Skip to main content

The Seminal Speculation of a Precursor: Elements of Embodied Cognition and Situated AI in Alan Turing

  • Chapter
  • First Online:
  • 5076 Accesses

Part of the book series: Synthese Library ((SYLI,volume 376))

Abstract

Turing’s visionary contribution to cognitive science is not limited to the foundation of the symbolist approach to cognition and to the exploration of the connectionist approach: it additionally anticipated the germinal disclosure of the embodied approach. Even if Turing never directly dealt with the foundational speculation on the conceptual premises of embodiment, in his theoretical papers we find traces of the idea that a cognitive agent must develop a history of coupling with its natural and social environment, and that primitive bodily stimuli like pain and pleasure drive this coupling and elevate it to real learning by setting its normative preconditions. Turing did not consistently defend the centrality of embodiment, and ended up confounding or deemphasizing in various occasions the critical importance that he had himself implicitly recognized to the body. In line with the anti-representationist, radically enactive approaches to basic cognition, I believe that if Turing eventually failed to fully value the cognitive-developmental role played by the body, this was not because he proposed a computational and functionalist model of the mind, but because he tacitly assumed the content/vehicle dichotomy as a primitive of that model: in fact, he still believed that intelligence is a realized by decontextualized contents that can be detached and transmitted regardless of their mode of physical implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boden, M. A. (2006). Mind as machine: A history of cognitive science (Vol. 2). Oxford: Oxford University Press.

    Google Scholar 

  • Bower, M., & Gallagher, S. (2013). Bodily affects as prenoetic elements in enactive perception. Phenomenology and Mind, 4(1), 78–93.

    Google Scholar 

  • Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.

    Google Scholar 

  • Cangelosi, A., & Schlesinger, M. (2015). Developmental robotics. From babies to robots. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cappuccio, M. (2005). Un’ipotesi controfattuale: la macchina di Turing ideografica. In L’eredità di Alan Turing. 50 anni di intelligenza artificiale (pp. 231–244). Milano: Alboversorio.

    Google Scholar 

  • Cappuccio, M. (2006). Alan Turing: l’uomo, la macchina, l’enigma. Per una genealogia dell’incomputabile. Milano: Alboversorio.

    Google Scholar 

  • Cappuccio, M., & Wheeler, M. (2012). Ground-level intelligence: Action-oriented representation and the dynamic of the background. In Z. Radman (Ed.), Knowing without thinking. London: Palgrave Macmillan.

    Google Scholar 

  • Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2), 345–363.

    Google Scholar 

  • Clark, A. (1991). Microcognition: Philosophy, cognitive science, and parallel distributed processing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clark, A. (1997). Being there: Putting brain, body and world together again. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 7–19.

    Google Scholar 

  • De Jaegher, H., Di Paolo, E., & Gallagher, S. (2010). Can social interaction constitute social cognition? Trends in Cognitive Sciences, 14(10), 441–447.

    Google Scholar 

  • Dennett, D. (1987). Cognitive wheels: The frame problem in artificial intelligence. In Z. W. Pylyshyn (Ed.), The robot’s dilemma: The frame problem in artificial intelligence. Norwood: Ablex.

    Google Scholar 

  • Dreyfus, H. L. (1992). What computers still can’t do. Cambridge, MA: MIT Press.

    Google Scholar 

  • Dreyfus, H. L. (2002). Intelligence without representation: Merleau-Ponty’s critique of mental representation. Phenomenology and the Cognitive Sciences, 1, 367–383.

    Google Scholar 

  • Dreyfus, H. L. (2008). Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. In P. Husbands, O. Holland, & M. Wheeler (Eds.), The mechanical mind in history. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ford, J. (2011). Helen Keller was never in a Chinese room. Minds and Machines, 21(1), 57–72.

    Google Scholar 

  • Freeman, W. J. (2000). Neurodynamics: An exploration in mesoscopic brain dynamics (Perspectives in neural computing).

    Google Scholar 

  • Gallagher, S. (2005). How the body shapes the mind. Oxford: Oxford University Press.

    Google Scholar 

  • Gallagher, S. (2009). The key to the Chinese room. In K. Leidlmair (Ed.), After cognitivism (pp. 87–96). Dordrecht: Springer.

    Google Scholar 

  • Gallagher, S. (2012). Social cognition, the Chinese room, and the robot replies. In Z. Radman (Ed.), Knowing without thinking. London: Palgrave Macmillan.

    Google Scholar 

  • Gallese, V. (2009). Mirror neurons, embodied simulation, and the neural basis of social identification. Psychoanalytic Dialogues, 19, 519–536.

    Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.

    Google Scholar 

  • Haugeland, J. (1978). The nature and plausibility of cognitivism. Behavioral and Brain Sciences, 1, 215–260.

    Google Scholar 

  • Hendriks-Jansen, H. (1996). Catching ourselves in the act: Situated activity, interactive emergence, evolution, and human thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Herrenschmidt, C. (2007). Les trois écritures. Langue, nombre, code. Paris: Gallimard.

    Google Scholar 

  • Hobson, P. (2002). The cradle of thought. Oxford: Oxford University Press.

    Google Scholar 

  • Hutto, D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without contents. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kleene, S. C. (1936). Lambda definability and recursiveness. Duke Mathematical Journal, 2, 340–353.

    Google Scholar 

  • Kleene, S. (1952). Introduction to metamathematics. Amsterdam: North-Holland.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Lassègue, J. (1998). Turing. Paris: Les Belles Letters.

    Google Scholar 

  • Lassègue, J., & Longo, G. (2012). What is Turing’s comparison between mechanism and writing worth? In S. B. Cooper, A. Dawar, & B. Loewe (Eds.), Computability in Europe (pp. 451–462). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Longo, G. (1999). The difference between clocks and Turing machines. In A. Carsetti (Ed.), Functional models of cognition (pp. 211–232). Dordrecht/Boston: Kluwer.

    Google Scholar 

  • Longo, G. (2002). The constructed objectivity of mathematics and the cognitive subject. In M. Mugur Schacter (Ed.), Proposals in epistemology. On quantum mechanics, mathematics and cognition (pp. 433–463). Dordrecht/Boston: Kluwer.

    Google Scholar 

  • Longo, G. (2008). Laplace, Turing and the “imitation game” impossible geometry: Randomness, determinism and programs in Turing’s test. In R. Epstein, G. Roberts, & G. Beber (Eds.), Parsing the Turing test (pp. 377–413). Dordrecht: Springer.

    Google Scholar 

  • Longo, G. (2009). From exact sciences to life phenomena: Following Schrödinger and Turing on programs, life and causality. Information and Computation, 207, 545–558.

    Google Scholar 

  • Marr, D. (1981). Vision: A computational investigation into the human representation and processing of visual information. Cambridge, MA: The MIT Press.

    Google Scholar 

  • McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Google Scholar 

  • Metta, G., Sandini, G., Vernon, D., Natale, L., & Nori, F. (2008). The iCub humanoid robot: an open platform for research in embodied cognition, PerMIS ’08. In Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems (pp. 50–56).

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Google Scholar 

  • Minsky, M. (1974). A framework for representing knowledge. MIT Lab Memo # 306.

    Google Scholar 

  • Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Noe, A., & O’Regan, J. K. (2002). On the brain-basis of visual consciousness: A sensorimotor account. In A. Noe & E. Thompson (Eds.), Vision and mind: Selected readings in the philosophy of perception. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press.

    Google Scholar 

  • Petitot, J., Varela, F., Pachoud, B., & Roy, J. M. (Eds.). (1999). Naturalizing phenomenology: Contemporary issues in phenomenology and cognitive science. Stanford: Stanford University Press.

    Google Scholar 

  • Pfeifer, R., Lungarella, M., & Lida, F. (2012). The challenges ahead for bio-inspired ‘soft’ robotics. Communications of the ACM, 55(11), 76.

    Google Scholar 

  • Pinker, S. (2002). The blank slate. New York: Penguin.

    Google Scholar 

  • Putnam, H. (1967a). Psychological predicates. In W. H. Capitan & D. D. Merrill (Eds.), Art, mind, and religion (pp. 37–48). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Putnam, H. (1967b). The nature of mental states. In D. M. Rosenthal (Ed.), The nature of mind (pp. 197–203). New York: Oxford University Press.

    Google Scholar 

  • Reddy, V. (2008). How infants know minds. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Rumelhart, D. E., McClelland, J. L., & The PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Volume 1: Foundations). MIT Press: Cambridge, MA.

    Google Scholar 

  • Searle, J. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417–457.

    Google Scholar 

  • Shapiro, L. (2011). Embodied cognition. New York: Routledge.

    Google Scholar 

  • Turing, A. M. (1936). On computable numbers, with an application to the entscheidungsproblem: A correction. Proceedings of the London Mathematical Society, 43, 544–546.

    Google Scholar 

  • Turing, A. M. (1948). Intelligent machinery. Report for national physical laboratory. In: Collected works (Vol. 1).

    Google Scholar 

  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, 50, 433–460.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, Series B, 237, 37–72.

    Google Scholar 

  • van Gelder, T. (1991). Classical questions, radical answers: Connectionism and the structure of mental representations. In T. Horgan (Ed.), Connectionism and the philosophy of mind. Dordrecht/Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Vincent, J. F. V. (2009). Biomimetics, a review. Journal of engineering in medicine. Proceedings of the Institution of Mechanical Engineers. Part H, 223(8), 919–939.

    Google Scholar 

  • Wells, A. (2005). Rethinking cognitive computation: Turing and the science of the mind. London: Palgrave Macmillan.

    Google Scholar 

  • Weyl, H. (1985). Axiomatic versus constructive procedures in mathematics. In T. Tonietti (Ed.), The mathematical intelligence (7)4. New York: Springer-Verlag.

    Google Scholar 

  • Wheeler, M. (2010). In defence of extended functionalism. In R. Menary (Ed.), The extended mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wittgenstein, L. (1980). Remarks on the philosophy of psychology (Vol. 1). Oxford: Blackwell.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano L. Cappuccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cappuccio, M.L. (2016). The Seminal Speculation of a Precursor: Elements of Embodied Cognition and Situated AI in Alan Turing. In: Müller, V.C. (eds) Fundamental Issues of Artificial Intelligence. Synthese Library, vol 376. Springer, Cham. https://doi.org/10.1007/978-3-319-26485-1_28

Download citation

Publish with us

Policies and ethics