Skip to main content

Computational Intelligence Methods in Forward-Looking Explosive Hazard Detection

  • Chapter
  • First Online:
  • 1232 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 621))

Abstract

This chapter discusses several methods for forward-looking (FL) explosive hazard detection (EHD) using FL infrared (FLIR) and FL ground penetrating radar (FLGPR). The challenge in detecting explosive hazards with FL sensors is that there are multiple types of targets buried at different depths in a highly-cluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Recent work in this application has focused on fusion methods, including fusion of multiple modalities of sensors (e.g., GPR and IR), fusion of multiple frequency sub-band images in FLGPR, and feature-level fusion using multiple kernel and iECO learning. For this chapter, we will demonstrate several types of EHD techniques, including kernel methods such as support vector machines (SVMs), multiple kernel learning MKL, and feature learning methods, including deep learners and iECO learning. We demonstrate the performance of several algorithms using FLGPR and FLIR data collected at a US Army test site. The summary of this work is that deep belief networks and evolutionary approaches to feature learning were shown to be very effective both for FLGPR and FLIR based EHD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, D.T., Havens, T.C., Wagner, C., Keller, J., Anderson, M.F., Wescott, D.J.: Extension of the fuzzy integral for general fuzzy set-valued information. IEEE Trans. Fuzzy Syst. 22(6), 1625–1639 (2014)

    Article  Google Scholar 

  2. Anderson, D.T., Stone, K., Keller, J.M., Spain, C.: Combination of anomaly algorithms and image features for explosive hazard detection in forward looking infrared imagery. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 5(1), 313–323 (2012)

    Google Scholar 

  3. Anderson, D.T., Stone, K., Keller, J.M., Rose, J.: Anomaly detection ensemble fusion for buried explosive material detection in forward looking infrared imaging for addressing diurnal temperature variation. In: Proceedings of the SPIE, vol. 8357, p. 83570T (2012)

    Google Scholar 

  4. Becker, J., Havens, T.C., Pinar, A., Schulz, T.J.: Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar. In: Proceedings of the SPIE (2015)

    Google Scholar 

  5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: ACM Workshop on COLT, pp. 144–152 (1992)

    Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Sys. Tech. 2(3), 1–27 (2011)

    Article  Google Scholar 

  7. Collins, L.M., Torrione, P.A., Throckmorton, C.S., Liao, X., Zhu, Q.E., Liu, Q., Carin, L., Clodfelter, F., Frasier, S.: Algorithms for landmine discrimination using the NIITEK ground penetrating radar. Proc. SPIE. 4742, 709–718 (2002)

    Article  Google Scholar 

  8. Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Costley, R.D., Sabatier, J.M., Xiang, N.: Forward-looking acoustic mine detection system. Proc. SPIE. 4394, 617–626 (2001)

    Article  Google Scholar 

  10. Cremer, F., Chavemaker, J.G., deJong, W., Schutte, K.: Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection. Proc. SPIE. 5089, 517–526 (2003)

    Article  Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. vol. 1, pp. 886–893 (2005)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255 (2009)

    Google Scholar 

  13. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531 (2013), http://arxiv.org/abs/1310.1531

  14. Gader, P.D., Grandhi, R., Lee, W.H., Wilson, J.N., Ho, K.C.: Feature analysis for the NIITEK ground penetrating radar using order weighted averaging operators for landmine detection. In: Proceedings of the SPIE, vol. 5415, pp. 953–962 (2004)

    Google Scholar 

  15. Havens, T.C., Becker, J.T., Pinar, A.J., Schulz, T.J.: Multi-band sensor-fused explosive hazards detection in forward-looking ground-penetrating radar. In: Proceedings SPIE, vol. 9072, p. 90720T (2014)

    Google Scholar 

  16. Havens, T.C., Ho, K.C., Farrell, J., Keller, J.M., Popescu, M., Ton, T.T., Wong, D.C., Soumekh, M.: Locally adaptive detection algorithm for forward-looking ground-penetrating radar. In: Proceedings of the SPIE, vol. 7664, p. 76442E (2010)

    Google Scholar 

  17. Havens, T.C., Keller, J.M., Stone, K., Ho, K.C., Ton, T.T., Wong, D.C., Soumekh, M.: Multiple kernel learning for explosive hazards detection in FLGPR. In: Proceedings of the SPIE, vol. 8357, p. 83571D (2012)

    Google Scholar 

  18. Havens, T.C., Spain, C.J., Ho, K.C., Keller, J.M., Ton, T.T., Wong, D.C., Soumekh, M.: Improved detection and false alarm rejection using ground-penetrating radar and color imagery in a forward-looking system. In: Proceedings of the SPIE, vol. 7664, p. 76441U (2010)

    Google Scholar 

  19. Havens, T.C., Stone, K., Keller, J.M., Ho, K.C.: Sensor-fused detection of explosive hazards. In: Proceedings of the SPIE, vol. 7303, p. 73032A (2009)

    Google Scholar 

  20. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural computation 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, L., Anderson, D.T., Havens, T.C.: Multiple kernel aggregation using fuzzy integrals. In: IEEE International Conference Fuzzy Systems, pp. 1–7 (2013)

    Google Scholar 

  23. Hu, L., Anderson, D.T., Havens, T.C., Keller, J.M.: Efficient and scalable nonlinear multiple kernel aggregation using the choquet integral. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Communications in Computer and Information Science, vol. 442, pp. 206–215. Springer (2014)

    Google Scholar 

  24. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153 (2009)

    Google Scholar 

  25. JIEDDO COIC MID: Global IED monthly summary report (2012)

    Google Scholar 

  26. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4 edn. McGraw-Hill, New York (2000)

    Google Scholar 

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  28. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  31. LeCun, Y., Jackel, L.D., Bottou, L., Brunot, A., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Müller, U., Säckinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit recognition. In: International conference on artificial neural networks, vol. 60 (1995)

    Google Scholar 

  32. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  33. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  34. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. A 209, 441–458 (1909)

    Article  MATH  Google Scholar 

  35. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Patt. Recognit. 29(1), 51–59 (1996)

    Article  Google Scholar 

  36. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data. Ph.D. thesis, Technical University of Denmark (2012)

    Google Scholar 

  37. Playle, N., Port, D.M., Rutherford, R., Burch, I.A., Almond, R.: Infrared polarization sensor for forward-looking mine detection. Proc. SPIE. 4742, 11–18 (2002)

    Article  Google Scholar 

  38. Price, S.R., Anderson, D.T., Luke, R.H.: An improved evolution-constructed (iECO) features framework. In: IEEE Symposium Series on Computational Intelligence (2014)

    Google Scholar 

  39. Sarikaya, R., Hinton, G.E., Ramabhadran, B.: Deep belief nets for natural language call-routing. In: IEEE International Conference Acoustics, Speech and Signal Processing, pp. 5680–5683 (2011)

    Google Scholar 

  40. Scott, G.J., Anderson, D.T.: Importance-weighted multi-scale texture and shape descriptor for object recognition in satellite imagery. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 79–82 (2012)

    Google Scholar 

  41. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 2 (1999)

    Google Scholar 

  42. Stone, K., Keller, J.M.: Clutter rejection by cluster analysis in an automatic detection system for buried explosive hazards in forward looking imagery. In: Proceedings of the SPIE (2013)

    Google Scholar 

  43. Stone, K., Keller, J.M.: Convolutional neural network approach for buried target recognition in FL-LWIR imagery. In: Proceedings of the SPIE (2014)

    Google Scholar 

  44. Stone, K., Keller, J.M., Ho, K.C., Gader, P.D.: On the registration of FLGPR and IR data for the forward-looking landmine detection system and its use in eliminating FLGPR false alarms. In: Proceedings of the SPIE, vol. 6953 (2008)

    Google Scholar 

  45. Stone, K., Keller, J.M., Popescu, M., Havens, T.C., Ho, K.C.: Forward-looking anomaly detection via fusion of infrared and color imagery. In: Proceedings of the SPIE, vol. 7664, p. 766425 (2010)

    Google Scholar 

  46. Stone, K.E., Keller, J.M., Anderson, D.T., Barclay, D.B.: An automatic detection system for buried explosive hazards in fl-lwir and FL-GPR data. In: Proceedings of the SPIE Conference Detection and Sensing of Mines, Explosive Objects, and Obscured Targets (2012)

    Google Scholar 

  47. Xu, Z., Jin, R., Yang, H., King, I., Lyu, M.R.: Simple and efficient multiple kernel learning by group lasso. In: Proceedings of the Interence Conference Machine Learning, pp. 1175–1182 (2010)

    Google Scholar 

Download references

Acknowledgments

This work is funded in part by a National Institute of Justice grant (2011-DN-BX-K838), U.S. Army (W909MY-13-C0013, W909MY-13-C0029) and Army Research Office (W911NF-14-1-0114 and 57940-EV) in support of the U.S. Army RDECOM CERDEC NVESD. Superior, a high performance computing cluster at Michigan Technological University, was used in obtaining results presented in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Havens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Havens, T.C., Anderson, D.T., Stone, K., Becker, J., Pinar, A.J. (2016). Computational Intelligence Methods in Forward-Looking Explosive Hazard Detection. In: Abielmona, R., Falcon, R., Zincir-Heywood, N., Abbass, H. (eds) Recent Advances in Computational Intelligence in Defense and Security. Studies in Computational Intelligence, vol 621. Springer, Cham. https://doi.org/10.1007/978-3-319-26450-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26450-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26448-6

  • Online ISBN: 978-3-319-26450-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics