mVSIDS, the variables’ activities are decayed by multi-
plying with a constant decay factor, typically 0.95, after each conflict. Whereas
in adaptVSIDS, the decay factor is adjusted based on the LBD of the learnt
clause. If the LBD of the learnt clause is greater than lbdema, then use a decay
factor of 0.75, otherwise use a decay factor of 0.99. Our website has all the code.

Experimental Setup and Methodology. The experiments were performed
on the application and combinatorial categories of the SAT Competition 2013.
For each instance with a timeout of 5000 seconds as per competition rules, we ran

an unmodified MiniSAT 2.2.0 and a modified MiniSAT 2.2.0 with adaptVSIDS
on StarExec [1].

Results and Interpretations. Our adaptVSIDS solved 351 instances whereas
mVSIDS solved 343 instances, an increase of 2.4% more solved instances.

7 Interpretation of Results

We began our research by posing a series of questions regarding VSIDS, and we
now interpret the results obtained in light of these questions.

What is special about the class of variables that VSIDS chooses to ad-
ditively bump? (Answered by Contributions I and III.) In the bridge variables
experiment (Section 3), we showed that VSIDS disproportionately favored bridge
variables. Even though SAT instances have large number of bridge variables on
average, the frequency with which VSIDS picks, bumps, and learns bridge vari-
ables is much higher. There is no a priori reason to believe that VSIDS would
behave like this. This surprising result, plus a previous result that good com-
munity structure correlates with faster solving time [38], suggests CDCL solvers
exploit community structure. More precisely, they target variables linking dis-
tinct communities, possibly as a way to solve by divide-and-conquer approach.

In the VSIDS vs. TGC experiments (Section 4), we used the Spearman’s rank
correlation coefficient to show that the VSIDS and TGC rankings are strongly
correlated. From our experiments, we can say that for all the VSIDS variants
considered in this paper, additive bumping matches with the increase in central-
ity of the chosen variables. We also observe from our results that the variables
that solvers pick for branching have very high TGC rank. The concept of cen-
trality allows us to define in a mathematically precise the intuition many solver
developers have had, i.e., that branching on “highly constrained variables” is
an effective strategy. Our bridge variable experiment combined with the TGC
experiment suggests that VSIDS focuses on high-centrality bridge variables.

What role does multiplicative decay play in making VSIDS so effec-
tive? (Answered by Contribution IV, that in turn led to a new adaptive VSIDS
presented as Contribution V.) We show that multiplicative decay is essentially
a form of exponential smoothing (Section 5). We add an explanation as to why
this is important, namely, that exponential smoothing favors variables that per-
sistently occur in conflicts and this is a better strategy for root-cause analysis.
We designed a new VSIDS technique, we call adaptVSIDS, based on the above
results, wherein we rapidly decay the VSIDS activity if the learnt clause LBDs
are large (Section 6). We showed that this technique is better than mVSIDS on
the SAT Competition 2013 benchmark.

Is VSIDS temporally and spatially focused? (Answered by Contribution
II.) We show that VSIDS exhibits spatial focus and temporal focus (Section 3),
forms of locality in search. While there has been speculation among solver re-
searchers that that CDCL with VSIDS solvers perform local search, we precisely
define spatial and temporal locality in terms of the community structure.

8 Related Work

Marques-Silva and Sakallah are credited with inventing the CDCL technique [34].
The original VSIDS heuristic was invented by the authors of Chaff [36]. Armin
Biere [8] described the low-pass filter behavior of VSIDS, and Huang et al. [26]
stated that VSIDS is essentially an EMA. Katsirelos and Simon [30] were the
first to publish a connection between eigenvector centrality and branching heuris-
tics. In their paper [30], the authors computed eigenvector centrality (via Google
PageRank) only once on the original input clauses and showed that most of the
decision variables have higher than average centrality. Also, it bears stressing
that their definition of centrality is not temporal. By contrast, our results corre-
late VSIDS ranking with temporal degree and eigenvector centrality, and show
the correlation holds dynamically throughout the run of the solver. Also, we
noticed that the correlation is also significantly stronger after extending central-
ity with temporality. Simon and Katsirelos do hypothesize that VSIDS may be
picking bridge variables (they call them fringe variables). However, they do not
provide experimental evidence for this. To the best of our knowledge, we are
the first to establish the following results regarding VSIDS: first, VSIDS picks,
bumps, and learns high-centrality bridge variables; second, VSIDS-influenced
search is more spatially and temporally focused than other branching heuristics
we considered; third, explain the importance of EMA (multiplicative decay) to
the effectiveness of VSIDS; and fourth, invent a new adaptive VSIDS branching
heuristic based on our observations.

9 Conclusions and Future Work

In this paper we present various empirically-verified findings on VSIDS. We show
that VSIDS tends to favor the high-centrality bridge variables in the community
structure of the Boolean formula. In addition, we show that VSIDS focuses on
a small subset of communities in the graph of a SAT instance during search.
Lastly, we explain the multiplicative decay of VSIDS with EMA and use this
finding to devise a new branching heuristic we call adaptVSIDS. These results
put together show that community structure, graph centrality, and exponential
smoothing are important lenses through which to understand the behavior of
the VSIDS family of branching heuristics and CDCL SAT solving. In the future,
we plan to strengthen our results by considering a larger number of benchmarks,
solvers, branching heuristics, and graph representations.

10 Acknowledgement

We thank Kaveh Ghasemloo for his help in refining our TGC model and for his
insight on the connection between VSIDS decay and exponential moving average.

References

[1] Starexec, http://www.starexec.org/

[2] Proceedings of Past SAT Conferences (2013), http://www.satisfiability.org

[3] SAT Competition Website (2013), http://www.satcompetition.org

[4] SHARCNET Website (2013), https://www.sharcnet.ca

[5] Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. In: Theory and Applications of Satisfia-
bility Testing-SAT 2009, pp. 114–127. Springer (2009)

[6] Audemard, G., Simon, L.: Glucose: a solver that predicts learnt clauses quality.
IJCAI 9, 399–404 (2009)

[7] Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. Journal of Artificial Intelligence Research (JAIR)
22, 319–351 (2004)

[8] Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Proceed-
ings of the 11th International Conference on Theory and Applications of Satisfi-
ability Testing. pp. 28–33. SAT’08, Springer-Verlag, Berlin, Heidelberg (2008)

[9] Biere, A.: Lingeling (2010)

[10] Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10008 (2008)

[11] Brown, R.G.: Exponential Smoothing for predicting demand. Little (1956)

[12] Buro, M., Büning, H.K.: Report on a SAT competition. Fachbereich Math.-
Informatik, Univ. Gesamthochschule (1992)

[13] Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very
large networks. Physical review E 70(6), 066111 (2004)

[14] Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC
’71, ACM, New York, NY, USA (1971)

[15] Een, N., Sörensson, N.: MiniSat: A SAT solver with conflict-clause minimization.
Sat 5 (2005)

[16] Faust, K.: Centrality in affiliation networks. Social networks 19(2), 157–191 (1997)

[17] Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in
samples from an indefinitely large population. Biometrika pp. 507–521 (1915)

[18] Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. thesis, Philadelphia, PA, USA (1995), uMI Order No. GAX95-32175

[19] Freeman, L.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

[20] Gini, C.: Measurement of inequality of incomes. The Economic Journal pp. 124–
126 (1921)

[21] Girvan, M., Newman, M.E.: Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

[22] Gloor, P., Krauss, J., Nann, S., Fischbach, K., Schoder, D.: Web science 2.0:
Identifying trends through semantic social network analysis. In: Computational
Science and Engineering, 2009. CSE ’09. International Conference on. vol. 4, pp.
215–222 (Aug 2009)

[23] Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press (2012)

[24] Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4),
245–262 (2009)

http://www.starexec.org/
http://www.satisfiability.org
http://www.satcompetition.org
https://www.sharcnet.ca

[25] Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

[26] Huang, R., Chen, Y., Zhang, W.: SAS+ planning as satisfiability. J. Artif. Int.
Res. 43(1), 293–328 (Jan 2012)

[27] Iser, M., Taghdiri, M., Sinz, C.: Optimizing MiniSAT variable orderings for the
relational model finder Kodkod. In: Proceedings of the 15th International Confer-
ence on Theory and Applications of Satisfiability Testing. pp. 483–484. SAT’12,
Springer-Verlag, Berlin, Heidelberg (2012)

[28] Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Annals of
mathematics and Artificial Intelligence 1(1-4), 167–187 (1990)

[29] Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy
of modern SAT solvers. In: Proceedings of the 14th International Conference on
Theory and Application of Satisfiability Testing. pp. 343–356. SAT’11, Springer-
Verlag, Berlin, Heidelberg (2011)

[30] Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances. In:
Milano, M. (ed.) Principles and Practice of Constraint Programming, pp. 348–356.
Lecture Notes in Computer Science, Springer Berlin Heidelberg (2012)

[31] Kaufman, P.J.: Trading systems and methods. John Wiley & Sons (2013)
[32] Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient SAT solver. In: Proceed-

ings of the 7th International Conference on Theory and Applications of Satisfia-
bility Testing. pp. 360–375. SAT’04, Springer-Verlag, Berlin, Heidelberg (2005)

[33] Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfia-
bility algorithms. In: Progress in Artificial Intelligence, pp. 62–74. Springer (1999)

[34] Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. Computers, IEEE Transactions on 48(5), 506–521 (1999)

[35] Moskewicz, M.W., Madigan, C.F., Malik, S.: Method and system for efficient
implementation of boolean satisfiability (Aug 26 2008), uS Patent 7,418,369

[36] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference. pp. 530–535. DAC ’01, ACM, New York, NY, USA (2001)

[37] Nadel, A., Ryvchin, V.: Assignment stack shrinking. In: Theory and Applications
of Satisfiability Testing–SAT 2010, pp. 375–381. Springer (2010)

[38] Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
community structure on SAT solver performance. In: Theory and Applications of
Satisfiability Testing–SAT 2014, pp. 252–268. Springer (2014)

[39] Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers
with restarts. In: Principles and Practice of Constraint Programming-CP 2009,
pp. 654–668. Springer (2009)

[40] Spearman, C.: The proof and measurement of association between two things.
The American journal of psychology 15(1), 72–101 (1904)

[41] Straffin, P.D.: Linear algebra in geography: Eigenvectors of networks. Mathemat-
ics Magazine 53(5), 269–276 (1980)

[42] Yu, P.S., Li, X., Liu, B.: Adding the temporal dimension to search - a case study
in publication search. In: Skowron, A., Agrawal, R., Luck, M., Yamaguchi, T.,
Morizet-Mahoudeaux, P., Liu, J., Zhong, N. (eds.) Web Intelligence. pp. 543–549.
IEEE Computer Society (2005)

[43] Zhang, W., Pan, G., Wu, Z., Li, S.: Online community detection for large complex
networks. In: Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence. pp. 1903–1909. AAAI Press (2013)

A Appendix

●

●

●

●

●
●●

●

●

●

●●

● ●

●

●

●

● ●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●
●
●●
●●

●

●●●
●●●
●
●
●●
●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●●

●●●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8 1.0
q

G
in

i C
oe

ffi
ci

en
t

Heuristic

●

mVSIDS

cVSIDS

random

(a) Application

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●●
●●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●●● ●● ●●●
● ●●●

●
●

●

●
●●●●
● ● ●

●●
●

●●
●
●

●

●

●

●

● ●●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●
●
●●●●

●

●
● ●

● ●

●

●
●

●

●

●●

●●

●

●

●

●

●●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●

●●●●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
q

G
in

i C
oe

ffi
ci

en
t

Heuristic

●

mVSIDS

cVSIDS

random

(b) Combinatorial

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●
●

●
●

●

●

●
●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●
●●
●
●

●

●

●

●
●

●
●●

●

●●●

●●

●

●●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.00 0.05 0.10 0.15 0.20
q

G
in

i C
oe

ffi
ci

en
t

Heuristic

●

mVSIDS

cVSIDS

random

(c) Random

Fig. 1: VSIDS heuristics are much more spatially focused than random branching.
For each instance and each branching heuristic, we plot the Gini coefficient of the
normalized community hits (as in Section 3). Higher points indicate more spatial
focus. X-axes denote the modularity of the instance’s community structure – a
standard metric for the quality of a community structure (higher is better).

● ●

●

●

●●

●

●

●

●
●●

●

●

●

●

● ●

●

●●●
●
●●●
●
●
●●●
●

●

●

●●

●

●

●

●●
●

●

●
●●
●

●

●●
●●
●
●

●

●
●
●
●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●●

●

●

●

●

●

●
●

●
●

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8 1.0
q

w
in

do
w

 h
its

 /
de

ci
si

on
s

Heuristic

●

mVSIDS

cVSIDS

random

(a) Application

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
● ●

●

●

●●
●

●

●

●

●
● ●

●●
●
●

●●●●● ●●
●●

●●●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●● ●

●

●●
●

● ●●●

●

●

●

●

●●●●●
● ● ●●

●●●
●●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●
●

●● ●●

● ●●●
●

● ●

●

●

●

● ●

●
● ●●●

●●●●●●
●
●
●● ●
● ●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●
●

●

●●
●

●

●

●

●●●●●●●

●
●

● ●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●
●

●

●●

●
●

●

●
●

●

●

● ● ●
●

● ●
●

●

● ●

● ●

●

●

●●

●

●

●●●●

●

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
q

w
in

do
w

 h
its

 /
de

ci
si

on
s

Heuristic

●

mVSIDS

cVSIDS

random

(b) Combinatorial

●●●

●

●

●●●

●
●

●●●●●

●●

●

●

●

●

●
●●

●

●

●●

●

●

●●●

●
●

●

●

●
●●

●

●

●
●

●
●●

●

●●●

●
●

●●

●
●●

●

●

●
●

●
●

●

●

●
●
●
●

●

●●
●
●●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●●●
●
●
●

●

●●
●
●
●

●

●●

●

●●●

●

●

●
●

●
●

●
●●●●
●●
●

●

●●
●

●
●
●
●●●●●
●●
●
●●
●●
●●●

●

●
●●

●●
●
●●

●
●
●

●

●

●●
●
●●
●

●

●
●

●●●

●

●
●●

●

●

●

●●
●
●●●●

●

●

●

●

●
●●●

●

●
●●●●●●

●

●
●●●●●
●●
●
●●●●●
●
●●
●●

●
●●
●●●

●

●

●
●
●
●●
●●●●●

●

●
●
●●

●

●●●

●
●
●●
●

●●

●

●●●

●

●●
●●

●

●●●

●
●

●

●●
●
●●
●●
●

●

●●
●
●
●
●
●●●
●
●●
●
●●●●●
●
●●●●
●●●
●
●●●●●●
●●●●
●●

●●●●●●●
●●●

●●

● ●●

●

●

●

●

●
●

●
●
●

●
●

●●●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●●

●

●

●

●
●●

●

●

●●
●
●
●
●
●●
●●

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
q

w
in

do
w

 h
its

 /
de

ci
si

on
s

Heuristic

●

mVSIDS

cVSIDS

random

(c) Random

Fig. 2: Temporal-Experiment comparing mVSIDS, cVSIDS, and random, with a
window size equal to 10% of the total number of communities (as in Section 3).
Higher points indicate better temporal focus. Both VSIDS heuristics significantly
dominate random branching, and mVSIDS is slightly more focused than cVSIDS
on average.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
)

of Solved Instances

adaptVSIDS
mVSIDS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70

T
im

e
 (

s
)

of Solved Instances

adaptVSIDS
mVSIDS

(a) satisfiable application instances (b) unsatisfiable application instances

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120

T
im

e
 (

s
)

of Solved Instances

adaptVSIDS
mVSIDS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70

T
im

e
 (

s
)

of Solved Instances

adaptVSIDS
mVSIDS

(c) satisfiable combinatorial instances (d) unsatisfiable combinatorial instances

Table 5: Cactus plots for the adaptVSIDS experiment. The results are split
into two categories (application or combinatorial) and two statuses (satisfiable
or unsatisfiable). A point (80, 1500) can be interpreted as follows: there are 80
instances that take less than 1500 seconds to solve with the respective branching
heuristic.

	Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-Learning SAT Solvers

