Skip to main content

A Dual-Purpose Memory Approach for Dynamic Particle Swarm Optimization of Recurrent Problems

  • Chapter
  • First Online:
Recent Advances in Computational Intelligence in Defense and Security

Part of the book series: Studies in Computational Intelligence ((SCI,volume 621))

Abstract

In a dynamic optimization problem (DOP) the optima can change either in a sequential or in a recurrent manner. In sequential DOPs, the optima change gradually over time while in recurrent DOPs, previous optima reappear over time. The common strategy to tackle recurrent DOPs is to employ an archive of solutions along with information allowing to associate them with their respective problem instances. In this paper, a memory-based Dynamic Particle Swarm Optimization (DPSO) approach which relies on a dual-purpose memory for fast optimization of streams of recurrent problems is proposed. The dual-purpose memory is based on a Gaussian Mixture Model (GMM) of candidate solutions estimated in the optimization space which provides a compact representation of previously-found PSO solutions. This GMM is estimated over time during the optimization phase. Such memory operates in two modes: generative and regression. When operating in generative mode, the memory produces solutions that in many cases allow avoiding costly re-optimizations over time. When operating in regression mode, the memory replaces costly fitness evaluations with Gaussian Mixture Regression (GMR). For proof of concept simulation, the proposed hybrid GMM-DPSO technique is employed to optimize embedding parameters of a bi-tonal watermarking system on a heterogeneous database of document images. Results indicate that the computational burden of this watermarking problem is reduced by up to 90.4 % with negligible impact on accuracy. Results involving the use of the memory of GMMs in regression mode as a mean of replacing fitness evaluations (surrogate-based optimization) indicate that such learned memory also provides means of decreasing computational burden in situations where re-optimization cannot be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nickabadi, A., Ebadzadeh, M.M.. Safabakhsh, R.: DNPSO: A dynamic niching particle swarm optimizer for multi-modal optimization. In: IEEE World Congress on Computational Intelligence, pp. 26-32 (2008)

    Google Scholar 

  2. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425-442 (2004)

    Article  MATH  Google Scholar 

  3. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459-472 (2006)

    Article  Google Scholar 

  4. Carlisle, A., Dozier, G.: Tracking changing extrema with adaptive particle swarm optimizer. In: Proceedings of the 5th Biannual World Automation Congress, 2002, vol. 13, pp. 265-270 (2002)

    Google Scholar 

  5. Hu, X., Eberhart, R.: Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC ’02, vol. 2, pp. 1666-1670 (2002)

    Google Scholar 

  6. Wang, H., Wang, D., Yang, S.: Triggered memory-based swarm optimization in dynamic environments, In: EvoWorkshops, pp. 637-646 ( 2007)

    Google Scholar 

  7. Barlow, G.J., Smith, S.F.: Using memory models to improve adaptive efficiency in dynamic problems, In: IEEE Symposium on Computational Intelligence in Scheduling, 2009. CI-Sched ’09, pp. 7-14 (2009)

    Google Scholar 

  8. Yang, S., Yao, X.: Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542-561 (2008)

    Article  Google Scholar 

  9. Li, X., Dam, K.H.: Comparing particle swarms for tracking extrema in dynamic environments. In: Proceedings of the 2003 Congress on Evolutionary Computation. CEC ’03, vol. 3, pp. 1772-1779 (2003)

    Google Scholar 

  10. Kapp, M.N., Sabourin, R., Maupin, P.: A dynamic model selection strategy for support vector machine classifiers. Appl. Soft Comput. 12(8), 2550-2565 (2012)

    Article  Google Scholar 

  11. Vellasques, E., Sabourin, R., Granger, E.: A high throughput system for intelligent watermarking of bi-tonal images. Appl. Soft Comput. 11(8), 5215-5229 (2011)

    Article  Google Scholar 

  12. Connolly, J.F., Granger, E., Sabourin, R.: Evolution of heterogeneous ensembles through dynamic particle swarm optimization for video-based. Pattern Recognit. 45(7), 2460-2477 (2012)

    Article  Google Scholar 

  13. Connolly, J.F., Granger, E., Sabourin, R.: An adaptive classification system for video-based face recognition. Inf. Sci. 192, 50-70 (2012)

    Article  Google Scholar 

  14. Connolly, J.F., Granger, E., Sabourin, R.: Dynamic multi-objective evolution of classifier ensembles for video-based face recognition. Appl. Soft Comput. 13(6), 3149-3166 (2013)

    Article  Google Scholar 

  15. Vellasques, E., Sabourin, R., Granger, E.: Gaussian mixture modeling for dynamic particle swarm optimization of recurrent problems. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO ’12, pp. 73-80. ACM (2012)

    Google Scholar 

  16. Vellasques, E., Sabourin, R., Granger, E.: Fast intelligent watermarking of heterogeneous image streams through mixture modeling of PSO populations. Appl. Soft Comput. 13(6), 3130-3148 (2013)

    Article  Google Scholar 

  17. Parno, M.D., Hemker, T., Fowler, K.R.: Applicability of surrogates to improve efficiency of particle swarm optimization for simulation-based problems. Eng. Optim. 44(5), 521-535 (2012)

    Article  Google Scholar 

  18. Kennedy, J.: Some issues and practices for particle swarms. In: Swarm Intelligence Symposium, 2007, SIS 2007, pp. 162-169. IEEE (2007)

    Google Scholar 

  19. Blackwell, M.: Particle swarms and population diversity. Soft Comput. 9(11), 793-802 (2005)

    Article  MATH  Google Scholar 

  20. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimisation: an overview. Swarm Intell. J. 1(1), 33-57 (2007). June

    Article  Google Scholar 

  21. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the state of the art. Swarm Evol. Comput. 6, 1-24 (2012)

    Article  Google Scholar 

  22. Blackwell, T.: Particle swarm optimization in dynamic environments. Evolutionary Computation in Dynamic Environments, pp. 29-49. Springer, Berlin (2007)

    Chapter  Google Scholar 

  23. Yang, S.: Population-based incremental learning with memory scheme for changing environments. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, GECCO ’05, pp. 711-718. ACM, New York, NY, USA (2005)

    Google Scholar 

  24. Parrott, D.. Li, X.: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: Proceedings of the 2004 Congress on Evolutionary Computation. CEC ’04, vol. 1, pp. 98-103 (2004)

    Google Scholar 

  25. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 21(1), 5-20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24, 381-396 (2000)

    Article  Google Scholar 

  27. Sfikas, G., Constantinopoulos, C., Likas, A., Galatsanos, N.P.: An analytic distance metric for gaussian mixture models with application in image retrieval. In: Proceedings of the 15th international conference on Artificial neural networks: formal models and their applications–vol. Part II, ICANN’05, pp. 835-840. Springer, Berlin (2005)

    Google Scholar 

  28. Hennig, C.: Methods for merging gaussian mixture components. Adv. Data Anal. Classif. 4, 3-34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1-28 (2005)

    Article  Google Scholar 

  30. Sung, H.G.: Gaussian mixture regression and classification, Ph.D. thesis, Rice University (2004)

    Google Scholar 

  31. V. Torczon, M. W. Trosset, Using approximations to accelerate engineering design optimization, in: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Multidisciplinary Analysis and Optimization Symposium, Saint Louis, USA, 1998, pp. 738-748

    Google Scholar 

  32. Muharemagic, E.: Adaptive two-level watermarking for binary document images, Ph.D. thesis, Florida Atlantic University (2004)

    Google Scholar 

  33. Lu, H., Kot, A.C., Shi, Y.Q.: Distance-reciprocal distortion measure for binary document images. IEEE Signal Process. Lett. 11(2), 228-231 (2004)

    Article  Google Scholar 

  34. Collette, Y., Siarry, P.: On the sensitivity of aggregative multiobjective optimization methods. CIT 16(1), 1-13 (2008)

    Article  Google Scholar 

  35. Sauvola, J., Kauniskangas, H.: MediaTeam Document Database II, A CD-ROM Collection of Document Images. University of Oulu, Finland (1999)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by National Sciences and Engineering Research Council of Canada and BancTec Canada Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Vellasques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vellasques, E., Sabourin, R., Granger, E. (2016). A Dual-Purpose Memory Approach for Dynamic Particle Swarm Optimization of Recurrent Problems. In: Abielmona, R., Falcon, R., Zincir-Heywood, N., Abbass, H. (eds) Recent Advances in Computational Intelligence in Defense and Security. Studies in Computational Intelligence, vol 621. Springer, Cham. https://doi.org/10.1007/978-3-319-26450-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26450-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26448-6

  • Online ISBN: 978-3-319-26450-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics