Skip to main content

Computationally-Efficient EM-Simulation-Driven Multi-objective Design of Compact Microwave Structures

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 402))

  • 781 Accesses

Abstract

The size of microwave components has become an important design criterion for contemporary wireless communication engineering. Unfortunately, reduction of geometrical dimensions usually remain in conflict with electrical performance of the circuit, which makes it necessary to look for designs being a compromise between these two types of objectives. In this chapter, we discuss strategies for computationally-efficient multi-objective design optimization of miniaturized microwave structures. More specifically, we consider an optimization methodology based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives, which include electrical performance parameters as well as the size of the structure of interest. Design speedup is achieved by performing most of the operations at the level of suitably corrected equivalent circuit model of the structure under design. Model correction is implemented using a space mapping technique involving, among others, frequency scaling. Operation and performance of our approach is demonstrated using a compact rat-race coupler designed with respect to the following objectives: bandwidth and the layout area. A representation of the Pareto set consisting of ten designs is obtained at the cost corresponding to less than thirty high-fidelity electromagnetic simulations of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeung, S.H., Man, K.F.: Multiobjective optimization. IEEE Microwave Mag. 12, 120–133 (2011)

    Article  Google Scholar 

  2. Koziel, S., Bekasiewicz, A., Zieniutycz, W.: Expedite EM-Driven multi-objective antenna design in highly-dimensional parameter spaces. IEEE Antennas Wirel. Propag. Lett. 13, 631–634 (2014)

    Article  Google Scholar 

  3. Kurgan, P., Bekasiewicz, A.: A robust design of a numerically demanding compact rat-race coupler. Microw. Opt. Technol. Lett. 56, 1259–1263 (2014)

    Article  Google Scholar 

  4. Koziel, S., Bekasiewicz, A.: Fast multi-objective optimization of narrow-band antennas using RSA Models and design space reduction. IEEE Antennas Wirel. Propag. 14, 450–453 (2014)

    Article  Google Scholar 

  5. Tseng, C.-H., Chen, H.-J.: Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microw. Wireless Comp. Lett. 18, 734–736 (2008)

    Article  Google Scholar 

  6. Ghali, H., Moselhy, T.A.: Miniaturized fractal rat-race, branch-line, and coupled-line hybrids. IEEE Trans. Microw. Theory Tech. 52, 2513–2520 (2004)

    Article  Google Scholar 

  7. Kurgan, P., Kitlinski, Z.: Doubly miniaturized rat-race hybrid coupler. Microw. Opt. Technol. Lett. 53, 1242–1244 (2011)

    Article  Google Scholar 

  8. Liao, S.-S., Sun, P.-T., Chin, N.-C., Peng, J.-T.: A novel compact-size branch-line coupler. IEEE Microw. Wireless Comp. Lett. 15, 588–590 (2005)

    Article  Google Scholar 

  9. Bekasiewicz, A., Kurgan, P., Kitlinski, Z.: A new approach to a fast and accurate design of microwave circuits with complex topologies. IET Microw. Antennas Propag. 6, 1616–1622 (2012)

    Article  Google Scholar 

  10. Koziel, S., Bekasiewicz, A., Kurgan, P.: Rapid EM-driven design of compact RF circuits by means of nested space mapping. IEEE Microw. Wireless Comp. Lett. 24, 364–366 (2014)

    Article  Google Scholar 

  11. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  12. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Opt. 56, 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurgan, P., Bekasiewicz, A.: Atomistic surrogate-based optimization for simulation-driven design of computationally expensive microwave circuits with compact footprints. In: Koziel, S., Leifsson, L., Yang, X.S. (eds.) Solving Computationally Expensive Engineering Problems: Methods and Applications, pp. 195–218 (2014)

    Google Scholar 

  14. Kuwahara, Y.: Multiobjective optimization design of Yagi-Uda antenna. IEEE Trans. Antennas Propag. 53, 1984–1992 (2005)

    Article  Google Scholar 

  15. Bekasiewicz, A., Kurgan, P.: A compact microstrip rat-race coupler constituted by nonuniform transmission lines. Microw. Opt. Technol. Lett. 56, 970–974 (2014)

    Article  Google Scholar 

  16. Wincza, K., Gruszczynski, S.: Theoretical limits on miniaturization of directional couplers designed as a connection of tightly coupled and uncoupled lines. Microw. Opt. Technol. Lett. 55, 223–230 (2013)

    Article  Google Scholar 

  17. Kurgan, P., Filipcewicz, J., Kitlinski, Z.: Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction. IET Microw. Antennas Propag. 6, 1291–1298 (2012)

    Article  Google Scholar 

  18. Kurgan, P., Filipcewicz, J., Kitlinski, Z.: Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization. Microw. Opt. Technol. Lett. 54, 1949–1954 (2012)

    Article  Google Scholar 

  19. Koziel, S., Bandler, J.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  20. Koziel, S., Bandler, J. W,. Madsen, K.: Towards a rigorous formulation of the space mapping technique for engineering design. Proc. Int. Symp. Circuits Syst. 1, 5605–5608 (2005)

    Google Scholar 

  21. Koziel, S., Yang X.S. (eds.): Computational optimization, methods and algorithms. Series: Studies in Computational Intelligence, p. 356 (2011)

    Google Scholar 

  22. Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning—the art of tuning space mapping. IEEE Microw. Mag. 11, 96–110 (2010)

    Article  Google Scholar 

  23. Bandler, J.W., Cheng, Q.S., Hailu, D.M., Nikolova, N.K.: A space-mapping design framework. IEEE Trans. Microw. Theory Tech. 52, 2601–2610 (2004)

    Article  Google Scholar 

  24. Bandler, J.W., Georgieva, N., Ismail, M.A., Rayas-Sanchez, J.E., Zhang, Q.-J.: A generalized space-mapping tableau approach to device modeling. IEEE Trans. Microw. Theory Tech. 49, 67–79 (2001)

    Article  Google Scholar 

  25. Koziel, S., Bandler, J.W.: Space mapping with multiple coarse models for optimization of microwave components. IEEE Microw. Wireless Comp. Lett. 18, 1–3 (2008)

    Article  Google Scholar 

  26. Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for space mapping optimization. Opt. Eng. 9, 375–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  28. Smierzchalski, M., Kurgan, P., Kitlinski, Z.: Improved selectivity compact band-stop filter with Gosper fractal-shaped defected ground structures. Microw. Opt. Technol. Lett. 52, 227–232 (2010)

    Article  Google Scholar 

  29. Kurgan, P., Bekasiewicz, A., Pietras, M., Kitlinski, M.: Novel topology of compact coplanar waveguide resonant cell low-pass filter. Microw. Opt. Technol. Lett. 54, 732–735 (2012)

    Article  Google Scholar 

  30. Kurgan, P., Kitlinski, Z.: Novel doubly perforated broadband microstrip branch-line couplers. Microw. Opt. Technol. Lett. 51, 2149–2152 (2009)

    Article  Google Scholar 

  31. Tsai, L.-T.: A compact dual-passband filter using stepped-impedance resonators. Microw. Opt. Technol. Lett. 55, 2514–2517 (2013)

    Article  Google Scholar 

  32. Koziel, S., Bekasiewicz, A., Couckuyt, I., Dhaene, T.: Efficient multi-objective simulation-driven antenna design using Co-Kriging. IEEE Trans. Ant. Prop. 62, 5900–5905 (2014)

    Article  MathSciNet  Google Scholar 

  33. Bekasiewicz, A., Koziel, S., Zieniutycz, W.: Design space reduction for expedited multi-objective design optimization of antennas in highly-dimensional spaces. In: Koziel, S., Leifsson, L., Yang, X.S. (eds.) Solving Computationally Expensive Engineering Problems: Methods and Applications, pp. 113–147, Springer, Switzerland (2014)

    Google Scholar 

  34. Koziel, S., Ogurtsov, S.: Multi-Objective Design of Antennas Using Variable-Fidelity Simulations and Surrogate Models. IEEE Trans. Antennas Propag. 61, 5931–5939 (2013)

    Article  Google Scholar 

  35. Jin, N., Rahmat-Samii, Y.: Hybrid Real-Binary Particle Swarm Optimization (HPSO) in engineering electromagnetics. IEEE Trans. Antennas Propag. 58, 3786–3794 (2010)

    Article  Google Scholar 

  36. Opozda, S., Kurgan, P., Kitlinski, M.: A compact seven-section rat-race hybrid coupler incorporating PBG cells. Microw. Opt. Technol. Lett. 51, 2910–2913 (2009)

    Article  Google Scholar 

  37. Bekasiewicz, A., Koziel, S., Pankiewicz, B.: Accelerated simulation-driven design optimization of compact couplers by means of two-level space mapping. IET Microw. Antennas Propag. 9, 618–626 (2014)

    Google Scholar 

  38. Koziel, S., Kurgan, P., Pankiewicz, B.: Cost‐efficient design methodology for compact rat‐race couplers. Int. J. RF Microwave Comput. Aided Eng. 25(3):236–242 (2015)

    Google Scholar 

  39. Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, Hoboken (2012)

    Google Scholar 

  40. Agilent A.D.S.: Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, USA (2011)

    Google Scholar 

  41. CST Microwave Studio: Computer Simulation Technology AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2013)

    Google Scholar 

  42. Kurgan, P., Kitlinski, Z.: Slow-wave fractal-shaped compact microstrip resonant cell. Microw. Opt. Technol. Lett. 52, 2613–2615 (2010)

    Google Scholar 

  43. Kurgan, P., Bekasiewicz, A., Kitlinski, M.: On the low-cost design of abbreviated multi-section planar matching transformer. Microw. Opt. Technol. Lett. 57(3):521–525 (2015)

    Google Scholar 

  44. Bekasiewicz, A., Koziel, S.: Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity. Int. J. RF Microw. Comput. Aided Eng. 25(2):178–183 (2015)

    Google Scholar 

  45. Deb., K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    Google Scholar 

  46. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Mag. 9, 105–122 (2008)

    Article  Google Scholar 

  47. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  48. El Zooghby, A.H., Christodoulou, C.G., Georgiopoulos, M.: A neural network-based smart antenna for multiple source tracking. IEEE Trans. Antennas Propag. 48, 768–776 (2000)

    Article  Google Scholar 

  49. Koziel, S., Bekasiewicz, A., Kurgan, P.: Nested space mapping technique for design and optimization of complex microwave structures with enhanced functionality. In: Koziel, S., Leifsson, L., Yang, X.S. (eds.) Solving Computationally Expensive Engineering Problems: Methods and Applications, pp. 53–86. Springer, Switzerland (2014)

    Google Scholar 

  50. Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 52, 378–385 (2004)

    Article  Google Scholar 

  51. Chamaani, S., Mirtaheri, S.A., Abrishamian, M.S.: Improvement of time and frequency domain performance of antipodal vivaldi antenna using multi-objective particle swarm optimization. IEEE Trans. Antennas Propag. 59, 1738–1742 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Computer Simulation Technology AG, Darmstadt, Germany, for making CST Microwave Studio available. This work was supported in part by the Icelandic Centre for Research (RANNIS) Grant 13045051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Koziel, S., Bekasiewicz, A., Kurgan, P., Leifsson, L. (2015). Computationally-Efficient EM-Simulation-Driven Multi-objective Design of Compact Microwave Structures. In: Obaidat, M., Ören, T., Kacprzyk, J., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications . Advances in Intelligent Systems and Computing, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-319-26470-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26470-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26469-1

  • Online ISBN: 978-3-319-26470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics