

Risk Assessment and Security Testing of

Large Scale Networked Systems with RACOMAT

Johannes Viehmann1, Frank Werner2

1Fraunhofer FOKUS, Berlin, Germany

Johannes.Viehmann@fokus.fraunhofer.de
2Software AG, Darmstadt, Germany

Frank.Werner@softwareag.com

Abstract. Risk management is an important part of the software quality man-

agement because security issues can result in big economical losses and even

worse legal consequences. While risk assessment as the base for any risk treat-

ment is widely regarded to be important, doing a risk assessment itself remains

a challenge especially for complex large scaled networked systems. This paper

presents an ongoing case study in which such a system is assessed. In order to

deal with the challenges from that case study, the RACOMAT method and the

RACOMAT tool for compositional risk assessment closely combined with se-

curity testing and incident simulation for have been developed with the goal to

reach a new level of automation results in risk assessment.

Keywords: Risk assessment · Security testing · Incident simulation

1 Introduction

For software vendors risk assessment is a big challenge due to the steadily increasing

complexity of today’s industrial software development and rising risk awareness on

the customer side. Typically, IT systems and software applications are distributed

logically and geographically, and encompass hundreds of installations, servers, and

processing nodes. As customers rely on mature and ready-to-use software, products

should not expose vulnerabilities, but reflect the state of the art technology and obey

security risks or technical risks. Failing to meet customer expectations will result in a

loss of customer trust, customer exodus, financial losses, and in many cases in legal

consequences and law suits.

On the other hand, the impossibility to analyze and treat every potential security

problem in advance is well-known. Any security issue without appropriate safeguards

could lead to a considerable damage for the customer, be it its loss of business (e.g.

when a successful DoS attack prevents business processes form being pursued), loss

of data (due to unauthorized access) or malicious manipulation of business process

sequences or activities. The task of risk management is to identify and treat the most

critical risks without wasting resources for less severe problems. Within this paper,

only the risk assessment part of the risk management process is addressed. More pre-

mailto:Johannes.Viehmann@fokus.fraunhofer.de

cisely, this paper reports the experiences made during the risk assessment for an in-

dustrial large scale software system Command Central.

Risk assessment can be difficult and expensive. It typically depends on the skills

and estimates of experts and manual risk assessment can only be performed at a high

level of abstraction for large scale systems. Security testing is one risk analysis meth-

od that eventually yields objective results. But security testing itself might be hard

and expensive, too. Manual testing is itself error prone and again infeasible for large

scale systems. Choosing what should be tested and interpreting security test results

are not trivial tasks. Indeed, even highly insecure systems can produce lots of correct

test verdicts if the “wrong” test cases have been created and executed. Therefore, it

makes sense to do Risk Assessment COMbined with Automated Testing, i.e. to use

the RACOMAT method and the RACOMAT tool introduced here. RACOMAT has

been developed along the case study in order to deal exactly with the challenges of

large scale networked systems. Both, the development of RACOMAT and the risk

assessment of Command Central are still ongoing.

1.1 The case study

The software under analysis is called Command Central [14] from Software AG, a

tool from the webMethods tool suite allowing release managers, infrastructure engi-

neers, system administrators, and operators to perform administrative tasks from a

single location. Command Central assist the configuration, management, and monitor-

ing by supporting the following tasks:

 Infrastructure engineers can see at a glance which products and fixes are in-

stalled, where they are installed, and compare installations to find discrepan-

cies.

 System administrators can configure environments by using a single web us-

er interface or command-line tool. Maintenance involves minimum effort

and risk.

 Release managers can prepare and deploy changes to multiple servers using

command-line scripting for simpler, safer lifecycle management.

 Operators can monitor server status and health, as well as start and stop serv-

ers from a single location. They can also configure alerts to be sent to them

in case of unplanned outages.

Command Central is built on top of Software AG Common Platform, which uses the

OSGi (Open Services Gateway Initiative) framework. Product-specific features are in

the form of plug-ins.

Fig. 1. An installation set-up scenario with Command Central Management

Command Central users can communicate with Command Central Server using either

the graphical web user interface for administering products using the web, or the

Command line interface for automating administrative operations. An architecture

overview of the Command Central software is provided in Fig. 1.

The Command Central Server accepts administrative commands that users submit

through one of the user interfaces and directs the commands to the respective Plat-

form Manager for subsequent execution. An installation in Command Central means

one or more instances of the products that Command Central can manage. It provides

a common location for configuring managed products installed in different environ-

ments.

The webMethods Platform Manager manages other Software AG products. Plat-

form Manager enables Command Central to centrally administer the lifecycle of man-

aged products. In a host machine, there might be multiple Software AG product in-

stallations. For each Software AG product installation, a separate Platform Manager is

needed to manage the installed products.

2 State of the art

Security critical ICT systems should be carefully managed especially with respect to

the related security risks. Such a risk management should include well-known con-

cepts like risk assessment (ISO 31000 – [2]) and security testing (ISO 29119 – [3]).

2.1 Risk Assessment

According to the ISO 31000 standard, risk assessment means to identify, analyze and

evaluate risks which could damage or destroy assets [2]. Lots of different methods

and technologies for risk assessment have evolved, including fault tree analysis (FTA)

[5], event tree analysis ETA [6], Failure Mode Effect (and Criticality) Analysis

FMEA/FMECA [4] and the CORAS method [1].

Compositional risk assessment allows analysts to deal with manageable small

components of a complex large scale modular system. It combines the individual risk

assessment results for components to derive a risk picture for the entire complex sys-

tem without looking further into the details of its components. However, most tradi-

tional risk assessment technologies analyze systems as a whole [7]. They do not offer

support for compositional risk assessment. Nevertheless there are some publications

dealing with compositional risk assessment and suggesting extensions for the men-

tioned risk assessment concepts, e.g. [8] for FTA and [9] for FMEA or [10] for

CORAS, which is used in the case study presented here.

There are huge databases of common weaknesses, attack patterns and safeguards

available that can be used as a base for security risk assessment, for example Mitre

CWE [23] and CAPEC [22] or BSI IT-Grundschutz [21]. There are also vulnerability

databases that list specific vulnerabilities for existing software programs, e.g. Mitre

CVE [24]. Such information could be helpful in compositional risk assessment for

systems that use listed programs or that have them in their environment. The men-

tioned catalogues are used in the case study introduced here.

2.2 Security testing and testing combined with risk assessment

The ISO 29119 standard defines security testing as a type of testing that tries to eval-

uate the protection level of the system under test against unauthorized access, un-

wanted use and denial of service [3].

Traditional testing is a method to analyze the behavior of a system according to its

specified functionality and expected results. Security testing in contrast also tests for

unspecified behavior and for unexpected results. Hence, compared to other types of

testing, for security testing it is harder to decide what should actually be tested and is

more challenging to interpret the observed behavior.

One possible way to deal with the challenges of security testing is to combine it

with risk assessment. ISO 29119 defines risk-based testing as a general method that

uses risk assessment results to guide and to improve the testing process [3]. Risk

analysis results can be used to define test policies and strategies, to identify what

should actually be tested and how much effort should be spend for it. For instance,

Kloos et al. use fault trees for identifying test cases [15]. Stallbaum and Metzger au-

tomated the generation and prioritization of test cases based upon risk assessment

artefacts [16]. Even (semi-) automated risk-based security testing might be expensive.

Reusing testing artefacts for recurring security testing problems might help to reduce

the effort. Security test patterns have been suggested for that purpose [17], but cur-

rently there is no extensive library of useful security test patterns available.

Risk assessment and testing can also interact the other way around: in test-based

risk assessment, test results are used to identify, analyze and evaluate risks. There are

several publications about this approach [18] [19], but there is still no general appli-

cable method and not much tool support.

The concepts of risk-based testing and test-based risk assessment can also be com-

bined. While Erdogan et al. propose such a combination [18], they do not propose any

technique or detailed guideline for how to update the risk model based on the test

results. The combined method with tool support presented in [20] has been developed

further along the case study presented here and it was named the RACOMAT method

and tool.

2.3 Simulation

Simulations that work with simplifying models in general can be very helpful to ana-

lyze large scale systems. For instance, Monte Carlo simulations can be used to ana-

lyze the behavior of complex systems and especially for calculating likelihood values

in the risk aggregation process [11] [12].

In [13] it is described how Monte Carlo simulations and security testing can be

used together within an iterative risk assessment process in order to refine the risk

picture. This approach is used in the case study described here.

3 Requirements, Problems and Expectations

Large scale networked computer systems and software programs can be enormous

complex. Building and maintaining such systems is challenging and it can be very

expensive. One way to reduce costs without reducing the product features and the

product quality is to let as much work as possible be done automatically by machines.

However, in the production and lifecycle management process for software there is

usually only limited potential for automation. It typically requires lots of creative

work which nowadays has to be done manually, e.g. modelling or writing code direct-

ly.

Nevertheless, at least for analytical and recurring tasks in the software develop-

ment and maintenance process, a high level of automation should be achievable.

These promising candidates for automation include especially testing as a vital part

of the software quality management. Indeed, within a testing process, many tasks can

be automated, especially test data generation and test case execution. There are lots of

tools supporting automated testing. Testing for specified behavior can be more or less

completely automated if the specification is well modeled – test cases can be derived

automatically from such a model. Of course, appropriate models have to be created

manually in the first place. Additionally, interpreting the test results and reacting

properly on them will always require further manual work.

For security testing, automation is probably slightly more difficult than for other

types of testing like functional testing or integration testing. Security testing requires

to test for unspecified behavior, so there is obviously no trivial way to derive all rele-

vant test cases from a specification. Deciding what might be security critical and what

should therefore be tested is a very difficult task because complete testing is infeasible

for complex systems. Once having decided what should be tested, with testing tech-

niques like fuzzing, it might be possible to automatically generate great many security

relevant test cases. But that is only the easier part of security testing. Judging auto-

matically whether a test has passed or failed can be quit challenging. For security tests

it is often not at all clear what behavior could be triggered. Observing and interpreting

unexpected incidents is indeed tricky. There is no point in generating automatically

lots of test cases if all test results could be false positives or false negatives: the re-

quired further investigations would probably lead to an amount of manual work,

which would be higher than simply doing manual testing with fewer, but eventually

better designed test cases.

In contrast to testing, risk assessment is typically done with lots of manual effort.

Conventional risk identification and risk analysis heavily depend on expert work and

expert judgement. There are tools for risk assessment, but still questioners have to be

answered, risk models have to be created and managed – so there is still a lot of work

that has to be done more or less manually. Hence, for complex large scale systems,

traditional risk assessment can only be performed at a high abstraction level.

We believe that the combination of risk assessment and security testing will lead to

a better level of automatization for both concepts. Incident simulations are a third

analytical concept that could be used to integrate them into a single process.

Besides automation, component based techniques are another important approach

to deal with complexity. Compositional risk Assessment allows to treat small man-

ageable components more or less independent from each other. Results for individual

components are composed to a big picture without looking again in the details of the

components. This is especially helpful for continuous risk assessment of systems that

are gradually updated because it limits the need to reassess the risk to those compo-

nents that have actually changed.

To be able to conduct efficient risk assessment of newly implemented features is a

very appealing feature in software industries. Whenever a new feature is addressed by

development, the assessment should be updated in order to make sure it contains a

careful analysis of the new or altered product. Risk assessment must continuously

assure that the risks are not only identified at lowest component level, but also for the

higher component levels and single product levels up to the product suite level. Trac-

es between the same risk artifacts at different abstraction levels should be tracked and

preserved.

Risk evaluation should be possible at any level of abstraction. If for example some

likelihood value for a risk was determined with the help of security testing, then it

should be possible to look into the details of individual test cases and test results. But

it should also be possible to view just the top level risks for all the program suites in

which the tested component is used. A tool for risk assessment and security testing

should support such transparent views. Additionally, it should provide at any level of

abstraction information what the individual technical risk artefacts mean for the or-

ganizational management, e.g. how they affect business processes and what legal

consequences unwanted incidents might have. Aggregated risk assessment results and

risk pictures with connections to their non-technical impacts are suitable as a basis for

decision making.

At the beginning of the research work for the presented case study, there was no

risk assessment tool available that fulfills these expectations of interdisciplinary

transparency and seamless integration with security testing.

Software products are implemented according to an intended environment and in-

tended usage scenarios. Risk sensitivity in different environments and scenarios can

vary in the sense that the product may be suitable for a particular setting (for which it

was initially designed) but exhibits an unacceptable risk which prohibits the use in

another, even more critical setting. In our view security should not be seen as a goal

in itself, but a means of protecting assets. Cyber security must be understood and

reasoned about not just at a technical level, but also at a non-technical level, taking

into account the context in which software is used, organizational level assets, and

legal issues. The producers of software systems cannot do the complete risk assess-

ment for all potential customers because they do not have insight in the various con-

texts in which their products may be used. Therefore, software products should be

provided with reusable risk assessment artefacts so that the risk of using them in a

certain context can be evaluated by the potential customers and users themselves.

4 An integrated Risk Assessment and Security Testing

Approach

4.1 Initial Risk Assessment

The work on the case study started according to the ISO 31000 standard with estab-

lishing the context and risk identification phases. During these initial phases the prod-

uct under investigation has been modelled in the ARIS RASEN framework. This has

been achieved in a joint workshop with a software engineer as a representative from

the product development (Command Central Product Development), a security expert

overviewing and ensuring the compliance to security standards, and the RASEN pro-

ject development team in charge of the implementation. As a result of the workshop

the software under consideration has been modelled and weaknesses and risks from

the CWE database have been assigned to the product and its components.

These first steps were done manually with the help of an existing risk artefact data-

base. Hence, the initial assessment took place at a high level of abstraction in order to

keep the manual effort reasonable low. Nevertheless, lots of information has been

collected: for some of the about 30 components up to 27 different potential vulnera-

bilities have been identified – no less than 11 weaknesses for any component. This

initial phase did neither analyze if the weaknesses actually exist nor how likely it is

that the existing ones would actually be exploited. Its result is also not detailed

enough to be very helpful as a starting point for risk-based security testing. Obvious-

ly, further analysis was required.

4.2 Refining the Risk Picture

For a more detailed risk analysis in which automated security testing can be used to

get reliable objective results, the RACOMAT method and the RACOMAT tool have

been developed. The core of the RACOMAT method is the iterative RACOMAT

process (shown in Fig. 1) combines risk assessment and automated security testing in

both ways: Test-Based Risk Assessment (TBRA), which tries to improve risk assess-

ment with the results of security tests and Risk-Based Security Testing (RBST),

which tries to optimize security testing with results of risk assessment. The method

itself is basically following the concepts described in [20].

Fig. 2. The RACOMAT method

The development made along the Command Central case study was basically to im-

prove the applicability for large scale networked systems.

The first idea that came to mind in order to reduce the manual effort of low level

risk assessment was to integrate techniques for automated static analysis of compo-

nents into the RACOMAT tool. Given (X)HTML pages, source program code, com-

piled libraries or programs, the RACOMAT static analysis tries to identify the public

interfaces of any components and especially the functions as well as ports that could

be used for interaction with other components or users. Thereby initial system models

can be generated without requiring manual actions. The generated threat interfaces

contain signatures with input and output ports, which can be associated with risk arte-

facts. Threat interfaces are low level enough to be used for automated testing, for

example.

While the static analysis works fine for some software systems, especially for

small exemplary programs, it does not in general produce good results. For Command

Central, the current state of the RACOMT tool static analysis proved not to be very

helpful. This was a kind of surprising because the main graphical Command Central

user interface is a web based user interface and the RACOMAT tool is in general

capable to statically analyze HTML user interfaces. However, the way Command

Central builds HTML pages containing not much more than lots of script function

calls, identifying interface elements is already difficult. Additionally, the user inter-

faces are generated dynamically based on the session state.

To enable the RACOMAT tool to deal with Command Central and other software

systems with highly state dependent interfaces, it has been extended with dynamical

analysis features. The dynamical analysis records information while the system is

actually used. For the recording process it does not really matter if the system is used

by human beings manually or if it is controlled by tools with automated test cases that

are executed and monitored. Recording can especially also take place while the

RACOMAT tool itself executes security tests.

Technically, the recording can take place at different levels. For a web based appli-

cation like Command Central, it is probably a good idea to record messages at the

Hypertext Transfer Protocol layer. Therefore, a little proxy server has been developed

and integrated into the RACOMAT tool. This proxy server can be used to monitor

and to manipulate the communication between Web Clients and Web Servers.

The recorded information can be used to generate interface descriptions automati-

cally. For example, the RACOMAT tool can extract the target name and the parame-

ter names from a HTTP PUT request. Based on this data, it can generate a meaningful

signature for the entire specific request with ports for input and output, which can be

added as a part of some threat interface to the risk model.

Fig. 3. The RACOMAT assistant for analyzing HTTP dynamically

A complete threat interface represents a component of the system, eventually in a

specific state, and the immediately related risk analysis artefacts (i.e. weaknesses,

attack patterns, faults …). In the case study presented here, there were already initial

risk assessment artefacts which are imported from the ARIS tool into the RACOMAT

tool. This includes a list of potential vulnerabilities for the entire web interface com-

ponent, which is represented as an abstract threat interface in the RACOMAT risk

model after the import. From the dynamic analysis, the RACOMAT tool generates

more detailed threat interface descriptions for specific states. These state dependent

threat interfaces can be linked with the more abstract threat interface for the entire

Command Control web interface. The analysts can quickly go to through the list of

potential vulnerabilities identified for the abstract threat interface and decide which of

the vulnerabilities might exist for the more detailed state dependent threat interfaces

and add those to the state dependent threat interfaces. This is basically like using a

check list.

Furthermore, different state dependent threat interfaces can be linked with each

other so that the sequence of how the states were reached is represented correctly in

the risk model.

In addition to recording information about the signature of requests, the

RACOMAT tool can of course also extract the value for each parameter in a request.

This information can eventually be used to decide about what type of information

might be expected, e.g. an ASCII string or an integer. This might already indicate

which potential weaknesses should be investigated most carefully.

Even more important, the values themselves might become vital for any following

security test case generation and test execution. First, the recorded values can be used

again in order to reach another state in a sequence of states. Second, the same values

can eventually also be used to test for vulnerability to reply attacks. Third, valid input

values can be used very well as a starting point for fuzzing in order to generate slight-

ly altered values as new test cases. These test cases altered values that are eventually

only close to valid input values are good test candidates for analyzing the security of

the system under test against manipulated input.

4.3 Automated Risk-Based Security Testing

After the semi-automated dynamical analysis, the risk model is much more detailed,

but it still does not contain enough information to start security testing without manu-

al effort. The RACOMAT tool provides assistants that can add more information from

literature. For example, the CAPEC assistant can be used to add all the relevant relat-

ed attack patterns from the Mitre CAPEC database for each identified potential vul-

nerability in a state dependent threat interface. Thereby, the attack patterns can be

immediately linked with the related vulnerabilities and threat interface ports.

The attack patterns can be seen as security testing instructions. However, they do

not contain executable test cases or machine readable test templates. The RACOMAT

tool does provide an extendable library of predefined security test patterns which can

be used to generate and execute test cases automatically once the pattern is instantiat-

ed. If no appropriate test patterns exist in the library, the tool allows its users to create

new test patterns within the tool and to upload them to the library for sharing. Securi-

ty test patterns are automatically associated with the attack patterns that can be tested

using them. For instantiation, all that has to be done is assigning the potential observ-

able results (i.e. unwanted incidents) to some output ports of the threat interfaces.

Based on likelihood and consequence estimates in the risk model, the RACOMAT

tool can calculate the priority of the test patterns in order to spend the testing budget

for the most critical tests. Likelihood estimates need only be made for base incidents.

The RACOMAT tool can calculate likelihood values for dependent incidents by doing

Monte Carlo simulations over the risk model. Of course, this requires that the rela-

tions between incidents are modeled accurately. Using the RACOMAT tool, depend-

encies between faults or incidents can be modeled in detail using directed weighted

relations and gates. This might require some manual work. Without creating an accu-

rate model, simulations or other calculations for dependent likelihood values are im-

possible.

Given an appropriately instantiated test pattern, test generation, test execution and

test result aggregation are at least semi-automated. But for example for overflow tests,

even complete automation is achievable using the RACOMAT tool. The entire securi-

ty testing process is controlled from the risk assessment perspective, there is no gap in

the workflow.

4.4 Test-Based Risk Assessment

Testing results can be used to identify new unwanted incidents that have not been

considered in the risk model so far. The RACOMAT tool is capable of adding such

unexpected incidents semi-automatically to the risk graphs.

Furthermore, test results should be used to create a model that approximates the

behavior of the tested parts accurately so that this model can be used in future inci-

dents simulations which are used to calculate dependent likelihood values. Security

testing in RACOMAT tool means trying to trigger unwanted incidents. The model

that has to be crated should tell how likely it is that the tested incident will ever be

triggered. So a likelihood expression should be interpolated from the raw test results.

Likelihood expressions for Incidents are exactly the base for the RACOMAT tool

incident simulations.

But how can a likelihood expression be interpolated from testing results if testing

was not nearby complete? Since sound interpretation is highly dependent on the tests

themselves, security testing metrics which contain interpolation functions can be cho-

sen from the RACOMAT tool predefined suggestions or created and applied manual-

ly. Test patterns should indicate which predefined security test metrics are most ap-

propriate to analyze the testing process and the test results. Any function of a security

testing metric will expect information about the executed test cases and about the

results that are observed with the help of the observation strategies of the test pattern.

Some metric’s functions might need further information, for example about the test

execution time or about the entire time spend on testing including the instantiation of

the test pattern. Security test patterns contain information that helps assigning the

input parameters of the suggested metrics and calling the metric functions correctly.

This bridging between a test pattern and a suggested testing metric can work automat-

ically or at least semi-automatically.

Hence, it is possible to update the risk graphs automatically with more precise like-

lihood estimates interpolated from test results or with new faults based on unexpected

test results.

After each iteration in the iterative RACOMAT process (i.e. after each security

testing of some attack pattern), an incident simulation should be made to calculate

updated likelihood values for dependent incidents before the most pressures threat

scenarios which should be tested next are selected by the RACOMAT tool test priori-

tization algorithm.

4.5 Reusability, configurations and high level composition

Reusable risk artefacts are one important result of the RACOMAT risk assessment

process. Typically lots of security testing will be done for individual components. The

risk models created for the components can be reused wherever the component is

used. After modeling dependencies between the models of the components, the indi-

vidual components do not have to be analyzed and tested again. The RACOMAT tool

is capable of calculating likelihood values and risk values for any configuration that is

modeled with the help of incident simulations.

Within the RACOMAT tool, the risk models used for incident simulations are di-

rected weighted graphs with gates, somehow like fault trees. However, in

RACOMAT, graphs are not required to be trees – nor to be acyclic at all. This allows

to model mutual dependencies and things like build in repairing features easily, but it

also makes simulations more challenging. To enable deterministic incident simula-

tions in cyclic graphs, the RACOMAT tool requires users to break the loop at some

point for single rounds in the simulation.

4.6 Continuing Risk Management

Creating a more detailed, more complete risk model with more precise values and

being able to assess any composition in any context is not the final goal of a risk as-

sessment process. While refining is a necessary step and while with the level of auto-

mation the RACOMAT tool offers this step is manageable, it also has some draw-

backs. Especially, it makes the risk model way more complex. The managers do even-

tually not want to see all the details all the time. A good condensed overview is much

better fitting their needs, especially if they can go into the details of the analysis if

they decide to take a closer look. Therefore, after going into most detailed low level

risk assessment, it is necessary to make sure that more abstract, higher level results

are produced, too, and that these are linked with the low level results appropriately.

For example, for Command Central, finally only the risk artefacts identified for the

entire abstract web interface are regarded to be of interest for the management. The

risk values for the abstract high level threat interface of the web interface are updated

based on the security test results for the many state dependent threat interfaces. The

RACOMAT tool automatically calculates these updates with its incident simulations.

Additionally, it provides high level dashboard views to support the further risk man-

agement.

Currently experiments are going on trying to allow for even higher abstraction us-

ing grouping and tagging for the risks based on information from literature und exist-

ing catalogues. First results seem promising especially for the tagging because it of-

fers more flexibility.

In general the RACOMAT tool can be used as a stand-alone tool. It covers the en-

tire process of combined test-based risk assessment (TBRA) and risk-based security

testing (RBST) shown in Fig. 2. Nevertheless, it is also possible to use other possibly

more specialized tools for some steps in that process. In the Case study presented

here, the results of the risk assessment are integrated back into the models used by the

ARIS framework tools. ARIS is established and widely used by the security experts

and the developers responsible for Command Central. Therefore, the RACOMAT tool

exports results in a JSON format that ARIS tools can import. However, the some

results cannot be imported into ARIS models. In order to make them accessible even

for managers and developers who do not want to use the RACOMAT tool, the devel-

opment of a RACOMAT server has started that provides views with different levels

of detail through a web interface.

Fig. 4. The different tools used within the case study

5 Conclusion and Future Work

The shown case study has lead massive extensions of the RACOMAT tool. Manly not

to make the risk assessment theoretically more accurate, but to increase the level of

automation and the usability was the major concern. With appropriate security test

patterns and security testing metrics, it is possible to do a more or less completely

automated Risk-Based Security Testing and Test-Based Security Risk Assessment

with the RACOMAT tool.

The biggest problem at the moment is that there are only a few security testing

metrics defined. The same is also true for the security test patterns – for many threat

scenarios an attack patterns, there are currently no existing appropriate security test

patterns. As long as these have to be created manually for each new attack pattern, the

effort is just as high as for manual security testing. However, if there is a good pattern

with sound metrics, then it can be instantiated for all occurrences of the same threat

scenario with low manual configuration effort. Once there are extensive catalogues of

patterns and metrics, then the concepts presented here will make the entire combined

risk assessment and security testing process much easier and really safe a lot of man-

ual work.

Creating a library of good security test patterns and security testing metrics is not a

trivial task. With the RACOMAT tool, there is now at least a tool that supports creat-

ing and editing testing metrics as well as test patterns. This allows users to create the

metrics and patterns needed.

Currently, a RACOMAT server for sharing test patterns, testing metrics and also

for sharing reusable threat interfaces for entire components or programs is being de-

veloped. Sharing threat interfaces will be essential for allowing customers to do risk

assessments for their specific environments, configurations and requirements them-

selves. For the future, the hope is that an open community will work with the threat

interface, test pattern and testing metrics databases, developing them further in col-

laboration. Expecting that user feedback will be essential for quality assurance and for

continuous improvement, user feedback will be taken serious and hopefully it will

become a vital part of the open risk artefact, test pattern and testing metric databases.

References

1. M. S. Lund, B. Solhaug, K. Stølen: Model-Driven Risk Analysis – The CORAS Approach.

Springer (2011)

2. International Standards Organization. ISO 31000:2009(E), Risk management – Principles

and guidelines, 2009

3. International Standards Organization. ISO 29119 Software and system engineering - Soft-

ware Testing-Part 1-4 , 2012

4. Bouti, A., Kadi, D.A.: A state-of-the-art review of FMEA/FMECA. International Journal

of Reliability, Quality and Safety Engineering 1, 515–543 (1994)

5. International Electrotechnical Commission: IEC 61025 Fault Tree Analysis (FTA) (1990)

6. International Electrotechnical Commission: IEC 60300-3-9 Dependability management –

Part 3: Application guide – Section 9: Risk analysis of technological systems – Event Tree

Analysis (ETA) (1995)

7. Lund, M. S., Solhaug, B., Stølen, K.: Evolution in relation to risk and trust management.

Computer 43(5), pp. 49–55, IEEE (2010)

8. Kaiser, B., Liggesmeyer, P., and Mäckel, O.: A new component concept for fault trees. In:

8th Australian workshop on Safety critical systems and software (SCS'03), pp. 37–46.

Aus-tralian Computer Society (2003)

9. Papadoupoulos, Y., McDermid, J., Sasse, R., and Heiner, G.: Analysis and synthesis of the

behaviour of complex programmable electronic systems in conditions of failure. Reliabil-

ity Engineering and System Safety, 71(3), pp. 229–247, Elsevier (2001)

10. Viehmann, J.: Reusing risk analysis results - An extension for the CORAS risk analysis

method. In: 4th International Conference on Information Privacy, Security, Risk and Trust

(PASSAT’12), pp. 742-751. IEEE (2012), DOI: 10.1109/SocialCom-PASSAT.2012.91

11. Gleißner, W., Berger, T.: Auf nach Monte Carlo: Simulationsverfahren zur Risiko-

Aggregation. RISKNEWS, 1: pp. 30–37. Wiley (2004), DOI: 10.1002/risk.200490005

12. Greenland, S., Sensitivity Analysis, Monte Carlo Risk Analysis, and Bayesian Uncertainty

Assessment. Risk Analysis, 21: pp. 579–584. Wiley (2001)

13. Viehmann, J: Towards integration of compositional risk analysis and security testing using

Monte Carlo simulation, presented at First International RISK Workshop 2013 Istanbul,

published in: Bauer, Th., Großmann, J., Seehusen, F., Stølen, K., Wendland, M.-F. (Eds.):

Risk Assessment and Risk-Driven Testing, pp. 109-119, Springer 2014, DOI:

10.1007/978-3-319-07076-6

14. Handbook: webMethods Command Central Help, Version 9.6, April 2014, Software AG

Darmstadt Germany,

http://documentation.softwareag.com/webmethods/wmsuites/wmsuite9-

6/Command_Central_and_Platform_Manager/9-6_Command_Central_Help.pdf

15. Kloos, J., Hussain, T., and Eschbach, R.: Risk-based testing of safety-critical embedded

systems driven by fault tree analysis. In: Software Testing, Verication and Validation

Work-shops (ICSTW 2011), pp. 26–33. IEEE (2011)

16. Stallbaum, H., Metzger, A., Pohl, K.: An Automated Technique for Risk-based Test Case

Generation and Prioritization. In: Proceedings of 3. Workshop on Automation of Software

Test, AST'08, Germany, 2008, pp. 67-70.

17. Smith, B.: Security Test Patterns (2008). http://www.securitytestpatterns.org/doku.php

18. Erdogan, G., Seehusen, F., Stølen, K., Aagedal, J.: Assessing the usefulness of testing for

validating the correctness of security risk models based on an industrial case study. Proc.

Workshop on Quantitative Aspects in Security Assurance (QASA'12), Pisa (2012)

19. Benet, A. F.: A risk driven approach to testing medical device software. In: Advances in

Systems Safety, pp. 157–168. Springer (2011)

20. Großmann, J; Schneider, M.; Viehmann, J.; Wendland, M.-F.: Combining Risk Analysis

and Security Testing; ISoLA 2014 Corfu

21. Federal Office for Information Security (BSI): IT-Grundschutz Catalogues, Bonn Germa-

ny 2013,

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/ITGrundschutzCatalogues/itgrundschu

tzcatalogues_node.html

22. MITRE: Common Attack Pattern Enumeration and Classification, MITRE 2015,

http://capec.mitre.org/

23. MITRE: Common Weakness Enumeration, MITRE 2015,

http://cwe.mitre.org/data/index.html

24. MITRE: Common Vulnerabilities and Exposures, MITRE 2015,

https://cve.mitre.org/cve/cve.html

http://documentation.softwareag.com/webmethods/wmsuites/wmsuite9-6/Command_Central_and_Platform_Manager/9-6_Command_Central_Help.pdf
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite9-6/Command_Central_and_Platform_Manager/9-6_Command_Central_Help.pdf
http://www.securitytestpatterns.org/doku.php
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/ITGrundschutzCatalogues/itgrundschutzcatalogues_node.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/ITGrundschutzCatalogues/itgrundschutzcatalogues_node.html
http://capec.mitre.org/
http://cwe.mitre.org/data/index.html

