Skip to main content

Cost Reduction in Thyroid Diagnosis: A Hybrid Model with SOM and C4.5 Decision Trees

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Included in the following conference series:

Abstract

The main objective of this paper is to introduce a hybrid model of Self Organizing Maps (SOM) and C4.5, to reduce the costs while maintaining an acceptable diagnostic performance. In this hybrid model, SOM is used first to form clusters and then C4.5 trees specific to each cluster is constructed. The proposed hybrid model is tested on multiclass Thyroid Data and compared to standalone C4.5 tree. Costs were reduced by 22 %–27 % and performance results vary between 88 % and 97 % in terms of accuracy and 90 %–97 % in terms of sensitivity. Cost and performance differences between the hybrid model and standalone C4.5 found to be statistically significant according to Wilcoxon signed-rank test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/ File names: allbp.data, allhyper.data and allhypo.data.

References

  1. Buising, K.L., Thursky, K.A., Black, J.F., MacGregor, L., Street, A.C., Kennedy, M.P., Brown, G.V.: Improving antibiotic prescribing for adults with community acquired pneumonia: does a computerised decision support system achieve more than academic detailing alone?-a time series analysis. BMC Med. Inform. Decis. Mak. 8(1), 35 (2008)

    Article  Google Scholar 

  2. Chen, D.R., Chang, R.F., Huang, Y.L.: Breast cancer diagnosis using self-organizing map for sonography. Ultrasound Med. Biol. 26(3), 405–411 (2000)

    Article  Google Scholar 

  3. Chertow, G.M., Lee, J., Kuperman, G.J., Burdick, E., Horsky, J., Seger, D.L., Lee, R., Mekala, A., Song, J., Komaroff, A.L., et al.: Guided medication dosing for inpatients with renal insufficiency. Jama 286(22), 2839–2844 (2001)

    Article  Google Scholar 

  4. Chi, C.L., Street, W.N., Katz, D.A.: A decision support system for cost-effective diagnosis. Artif. Intell. Med. 50(3), 149–161 (2010)

    Article  Google Scholar 

  5. Churilov, L., Bagirov, A., Schwartz, D., Smith, K., Dally, M.: Data mining with combined use of optimization techniques and self-organizing maps for improving risk grouping rules: application to prostate cancer patients. J. Manag. Inf. Syst. 21(4), 85–100 (2005)

    Google Scholar 

  6. Coiera, E.: Guide to Health Informatics. Hodder Arnold (2003)

    Google Scholar 

  7. Demar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  8. Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353 (2013). http://jmlr.org/papers/v14/demsar13a.html

    MATH  Google Scholar 

  9. Elkin, P.L., Liebow, M., Bauer, B.A., Chaliki, S., Wahner-Roedler, D., Bundrick, J., Lee, M., Brown, S.H., Froehling, D., Bailey, K., et al.: The introduction of a diagnostic decision support system (dxplain) into the workflow of a teaching hospital service can decrease the cost of service for diagnostically challenging diagnostic related groups (drgs). Int. J. Med. Inform. 79(11), 772–777 (2010)

    Article  Google Scholar 

  10. Evans, R.S., Pestotnik, S.L., Classen, D.C., Clemmer, T.P., Weaver, L.K., Orme Jr, J.F., Lloyd, J.F., Burke, J.P.: A computer-assisted management program for antibiotics and other antiinfective agents. N. Engl. J. Med. 338(4), 232–238 (1998)

    Article  Google Scholar 

  11. Fillmore, C.L., Bray, B.E., Kawamoto, K.: Systematic review of clinical decision support interventions with potential for inpatient cost reduction. BMC Med. Inform. Decis. Mak. 13(1), 135 (2013)

    Article  Google Scholar 

  12. Kaski, S.: Data exploration using self-organizing maps. In: Acta Polytechnica Scandinavica: Mathematics, Computing and Management in Engineering Series no. 82. Citeseer (1997)

    Google Scholar 

  13. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  14. Markey, M.K., Lo, J.Y., Tourassi, G.D., Floyd, C.E.: Self-organizing map for cluster analysis of a breast cancer database. Artif. Intell. Med. 27(2), 113–127 (2003)

    Article  Google Scholar 

  15. McGregor, J.C., Weekes, E., Forrest, G.N., Standiford, H.C., Perencevich, E.N., Furuno, J.P., Harris, A.D.: Impact of a computerized clinical decision support system on reducing inappropriate antimicrobial use: a randomized controlled trial. J. Am. Med. Inform. Assoc. 13(4), 378–384 (2006)

    Article  Google Scholar 

  16. Mekhjian, H.S., Kumar, R.R., Kuehn, L., Bentley, T.D., Teater, P., Thomas, A., Payne, B., Ahmad, A.: Immediate benefits realized following implementation of physician order entry at an academic medical center. J. Am. Med. Inform. Assoc. 9(5), 529–539 (2002)

    Article  Google Scholar 

  17. Mullett, C.J., Evans, R.S., Christenson, J.C., Dean, J.M.: Development and impact of a computerized pediatric antiinfective decision support program. Pediatrics 108(4), e75 (2001)

    Article  Google Scholar 

  18. Paul, M., Andreassen, S., Tacconelli, E., Nielsen, A.D., Almanasreh, N., Frank, U., Cauda, R., Leibovici, L., et al.: Improving empirical antibiotic treatment using treat, a computerized decision support system: cluster randomized trial. J. Antimicrob. Chemother. 58(6), 1238–1245 (2006)

    Article  Google Scholar 

  19. Sen, A., Banerjee, A., Sinha, A.P., Bansal, M.: Clinical decision support: converging toward an integrated architecture. J. Biomed. Inform. 45(5), 1009–1017 (2012)

    Article  Google Scholar 

  20. Shahshahani, B.M., Landgrebe, D.A.: The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 32(5), 1087–1095 (1994)

    Article  Google Scholar 

  21. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. Dept. of Informatics, Aristotle University of Thessaloniki, Greece (2006)

    Google Scholar 

  22. WHO: Global health expenditure database (2013). http://apps.who.int/nha/database

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Cumhur Kinaci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kinaci, A.C., Yucebas, S.C. (2015). Cost Reduction in Thyroid Diagnosis: A Hybrid Model with SOM and C4.5 Decision Trees. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics