Skip to main content

Evolving High Fidelity Low Complexity Sheepdog Herding Simulations Using a Machine Learner Fitness Function Surrogate for Human Judgement

  • Conference paper
  • First Online:
AI 2015: Advances in Artificial Intelligence (AI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9457))

Included in the following conference series:

Abstract

Multi-agent simulations facilitate modelling the complex behaviours through simple rules codified within the agents. However, the manual exploration of effective rules is generally prohibitive or at least sub-optimal in these types of simulations. Evolutionary techniques can effectively explore the rule and parameter space for high fidelity simulations; however, the pairing of these two techniques is challenging in classes of problems where the evaluation of simulation fidelity is reliant on human judgement. In this work we present a machine learning approach to evolve high fidelity low complexity sheepdog herding simulations. A multi-objective evolutionary algorithm is applied to evolve simulations with both high fidelity and low complexity as the two objectives to be optimised. Fidelity is measured via a machine learning system trained using a small set of training samples of human judgements; whereas the complexity is measured using the number of rules and parameters used to codify the agents in the system. The experimental results demonstrate the effectiveness of the approach in evolving high fidelity and low complexity multi-agent simulations when the fidelity cannot be measured objectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that these weights were decided by co-evolving the dog and sheep in our pilot experiments. Although we have provided the weights with a high precision, that precision has no significant impact on the behaviours. A higher weight for the rule attract to the flock makes the dog more aggressive.

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Lien, J.M., Bayazit, B., Sowell, R.T., Rodriguez, S.: Shepherding behaviors. In: 2004 IEEE International Conference on Robotics and Automation, pp. 4159–4164. IEEE Press, New York (2004)

    Google Scholar 

  3. Lakshika, E., Barlow, M., Easton, A.: Co-evolving semi-competitive interactions of sheepdog herding behaviors utilizing a simple rule-based multi agent framework. In: 2013 IEEE Symposium on Artificial Life (ALIFE), pp. 82–89. IEEE Press, New York (2013)

    Google Scholar 

  4. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM Siggraph Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  5. Barlow, M., Easton, A.: Crocadile-an open, extensible agent-based distillation engine. Inf. Secur. 8(1), 17–51 (2002)

    Google Scholar 

  6. Pan, X., Han, C.S., Dauber, K., Law, K.H.: A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations. AI Soc. 22(2), 113–132 (2007)

    Article  Google Scholar 

  7. Lakshika, E., Barlow, M., Easton, A.: Fidelity and complexity of standing group conversation simulations: a framework for the evolution of multi agent systems through bootstrapping human aesthetic judgments. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1044–1051. IEEE (2012)

    Google Scholar 

  8. Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: Clearpath: highly parallel collision avoidance for multi-agent simulation. In: 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–187. ACM (2009)

    Google Scholar 

  9. Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. Robot. Auton. Syst. 31(1), 109–117 (2000)

    Article  Google Scholar 

  10. Schultz, A., Grefenstette, J., Adams, W.: Robo-shepherd: learning complex robotic behaviors. In: Robotics and Manufacturing: Recent Trends in Research and Applications, pp. 763–768. ASME Press (1996)

    Google Scholar 

  11. Strömbom, D., Mann, R.P., Wilson, A.M., Hailes, S., Morton, A.J., Sumpter, D.J., King, A.J.: Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J. R. Soc. Interface 11(100), 20140719 (2014)

    Article  Google Scholar 

  12. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Safe. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  13. Yang, A., Abbass, H.A., Sarker, R.A.: Land combat scenario planning: a multiobjective approach. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 837–844. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Alam, S., Shafi, K., Abbass, H.A., Barlow, M.: An ensemble approach for conflict detection in free flight by data mining. Transp. Res. part C: Emerging Technol. 17(3), 298–317 (2009)

    Article  Google Scholar 

  15. Rodrguez, D., Ruiz, M., Riquelme, J.C., Harrison, R. : Multiobjective simulation optimisation in software project management. In: 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1883–1890. ACM (2011)

    Google Scholar 

  16. Aupetit, S., Bordeau, V., Monmarché, N., Slimane, M., Venturini, G.: Interactive evolution of ant paintings. In: 2003 IEEE Congress on Evolutionary Computation, pp. 1376–1383. IEEE Press, New York (2003)

    Google Scholar 

  17. den Heijer, E., Eiben, A.E.: Evolving pop art using scalable vector graphics. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 48–59. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Chen, Y.-W., Kobayashi, K., Kawabayashi, H., Huang, X.: Application of interactive genetic algorithms to boid model based artificial fish schools. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 141–148. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001). IEEE, New York

    Article  Google Scholar 

  20. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erandi Lakshika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lakshika, E., Barlow, M., Easton, A. (2015). Evolving High Fidelity Low Complexity Sheepdog Herding Simulations Using a Machine Learner Fitness Function Surrogate for Human Judgement. In: Pfahringer, B., Renz, J. (eds) AI 2015: Advances in Artificial Intelligence. AI 2015. Lecture Notes in Computer Science(), vol 9457. Springer, Cham. https://doi.org/10.1007/978-3-319-26350-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26350-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26349-6

  • Online ISBN: 978-3-319-26350-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics