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Abstract

Collaborative robots could transform several industries, such as man-
ufacturing and healthcare, but they present a significant challenge to ver-
ification. The complex nature of their working environment necessitates
testing in realistic detail under a broad range of circumstances. We pro-
pose the use of Coverage-Driven Verification (CDV) to meet this chal-
lenge. By automating the simulation-based testing process as far as pos-
sible, CDV provides an efficient route to coverage closure. We discuss the
need, practical considerations, and potential benefits of transferring this
approach from microelectronic design verification to the field of human-
robot interaction. We demonstrate the validity and feasibility of the pro-
posed approach by constructing a custom CDV testbench and applying it
to the verification of an object handover task.

1 Introduction

Human-Robot Interaction (HRI) is a rapidly advancing sector within the field
of robotics. Robotic assistants that engage in collaborative physical tasks with
humans are increasingly being developed for use in industrial and domestic set-
tings. However, for these technologies to translate into commercially viable
products, they must be demonstrably safe and functionally sound, and they
must be deemed trustworthy by their intended users [7]. In existing industrial
robotics, safety is achieved predominantly by physical separation or through lim-
iting the robot’s physical capabilities (e.g., speed, force) to thresholds, according
to predefined interaction zones. To fully realize the potential of collaborative
robots, the correctness of the software with respect to safety and functional
(liveness) requirements needs to be verified.
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HRI systems present a substantial challenge for software verification — the
process used to gain confidence in the correctness of an implementation, i.e.
the robot’s code, with respect to the requirements. The robot responds to an
environment that is multifaceted and highly unpredictable. This is especially
true for robots involved in direct interaction with humans, whether this is in an
unstructured home environment or in the more structured setting of collabora-
tive manufacturing. We require a verification methodology that is sufficiently
realistic (models the system with sufficient detail) while thoroughly exploring
the range of possible outcomes, without exceeding resource constraints. s. Prior
work [3, 6, 14, 19, 20, 25] has explored the use of formal methods to verify HRI.
Formal methods can achieve full coverage of a highly abstracted model of the
interactions, but are limited in the level of detail that can practically be mod-
elled. Sensors, motion and actuation in a continuous world present a challenge
for models and requirement formulation in formal verification. Physical exper-
iments or simulation-based testing may be used to achieve greater realism, and
to allow a larger set of requirements to be verified over the real robot’s code.
However, neither of these can be performed exhaustively in practice.

Robotic code is typically characterised by a high level of concurrency between
the communicating modules (e.g., nodes and topics used in the Robot Operating
System, ROS1) that control and monitor the robots sensors and actuators, and
its decision making. Parallels can be drawn here to the design of microelectronics
hardware, which consists of many interacting functional blocks, all active at the
same time. Hence it is natural to ask: ‘Can techniques from the microelectronics
field be employed to achieve comprehensive verification of HRI systems?’

In this paper, we present the use of Coverage-Driven Verification (CDV)
for the high-level control code of robotic assistants, in simulation-based test-
ing. CDV is widely used in functional verification of hardware designs, and
its adoption in the HRI domain is an innovative response to the challenge of
verifying code for robotic assistants. CDV is a systematic approach that pro-
motes achieving coverage closure efficiently, i.e. generation of effective tests to
explore a System Under Test (SUT), efficient coverage data collection, and con-
sequently efficient verification of the SUT with respect to the requirements. The
resulting efficiency is critical in our application, given the challenge of achieving
comprehensive verification with limited resources.

The extension of CDV to HRI requires the development of practical tools that
are compatible with established robotics tools and methods. The microelectronics
industry benefits from the availability of hardware description languages, which
streamline the application of systematic V&V techniques. No practical verifica-
tion tool exists for Python or C++, common languages for robotics code [24]. A
novel contribution of this paper is the development of a CDV testbench specif-
ically for HRI; this implementation makes use of established open-source tools
where possible, while custom tools have been created as necessary to complete
and connect the testbench components (Test Generator, Driver, Checker and
Coverage Collector). Additionally, we outline the relevant background to ensure
robust implementation of CDV.

To demonstrate the feasibility and potential benefits of the method, we ap-
plied CDV to an object-handover task, a critical component of a cooperative

1http://www.ros.org/
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Figure 1: Structure of a basic CDV testbench

manufacture scenario, implemented as a ROS and Gazebo2 based simulator.
Our automated testbench conveniently allows the actual robot code to be used
in the simulation. Model-based and constrained pseudorandom test generation
strategies form the Test Generator. A Driver applies the tests to the simulation
components. The Checker comprises assertion monitors, collecting requirement
coverage. The Coverage Collector, besides requirement, includes code coverage.

We verified selected safety and liveness (functional) requirements of the han-
dover task to showcase the potential of CDV in the HRI domain.

The paper proceeds with an overview of the CDV testbench components and
verification methodology in Section 2. The handover scenario is introduced in
Section 3, where we then present the CDV testbench we used to verify the code
that implements the robot’s part of the handover task. Section 4 discusses the
verification and coverage results for this example. Conclusions and future work
are given in Section 5.

2 Coverage-Driven Verification

2.1 Structure of a CDV Testbench

In CDV, a verification plan must be constructed before the testing process
begins [23]. This plan includes the aspects of the SUT that need to be verified,
e.g. a requirements list or a functional description of the SUT, and a coverage
strategy. The coverage strategy indicates how to achieve effective coverage,
i.e. the exploration of the SUT and advancement of the verification progress,
through the design of the testbench components, especially the Test Generator,
the Checker and the Coverage Collector. The coverage strategy also specifies
how to measure the coverage, e.g. a requirements model or a functional model
to traverse.

In Testing, the SUT is placed into a test environment, a testbench. The
testbench represents (a model of) the universe, or of its target environment.
The process of testing is realised using the following four core components in a
testbench, as shown in Fig. 1:

• the Test Generator is the component that generates stimulus for the
SUT;

2http://gazebosim.org/
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• the Driver is the component that takes a test, potentially at a high level
of abstraction, translates it into the level of abstraction used in the simu-
lation, and drives it to stimulate the SUT;

• the Checker is the component that checks the response of the SUT to
the stimulus and detects failures;

• the Coverage Collector is the component that records the quality of the
generated tests with respect to a set of complementing coverage models.

A key objective in the design of a CDV testbench is to achieve a fully au-
tonomous environment, so that verification engineers can concentrate on areas
requiring intelligent input, namely efficient and effective test generation, bug
detection, reliable tracking of progress and timely completion.

In the following sections we describe each testbench component in more
detail, explaining how they can be used for verification in robotics.

2.2 Test Generator

The test generator aims to exercise the SUT for verification (activation of faults),
while working towards full coverage. Test generators in CDV make use of pseu-
dorandom generation techniques. Using pseudorandom as opposed to random
generation allows repeatability of the tests. The generated tests must be valid
(realistic, like a sensor input that reflects a valid scene). An effective set of tests
includes a good variety that explores unexpected conditions and addresses the
scenarios of interest as per the requirements list. An efficient set of tests max-
imises the coverage and verification progress, whilst minimizing the number of
tests needed. To achieve the former while allowing for the latter, pseudorandom
test generation can be biased using constraints. These constraints can be de-
rived from the SUT’s functional requirements or from the verification plan [23].
However, supplying effective constraints requires significant engineering skill
and application knowledge. It is particularly difficult to generate meaning-
ful sequences of actions, whether these are transactions on the interface of a
system-on-chip, or interactions between humans and robots.

Constrained pseudorandom test generation can be complemented with model-
based techniques [10, 16] to generate sequences that address specific use cases,
such as interaction protocols between human and robot in a collaborative man-
ufacturing environment. In model-based test generation, a model is explored
or traversed to obtain abstract tests, i.e. tests at the same level of abstraction
as the model. These abstract tests can serve as test templates, or constraints,
for tests that target specific behaviours [15, 21]. For this, a model needs to
be implemented, e.g. one that captures the intended behaviours of the robot
when interacting with humans and/or its environment. In robotics, the degree
of abstraction between such a model and the simulation often differs signifi-
cantly compared to that observed in microelectronics [22]. Many low-level im-
plementation details such as motion control, sensing models or path planning
are abstracted from (e.g., as in [25]) to keep these models within manageable
size. For model-based testing to be credible and effective, the correctness of
the behavioural model with respect to the robot’s code needs to be established.
However, this is beyond the scope of this paper.
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2.3 Driver

The Driver is a fully automated component that translates a (potentially high-
level) description of a test into signal-level stimulus that can be applied to the
interfaces of the SUT in order to expose the SUT to the situation prescribed
by the test. The Driver may comprise an interacting network of modules corre-
sponding to the distinct interfaces of the SUT. The SUT reacts to the stimuli
provided on its interfaces. The Driver runs in parallel with the SUT and re-
sponds to it, if necessary; i.e., the Driver can be reactive. The automation of
the Driver makes it feasible to execute batches of abstract tests, to accelerate
testing.

In HRI, the Driver comprises a model of the human, a physics model, and
communication channels to represent any interactions that do not require de-
tailed physical simulation. For example, if the human element in the simulator
is driving the robot’s code, the Driver would execute the corresponding high-
level action sequence, one item at a time, by translating it into the respective
sequence of input signals, potentially passing through the physics model before
exposing the signals to the robot’s input channels.

2.4 Checker

The automation of test generation prompts the need for automatic and test
independent checkers, i.e. self-checking testbenches. Assertion-based verifica-
tion [8] allows locating checkers, in the form of assertion monitors, close to the
code that is being observed.

Requirements to verify can be expressed as Temporal Logic properties. As-
sertion monitors can be derived automatically from these properties [12], in
an automata-based form. Since the simulations are time bound, some safety
properties defined over infinite traces (e.g., using an always Temporal Logic
operator) are bound over the duration of a simulation run. Relevant work in [2]
mentions the advantages of the automatic generation of monitors as automata,
including the reduction of errors caused by manual translation.

For requirements about the low-level continuous behaviour of the SUT (e.g.,
trajectories computed by the motion planning), the monitoring can be per-
formed in a quasi-continuous manner, considering computational limitations.
Otherwise, over-approximations or interpolation can be performed to predict
events at instants of time between computations, such as the overlapping of
regions in the 3D space for collision avoidance.

2.5 Coverage Collector

Automatic test generation necessitates monitoring the quality of the tests to
gain an understanding of the verification progress. To achieve this, statistics
can be collected on the tests, the driven stimulus (external events), the SUT’s
response, and the SUT’s internal state, including assertion monitors. In general,
we distinguish between code coverage models and functional coverage models.
A comprehensive account on coverage can be found in [23].

The collected coverage data provides information on unexplored (coverage
“holes”) or lightly covered areas. Coverage closure is the process of identifying
coverage holes and creating new tests that address these holes. This introduces
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a feedback loop from coverage collection/analysis to test generation, termed
Coverage Directed test Generation (CDG) [23]. Attempts have been made to
automate CDG using machine learning techniques [13]. However, CDG remains
a difficult challenge in practice.

In principle, coverage collection and analysis techniques can be transferred
directly into the domain of robotics verification. In fact, it is interesting to note
that functional coverage in the form of “cross-product” coverage [26], as widely
used in hardware design verification, has recently been proposed (independently)
for the verification of autonomous robots in [1], where it is termed situation
coverage and includes combinations of external events only.

2.6 CDV Methodology

In CDV, an iterative process of test generation, execution, coverage collection
and analysis is used to achieve coverage closure over several cycles. In practice,
engineering input is required to interpret the data and to guide test genera-
tion towards closing coverage holes. This is either achieved simply by allowing
further pseudorandom tests to be generated, by adding constraints to bias test
generation, by employing model-based test generation or, as a last resort, by
directed testing. If model-based test generation has already been applied, mod-
ifications to the formal model may yield new tests.

It is important to note that further test generation is not always the only
appropriate response to a coverage hole or a requirement violation. The follow-
ing options should also be considered: 1) the SUT has a bug, to be referred to
the design team; 2) modifications to one or more of the requirements models
(e.g. assertions or formal properties) are needed to more accurately reflect the
actual requirements and/or design of the SUT; and/or 3) modifications to one
or more of the testbench components are needed. This third decision may be
reached if the tests and requirements models are deemed appropriate but the
testbench does not allow the SUT’s full range of functions to be exercised and
observed.

3 CDV Implementation

A case study from a collaborative manufacture scenario is presented. We demon-
strate the transferability of CDV into the HRI domain by constructing a CDV
testbench for this case study using a combination of established open-source
tools and custom components. Our implementation showcases the potential of
CDV to verify robotic code used in HRI.

3.1 Case Study: Robot to Human Object Handover Task

Our case study is an object handover, a critical subtask in a broader scenario
where a robot (BERT2 [17]) and a person work together to assemble a table.
The handover starts with an activation signal from the person to the robot.
The robot then picks up an object, and holds it near the person. The robot
indicates it is ready for the person to receive the object. Then, the person is
expected to hold the object simultaneously, moving closer if necessary, and to
look at it — indicating readiness of the person. The robot collects data through
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two different sensing systems: “pressure”, sensors that determine whether just
the robot, or simultaneously the robot and the person, are holding the object;
and “location” and “gaze” sensors, an ‘EgoSphere’ system that tracks whether
the human hand is close to the object and whether the human head is directed
towards the object [17]. Based on the sensors, the robot determines whether
the release condition is satisfied, and decides on a course of action: the robot
will release the object and allow the person to take it, if the human was ready;
if not, the robot will not release the object. The robot or human may disengage
from the task (look or move away). The sensors are considered perfect.

According to the handover task’s interaction protocol, a robot ROS ‘node’
was developed in Python, comprising 209 code statements. This node was
structured as a state machine, using the SMACH modules [4], to facilitate mod-
ularity. The states, with their transitions, can be enumerated as shown below.
Each state transitions to the next in sequence, except where indicated otherwise.
The code is also depicted as a flow chart in Figure 5.

1. reset - The robot moves to its starting position, with gripper open.

2. receive_signal - Read signals. If ‘startRobot’ is received, transition to
move; elseif timeout, transition to done; else, loop back to present state.

3. move - Plan trajectory of hand to piece. Move arm. Close gripper. Plan
trajectory of hand to human. Move arm.

4. send_signal - Send signal to inform human of handover start.

5. receive_signal - Read signals. If ‘humanIsReady’ is received, transition
to sense; elseif timeout, transition to done; else loop back to present state.

6. sense - Read sensors. If timeout, transition to done; elseif not all signals
available, loop back to present state; else, transition to decide.

7. decide - If all sensors are satisfied, transition to release; else, transition
to done (without releasing).

8. release - Open the gripper. Wait for 2 seconds.

9. done - End of sequence.

3.2 Requirements

Requirements were derived from ISO 13482:2014 and desired functionality of
the robot in the interaction [9]:

1. If the gaze, pressure and location are sensed as correct, then the object
shall be released.

2. If the gaze, pressure or location are sensed as incorrect, then the object
shall not be released.

3. The robot shall make a decision before a threshold of time.

4. The robot shall always either time out, decide to release the object, or
decide not to release the object.
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5. The robot shall not close the gripper when the human is too close.

Requirements 1 to 4 refer to sequences of high-level events over time, whereas
Requirement 5 refers to a lower-level safety requirement of the continuous state
space of the robot in the HRI. Thus, the former can be both targeted with
model-based techniques and implemented as assertion monitors, whereas the
latter is only suitable for implementation as an assertion monitor.

3.3 CDV Testbench Implementation

ROS is a widely used open-source platform for the design of code for robots
in C++ and/or Python. ROS allows interfacing directly with robots. Gazebo
is a robot simulation tool designed for compatibility with ROS, that is able to
emulate the physics of our world. Thus, the combination ROS-Gazebo provides
a means of developing a robotic simulator, as shown in Figure 2.

Figure 2: BERT2 robot and a human, and the simulator in ROS-Gazebo

Figure 3 shows the structure of our CDV testbench implementation, incorpo-
rating the robot’s high-level control code. The Driver incorporates the Gazebo
physics simulator and the MoveIt!3 packages for path-planning and inverse kine-
matics of the robot’s motion. The human is embodied as a floating head and
hand for simplicity; in future, this representation can be replaced by one that is
anatomically accurate. The implementation in ROS ensures that assertion mon-
itors and coverage collection can access parameters internal to the robot code as
well as the external physics model and other interfaces, such as signals. Observ-
ability of the external behaviour allows validating the robot’s actions. In real
life experiments, this is equivalent to observing the robot’s physical behaviour
to see if its responses are as expected.

3.4 Test Generator and Driver

Tests were generated pseudorandomly, by concatenating randomly selected el-
ements from the set of high-level actions belonging to the handover workflow,
forming random action sequences and instantiating relevant parameters. These
randomized sequences represent environmental settings that do not necessarily
comply with the interaction protocol. Thus, pseudorandom action sequence gen-
eration produces stimulus that correspond to unexpected behaviours that were

3http://moveit.ros.org/
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Figure 3: Testbench and simulator elements in ROS-Gazebo

not previously considered in the requirements. Posteriorly, constraints were in-
troduced to bias the pseudorandom generation to obtain tests that do comply
with the interaction protocol (e.g., enforcing particular sequences of actions).

The handover interaction protocol was formalized as a set of six automata,
in particular Probabilistic-Timed Automata (PTA) [11], comprising the robot,
the workflow, the gaze, the location, the pressure, and the sensors. Behaviours
of the different elements (e.g., protocol compliant actions to activate the robot
through signals) were abstracted in terms of state transitions and variable as-
signments. The structure of the robot’s code guided the abstraction process,
and the abstraction was verified via bisimulation analysis [18].

Model-based test templates were obtained from witness traces (examples
or counterexamples) produced by model checking the product automaton [21].
These witnesses contain combined sequences of states from the different au-
tomata. Requirements 1 to 4 (Section 3.2) were used to derive model-based test
templates that would trigger corresponding assertion monitors. We employed
UPPAAL4, a model checker for PTA that produces witnesses automatically.
Projections over these traces with respect to the workflow, gaze, location, pres-
sure and sensors automata remove the elements that correspond to the robot’s
activities, to form a test template. Based on these test templates, tests were
generated pseudorandomly.

A test template for our simulator consists of a sequence of high-level actions
(workflow) to activate the robot expressed as a state machine. A test comprises,
besides the high-level actions, the pseudorandom instantiation of parameters,
from well defined sets (e.g., ranges of values for gaze correct or gaze incorrect).
An example is shown in Figure 4. The Driver produces responses in the physical
model in Gazebo, signals to be communicated to the robot, and sensor readings.

An example of a constraint for constrained pseudorandom generation is the
enforcement of the sequence of actions in lines 1 to 4 of Figure 4, followed by
any other action sequence. This constraint ensures the immediate activation of
the robot, when a simulation starts.

An added benefit from the development of a formal model for test generation
is that this allows formal verification through model checking [5]. Formal veri-
fication can thus complement CDV. However, properties that hold for abstract
models must still be verified at the code level. Model checkers for code (e.g.,

4http://www.uppaal.org/
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1 sendsignal activateRobot
2 setparam time = 40 This time instantiation produces
3 receivesignal informHumanOfHandoverStart a waiting time of 40× 0.05 seconds.
4 sendsignal humanIsReady
5 setparam time = 10
6 setparam honTask = true
7 setparam hgazeOk = true Gaze instantiation for true: choosing offset,
8 setparam hpressureOk = true distance and angle, from ranges {[0.1, 0.2],
9 setparam hlocationOk = true [0.5, 0.6], [15, 40)}, e.g., (0.1, 0.5, 30)

Figure 4: Example test from a test template, comprising high-level actions and
some parameter instantiations (time and gaze)

CBMC5, Java PathFinder6) target runtime bugs in general, such as arrays out
of bounds or unbounded loop executions. These are, however, at a different level
than the complex functional behaviours we aim to verify. In [25], the runtime
detail is abstracted, giving way to high-level behaviour models where functional
requirements can be verified with respect to the model only.

3.5 Checker

Assertion monitors were implemented for all the requirements in Section 3.2. Re-
quirements 1 to 4 were translated first into CTL properties, and then automata-
based assertion monitors were generated manually. This process will be auto-
mated in the future. For example, Requirement 1 corresponds to the property:

E <> sgazeOk ∧ spressureOk ∧ slocationOk ∧ releasedTrue.

The resulting monitor is triggered when reading a sensors signal indicating
the gaze, pressure and location are correct. Then, the automaton transitions
when receiving a signal of the object’s release. If the latter signal event happens
within a time threshold (3 seconds), a True result is reported. Finally, the
automaton returns to the initial state.

Requirement 2 corresponds to the CTL property:

E <> (sgazeNotOk ∨ spressureNotOk ∨ slocationNotOk) ∧ releasedFalse.

This monitor is triggered when any of the gaze, pressure or location are
incorrect in a sensing signal. Then, the automaton transitions to either a False

result when receiving a signal of the object’s release, or a True result if some
time has elapsed (2 seconds) and no release signal has been received. Finally,
the automaton returns to the initial state.

Requirement 5 refers to physical space details abstracted from our PTA
model, and it cannot be expressed as a Temporal Logic property. Hence, it
was directly implemented as an automaton-based assertion monitor. When the
robot grabs the object, it needs to make sure the human’s hand (or any other
body part) is at a distance. The monitor is triggered every time the code invokes
the hand(close) function, which causes the motion of the robot’s hand joints.
The location of the human hand is then read from the Gazebo model (the head
is ignored, since the model is abstracted to a head and a hand). If this location

5http://www.cprover.org/cbmc/
6http://javapathfinder.sourceforge.net/
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is close to the robot’s hand (within a 0.05 m distance of both mass centres), the
monitor registers a False result, or otherwise True.

The monitors automatically generate report files, indicating their activation
time, and the result of the checks if completed.

3.6 Coverage Collector

We implemented two coverage models: code (statement) coverage and func-
tional coverage in the form of requirements (assertion) coverage. The statement
coverage was implemented through the ‘coverage’ 7 module for Python. For
each test run, statistics on the number of executed code statements are gath-
ered. The assertion coverage is obtained by recording which assertion monitors
are triggered by each test. If all the assertions are triggered at the end of the
test runs, the testbench has achieved 100% requirements coverage.

4 Experiments and Verification Results

The CDV testbench described in Section 3 was used (a) to demonstrate the
benefits of CDV in the context of HRI; (b) to obtain an insight into the verifi-
cation results, including unexpected behaviours or requirement violations; and
(c) to explore options to achieve coverage closure (from Section 2.6).

The requirements mentioned in Section 3.1 were verified using a CDV test-
bench in ROS (version Indigo) and Gazebo (2.2.5), and through model checking
in UPPAAL (version 4.0.14), using the model we developed for model-based test
generation. We used a PC with Intel i5-3230M 2.60 GHz CPU, 8 GB of RAM,
running Ubuntu 14.04.

Table 1 presents the assertion coverage for the handover, and the verification
results from model checking. In model checking, the requirements were verified
as true (T) or false (F). Through model checking, we were only able to cover Re-
quirements 1 to 4. From each of the model checking witnesses (test templates)
of Requirements 1 to 4, we generated a test (model-based generation). We
also generated 100 pseudorandom (unconstrained) tests, and 100 constrained
pseudorandom tests that enforced the activation of the robot as explained in
Section 3. We verified Requirements 1 to 5 in simulation, and recorded the
results of the assertion monitors: Pass (P), Fail (F), Not Triggered (NT), or
Inconclusive (U) when the monitor was triggered but the check was not com-
pleted within the simulation run. The same setup was used to compute both
assertion and statement coverage, allowing the comparison of the test generation
strategies in terms of coverage efficiency.

The results in Table 1 confirm our expectations for the different test gen-
eration strategies. For assertion-based functional coverage, pseudorandom and
constrained-pseudorandom test generation are less efficient than model-based
test generation, which triggered all five assertions with just four tests. Re-
quirement 1 was not covered by either the pseudorandom or the constrained
pseudorandom strategy. If either of these strategies was used alone, the cover-
age hole could potentially be closed by adding further constraints or by using a
more sophisticated test generation strategy such as model-based test generation.

7http://nedbatchelder.com/code/coverage/
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Table 1: Requirements (assertion) coverage and model checking results

Req. Model Simulation-Based Testing

Checking Pseudorandom Constrained-Pseudorandom Model-Based

P F NT I P F NT I P F NT I

1 T 0/100 0/100 100/100 0/100 0/100 0/100 100/100 0/100 3/4 0/4 1/4 0/4

2 T 33/100 0/100 67/100 0/100 87/100 0/100 13/100 0/100 1/4 0/4 3/4 0/4

3 T 33/100 0 /100 67/100 0/100 87/100 0/100 13/100 0/100 4/4 0/4 0/4 0/4

4 T 98/100 0/100 0/100 2/100 98/100 0/100 0/100 2/100 4/4 0/4 0/4 0/4

5 - 46/100 0/100 54/100 0/100 93/100 0/100 7/100 0/100 4/4 0/4 0/4 0/4

The assertion monitor checks for Requirement 4 were inconclusive for some of
the pseudorandom and constrained-pseudorandom generated tests. This occurs
because in these tests the robot is activated long after the start of the handover
task (when the robot is reset and proceeds to wait for a signal). These tests do
not comply with the protocol which requires to activate the robot at the start
and within a given time threshold.

This coverage result could trigger different actions, e.g. the assertion moni-
tor could be modified to choose either pass or fail at the end of the simulation;
the Driver could be modified such that the simulation duration is extended;
or, the inconclusive checks could be dismissed as trivial, in which case the ef-
ficiency of any further tests could be improved by directing them away from
such cases. As noted in Section 2.6, further test generation is not always the
sole appropriate response to a coverage hole. It is worth noting that this sce-
nario was exposed only by pseudorandom and constrained-pseudorandom test
generation, demonstrating the unique benefit of these approaches; by exploring
the SUT’s behaviour beyond the assumptions of the verification engineer, they
provide a useful complement to the more directed approach of model-based test
generation.

Figure 5 illustrates the code coverage (statements) achieved with each test
generation strategy over 206 statements (the actual percentages may vary ±2%
due to decision branches with 1 or 2 lines of code each). The lines of code are
grouped using the state machine structure in the Python module, to facilitate
visualization. The block of code corresponding to the “release” state is not
covered by the pseudorandom and constrained pseudorandom generated tests,
hence it is shown in white. This coverage hole could be closed by applying the
test template produced by model-based test generation for Requirement 1.

Because our code is structured as a finite state machine (FSM), it would
be appropriate to also incorporate structural coverage models in the future.
A comprehensive test suite would include tests that visit all states, trigger all
possible state transitions, and traverse all paths.

The generation of effective tests, that target both the exploration of the SUT
and the verification progress, is fundamental to maximising the efficiency of a
CDV testbench reaching for coverage closure. From the overall results, it can
be seen that the three test generation approaches applied have complementary
strengths that overcome their respective weaknesses in terms of coverage. While
model-based test generation ensures that the requirements are covered in an
efficient manner, pseudorandom test generation can construct scenarios that the
verification engineer has not foreseen. Such cases are useful for exposing flawed
or missing assumptions in the design of the testbench or the requirements.
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(a) (b) (c)

Figure 5: Code coverage (percent values) obtained in simulation with (a)
model-based (4 tests), (b) pseudorandom (100 tests), and (c) constrained-
pseudorandom test generation (100 tests)

5 Conclusions

We advocated the use of CDV for robot code in the context of HRI. By promot-
ing automation, CDV can provide a faster route to coverage closure, compared
with manually directed testing. CDV is typically used in Software-in-the-Loop
simulations, but it can also be used in conjunction with Hardware-in-the-Loop
simulation, Human-in-the-Loop simulation or with emulation. The flexibility
of CDV with regard to the levels of abstraction used in both the requirements
models and the SUT makes it particularly well suited to verification of HRI.

The principal drawback of CDV, compared with directed testing, is the over-
head effort associated with building an automated testbench. Directed testing
produces early results, but CDV significantly accelerates the approach towards
coverage closure once the testbench is in place. Hence CDV is an appropri-
ate choice for systems in which complete coverage is difficult to achieve due to
a broad and varied state space that includes rare but important events, as is
typically the case for HRI.

We proposed implementations of four automatic testbench components, the
Test Generator, the Driver, the Checker and the Coverage Collector, that suit
the HRI domain. Different test generation strategies were considered: pseudo-
random, constrained pseudorandom and model-based to complement each other
in the quest for meaningful tests and exploration of unexpected behaviours.
Assertions were proposed for the Checker, accommodating requirements at dif-
ferent levels of abstraction, an important feature for HRI. Different coverage
models were proposed for the Coverage Collector: requirements (assertion),
code statements, and cross-product.

The potential for CDG (Coverage-Driven test Generation), through the im-
plementation of automated feedback loops, has been considered. Nevertheless,
we believe a great part of the feedback work needs to be performed by the
verification engineer, since CDG is difficult to implement in practice.

A handover example demonstrated the feasibility of implementing the CDV
testbench as a ROS-Gazebo based simulator. The results show the relative mer-
its of our proposed testbench components, and indicate how feedback loops in

13



the testbench can be explored to seek coverage closure. Several key observa-
tions can be noted from these results. Pseudorandom test generation allows a
degree of unpredictability in the environment, so that unexpected behaviours of
the SUT may be exposed. Model-based test generation usefully complements
this technique by systematically directing tests according to the requirements
of the SUT. This requires the development of a formal model of the system,
which additionally enables exhaustive verification through formal methods, as
explored by previous authors for HRI [3, 6, 14, 19, 20, 25].

If the requirements are translated into Temporal Logic properties for model
checking, assertion monitors can be derived automatically. In future work, we
will be exploring generation of monitors for different levels of abstraction in the
simulation (e.g., events-based, or checked at every clock cycle) in a more for-
mal manner. We will further explore the use of bisimulation analysis to ensure
equivalence between a robot’s high-level control code and any associated formal
models. We intend to incorporate probabilistic models of the human, the envi-
ronment and other elements in the simulator, to enable more varied stimulation
of an SUT. We also intend to verify a more comprehensive set of requirements for
the handover task, e.g., according to the safety standard ISO 15066 (currently
under development) for collaborative industrial robots.

Our approach is scalable, as more complex systems can be verified using the
same CDV approach, for the actual system’s code. We are confident CDV can
be used for the verification and validation of autonomous systems in general.
Open source platforms and established tools can serve to create simulators and
models at different abstraction levels for the same SUT.

Acknowledgments: This work was supported by the EPSRC grants
EP/K006320/1 and EP/K006223/1 “Trustworthy Robotic Assistants”.

We are grateful for the productive discussions with Yoav Hollander, Yaron
Kashai, Ziv Binyamini and Mike Bartley.

References

[1] Alexander, R., Hawkins, H., Rae, D.: Situation Coverage – A Coverage
Criterion for Testing Autonomous Robots. Tech. rep., Department of Com-
puter Science, University of York (2015)

[2] Armoni, R., Korchemny, D., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: Deter-
ministic Dynamic Monitors for Linear-Time Assertions. In: Formal Ap-
proaches to Software Testing and Runtime Verification. pp. 163–177 (2006)

[3] Bordini, R.H., Fisher, M., Sierhuis, M.: Formal verification of human-robot
teamwork. In: Proc. ACM/IEEE HRI. pp. 267–268 (2009)

[4] Boren, J., Cousins, S.: The SMACH High-Level Executive. IEEE Robotics
& Automation Magazine 17(4), 18–20 (2010)

[5] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
USA (1999)

14



[6] Cowley, A., Taylor, C.J.: Towards Language-based Verification of Robot
Behaviors. In: Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 4776–4782. IEEE (2011)

[7] Eder, K., Harper, C., Leonards, U.: Towards the safety of human-in-the-
loop robotics: Challenges and opportunities for safety assurance of robotic
co-workers. In: Proc. IEEE ROMAN. pp. 660–665 (2014)

[8] Foster, H., Krolnik, A., Lacey, D.: Assertion-Based Design. Springer, 2nd
edn. (2004)

[9] Grigore, E.C., Eder, K., Lenz, A., Skachek, S., Pipe, A.G., Melhuish, C.:
Towards safe human-robot interaction. In: Towards Autonomous Robotic
Systems. pp. 323–335 (2011)

[10] Haedicke, F., Le, H., Grosse, D., Drechsler, R.: CRAVE: An advanced
constrained random verification environment for SystemC. In: Proc. SoC.
pp. 1–7 (2012)

[11] Hartmanns, A., Hermanns, H.: A Modest Approach to Checking Proba-
bilistic Timed Automata. In: Proc. QEST. pp. 187–196 (2009)

[12] Havelund, K., Rosu, G.: Synthesizing Monitors for Safety Properties. In:
Tools and Algorithms for the Construction and Analysis of Systems. pp.
342–356 (2002)

[13] Ioannides, C., Eder, K.I.: Coverage-directed test generation automated
by machine learning – a review. ACM Trans. Des. Autom. Electron. Syst.
17(1), 7:1–7:21 (Jan 2012)

[14] Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying
the Safe Design of a Virtual Fixture Control Algorithm for a Surgical
Robot. In: Belta, C., Ivancic, F. (eds.) Proc. Hybrid Systems: Compu-
tation and Control (HSCC). pp. 263–272. ACM (2013)

[15] Lackner, H., Schlingloff, B.: Modeling for Automated Test Generation A
Comparison. In: Proc. MBEES Workshop (2012)

[16] Lakhotia, K., McMinn, P., Harman, M.: Automated Test Data Generation
for Coverage: Havent We Solved This Problem Yet? In: Proc. TAIC (2009)

[17] Lenz, A., Skachek, S., Hamann, K., Steinwender, J., Pipe, A., Melhuish,
C.: The BERT2 infrastructure: An integrated system for the study of
human-robot interaction. In: Proc. IEEE-RAS Humanoids. pp. 346–351
(2010)

[18] Milner, R.: A Calculus of Communicating Systems. Springer Verlag (1980)

[19] Mohammed, A., Furbach, U., Stolzenburg, F.: Multi-robot systems: Mod-
eling, specification, and model checking. Robot Soccer pp. 241–265 (2010)

[20] Muradore, R., Bresolin, D., Geretti, L., Fiorini, P., Villa, T.: Robotic
Surgery. IEEE Robotics & Automation Magazine 18(3), 24–32 (2011)

15



[21] Nielsen, B., Skou, A.: Automated Test Generation from Timed Automata.
Int J Softw Tools Technol Transfer (5), 59–77 (2003)

[22] Nielsen, B.: Towards a method for combined model-based testing and anal-
ysis. In: Proc. MODELSWARD. pp. 609–618 (2014)

[23] Piziali, A.: Functional verification coverage measurement and analysis.
Kluwer Academic, Boston, Mass (2004)

[24] Trojanek, P., Eder, K.: Verification and testing of mobile robot navigation
algorithms: A case study in SPARK. In: Proc. IROS. pp. 1489–1494 (2014)

[25] Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L.,
Dautenhahn, K.: Formal verification of an autonomous personal robotic
assistant. In: Proc. AAAI FVHMS 2014. pp. 74–79 (2014)

[26] Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification.
Morgan Kaufmann (2005)

16


	1 Introduction
	2 Coverage-Driven Verification
	2.1 Structure of a CDV Testbench
	2.2 Test Generator
	2.3 Driver
	2.4 Checker
	2.5 Coverage Collector
	2.6 CDV Methodology

	3 CDV Implementation
	3.1 Case Study: Robot to Human Object Handover Task
	3.2 Requirements
	3.3 CDV Testbench Implementation
	3.4 Test Generator and Driver
	3.5 Checker
	3.6 Coverage Collector

	4 Experiments and Verification Results
	5 Conclusions

