Skip to main content

Is DeCAF Good Enough for Accurate Image Classification?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Abstract

In recent years, deep learning has attracted much interest for addressing complex AI tasks. However, most of the deep learning models need to be trained for a long time in order to obtain good results. To overcome this problem, the deep convolutional activation feature (DeCAF) was proposed, which is directly extracted from the activation of a well trained deep convolutional neural network. Nevertheless, the dimensionality of DeCAF is simply fixed to a constant number. In this case, one may ask whether DeCAF is good enough for image classification applications and whether we can further improve its performance? To answer these two questions, we propose a new model called RS-DeCAF based on “reducing” and “stretching” the dimensionality of DeCAF. In the implementation of RS-DeCAF, we reduce the dimensionality of DeCAF using dimensionality reduction methods, such as PCA, and meanwhile increase the dimensionality by stretching the weight matrix between successive layers. RS-DeCAF is aimed to discover the effective representations of data for classification tasks. As there is no back propagation is needed for network training, RS-DeCAF is very efficient and can be easily applied to large scale problems. Extensive experiments on image classification show that RS-DeCAF not only slightly improves DeCAF, but dramatically outperforms previous “stretching” and other state-of-the-art approaches. Hence, RS-DeCAF can be considered as an effective substitute for previous DeCAF and “stretching” approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzen, E., Darrel, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: The Internalational Compouter Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  3. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2013). http://caffe.berkeleyvision.org

  4. Tsang, I., Kowk, J., Cheung, P.-M.: Core vector machines: fast SVM training on very large data sets. J. Mach. Learn. Res. 6(2), 363–392 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Lin, M., Chen, Q., Yan, S.: Network in network, J. CoRR (2013). abs/1312.4400

  6. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Neural Information Processing Systems, pp. 1988–1996 (2014)

    Google Scholar 

  7. Zheng, Y., Zhong, G., Liu, J., Cai, X., Dong, J.: Visual texture perception with feature learning models and deep architectures. In: Li, S., Liu, C., Wang, Y. (eds.) CCPR 2014, Part I. CCIS, vol. 483, pp. 401–410. Springer, Heidelberg (2014)

    Google Scholar 

  8. Wang, N., Yeung, D.Y.: Ensemble-based tracking: aggregating crowdsourced structured time series data. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1107–1115 (2014)

    Google Scholar 

  9. Pandey, G., Dukkipati, A.: Learning by stretching deep networks. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1719–1727 (2014)

    Google Scholar 

  10. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. J. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. J. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  13. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks (2013). arXiv preprint arXiv:1312.6229

  14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions (2014)

    Google Scholar 

  15. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Fei-Fei, L.: Imagenet large scale visual recognition challenge (2014)

    Google Scholar 

  16. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)

    Google Scholar 

  17. Jolliffe, I.: Principal Component Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  18. Fisher, R.A.: The use of multiple measurements in taxonomic problems. J. Ann. Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  19. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. J. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Article  Google Scholar 

  20. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200 (2010)

    Google Scholar 

  21. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. Int. Conf. Artif. Intell. Stat. 15, 215–223 (2011)

    Google Scholar 

  22. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. J. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. J. Sci. 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv preprint arXiv:1207.0580

  25. Scholkopf, B., Smola, A., Mller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. J. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  26. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. J. Neural Comput. 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  27. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: Neural Information Processing Systems, pp. 766–774 (2014)

    Google Scholar 

  28. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2002)

    Google Scholar 

  29. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    MATH  Google Scholar 

  30. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In: Neural Information Processing Systems, pp. 2004–2012 (2013)

    Google Scholar 

  31. Cho, Y., Saul, L.K.: Large-margin classification in infinite neural networks. J. Neural Comput. 22(10), 2678–2697 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (No. 2012CB316301), the National Natural Science Foundation of China (No. 61271405, No. 61403353, No. 61473236 and No. 61401413), the Ph.D. Program Foundation Of Ministry Of Education Of China (No. 20120132110018), the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, Y., Zhong, G., Zheng, Y., Huang, K., Dong, J. (2015). Is DeCAF Good Enough for Accurate Image Classification?. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics