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Abstract. The Restricted Boltzmann Machines (RBM) can be used either as
classifiers or as generative models. The quality of the generative RBM is mea-
sured through the average log-likelihood on test data. Due to the high com-
putational complexity of evaluating the partition function, exact calculation of
test log-likelihood is very difficult. In recent years some estimation methods are
suggested for approximate computation of test log-likelihood. In this paper we
present an empirical comparison of the main estimation methods, namely, the
AIS algorithm for estimating the partition function, the CSL method for directly
estimating the log-likelihood, and the RAISE algorithm that combines these two
ideas. We use the MNIST data set to learn the RBM and then compare these
methods for estimating the test log-likelihood.

1 Introduction

The Restricted Boltzmann Machines (RBM) are among the basicbuilding blocks of
deep learning models. They can be used as classifiers as well as generative models. The
parameters of an RBM are learnt with an objective of maximizing the log-likelihood
using, e.g., the contrastive divergence [5]. The quality ofthe learnt generative RBM is
evaluated based on the average log-likelihood which, for N test samples, is given by,

L =
1

N

N
∑

i=1

log p(v(i)) (1)

wherep(v(i)) is the probability (or the likelihood) of theith test sample,v(i). The model
with higher average test log-likelihood is better. The testlog-likelihood can also be used
in devising a stopping criterion for the learning and for fixing the hyper-parameters
through cross validation.

The likelihoodp(v) can be written asp∗(v)/Z. While p∗(v) is easy to evaluate,
the normalizing constantZ, called the partition function, is computationally expensive.
Therefore, various sampling based estimators have been proposed for the estimation
of the log-likelihood. In this paper we present an empiricalanalysis of the two main
approaches for estimating the log-likelihood.

The first approach of estimating the average test log-likelihood is to approximately
estimate the partition function of the model distribution and then use it to calculate the
log-likelihood. The partition function can be estimated with the Monte Carlo method us-
ing the samples obtained from the model distribution. However, generating independent
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samples is difficult since the model distribution which the RBM represents is compli-
cated and high dimensional in most applications. A useful sampling technique in such
case is the importance sampling where samples obtained froma simple distribution,
called the proposal distribution, are used to estimate the partition function. However,
for large models, the variance of this estimator is very highand may even be infinite [6]
when the proposal distribution is not a good approximation of the target distribution. To
overcome this difficulty of choosing a good proposal distribution, a sequence of inter-
mediate distributions is used. The annealed importance sampling (AIS) based estimator
is one such estimator [7].

The second approach is to estimate the average test log-likelihood directly by marginal-
izing over the hidden variables from the model distribution, because the conditional
distribution of the visible units given the hidden units is simple to evaluate in an RBM.
However, the computational complexity grows exponentially with the number of hid-
den units present in the model. Also, this computation has tobe repeated for each test
sample. Hence, an approximate method which uses a sample based estimator called
conservative sampling based likelihood estimator (CSL) isproposed in [1]. A more
efficient method called reverse annealed importance sampling estimator (RAISE) im-
plements CSL by formulating the problem of marginalizationas a partition function
estimation problem.

In this paper, we present an empirical comparison of the performance of the sam-
pling based estimators, namely, annealed importance sampling estimator(AIS) [7], con-
servative sampling based likelihood estimator (CSL) [1], reverse annealed importance
sampling estimator (RAISE)[2]. Since our main aim is to evaluate the learnt RBM, the
issues associated with the learning are not addressed in this paper. Initially we learn
RBM models (with different number of hidden units) using thestandard CD algorithm
on the MNIST dataset with suitably chosen hyperparameters.We evaluate the average
test log-likelihood of each of the learnt models using the estimators mentioned above
and compare their performance. For models with small numberof hidden units we can
calculate the test log-likelihood through the brute force approach. When the ground
truth is known we can readily evaluate the performance of different estimators. How-
ever, for large models we do not know the ground truth.

The rest of the paper is organized as follows. In section 2 we first briefly describe
the RBM model. We then explain the problem of computing the average test log likeli-
hood for an RBM and explain the two approaches used for solving it. We then describe
the different sampling methods considered in this study in section 3. In section 4 we
describe the simulation setting, the parameters used in different estimators and then
present results of our empirical study. Finally we concludethe paper in section 5.

2 Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is a special case of the Boltzmann Machine
where the intra-layer connections are restricted [9,4,5].The visible stochastic units(v)
are connected to the hidden stochastic units(h) through bidirectional links. We restrict
our study to the binary RBM withv ∈ {0, 1}m andh ∈ {0, 1}n, being the states
of visible and hidden units respectively. Note that,m andn are the number of visible
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and hidden units. For the binary RBM, the energy function andthe probability that the
model assigns to{v,h} is given by,

E(v,h; θ) = −
∑

i,j

wijhi vj −
m
∑

j=1

bj vj −
n
∑

i=1

ci hi (2)

p(v,h|θ) = e−E(v,h;θ)

Z
(3)

whereZ =
∑

v,h e
−E(v,h;θ) is the partition function andθ = {w ∈ Rn×m,b ∈

Rm, c ∈ Rn} is the set of model parameters.

2.1 Evaluation of the Average Test Log-likelihood for an RBM

As mentioned in section 1 the parameters of an RBM are learnt using the contastive
divergence algorithm. Once the model is learnt, for a particular test datav the log-
likelihood can be calculated as (see [3] for details),

log p(v) = log
∑

h

e−E(v,h;θ) − logZ

=
∑

j

bjvj + log
∑

h

e

∑

i

cihi+
∑

j

wijhivj

− logZ

=
∑

j

bjvj +
∑

i

log(1 + e
ci+

∑

j

wijvj

)− logZ (4)

The difficulty in evaluating the above equation is due to the presence of intractable
log partition function. The log partition function can be expanded as,

logZ = log
∑

v,h

e−E(v,h;θ)

= log
∑

v

e

∑

j

bjvj ∑

h

e

∑

i

cihi+
∑

j

wijhivj

= log
∑

v

e

∑

j

bjvj ∏

i

(

1 + e
ci+

∑

j

wijvj
)

(5)

Similarly, it can be written in terms ofh as,

logZ = log
∑

h

e

∑

i

cihi ∏

j

(

1 + e
bj+

∑

i

wijhi

)

(6)

The above equation can also be written in terms ofh. Hence, to evaluate the parti-
tion function by using either eq.(5) or eq.(6) we have to sum2L terms, whereL =
min{m,n}, which is computationally expensive for large models. However, if we can
estimate the partition function by some other method then wecan efficiently estimate
the log-likelihood using eq.(4).
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The test log-likelihood can also be estimated directly by marginalizing the model
distribution over the latent variableh through a sample average as,

log p(v) = log
∑

h

p(h)p(v|h) ≈ log
1

N

N
∑

i=1

p(v|h(i)) (7)

whereN samples ofh are obtained ash(i) ∼ p(h), ∀i.

3 Sampling Based Estimators for Evaluating RBMs

In this section we briefly discuss various sampling based estimators for the test log-
likelihood. As mentioned earlier, we either need a method toestimateZ, so that we
can use eq.(4); or we need a method to sample fromp(h) so that we can use eq.(7) for
evaluating the test log-likelihood. We discuss

3.1 Annealed Importance Sampling for Estimating Partition Function

Suppose two distributionsfA(x) = f∗

A(x)/ZA andfB(x) = f∗

B(x)/ZB are given such
thatfA(x) 6= 0 whenfB(x) 6= 0 and it is possible to obtain independent samples from
fA(x). It is also assumed thatf∗

A(x), f
∗

B(x) andZA are easy to evaluate. Then the ratio
of partition functions can be written as,

ZB

ZA

=

∫

f∗

B(x)

ZA

dx =

∫

f∗

B(x)

f∗

A(x)
fA(x) dx ≈ 1

M

M
∑

i=1

f∗

B(x
(i))

f∗

A(x
(i))

≈ 1

M

M
∑

i=1

w
(i)
imp (8)

wherew(i)
imp = f∗

B(x
(i))/f∗

A(x
(i)) is termed as theith importance weight andx(i) are

independent samples from the distributionfA. However, the variance of this estimator
is very high unless the proposal distribution,fA, is a good approximation of the target
distribution,fB [6]. Hence, unless we can find a proposal distribution,fA, that is easy
to sample from, and at the same time, it is close to the target distribution, fB, the
importance sampling method does not give a good estimate. Inorder to overcome this
issue with choosing a good proposal distribution, a sequence of intermediate probability
distributions is introduced to assist in moving gradually from the proposal to the target
distribution [7]. This method is called annealed importance sampling and it is the state
of the art estimator for the partition function.

Suppose there areK − 1 intermediate distributions,fA = f0, f1, . . . , fK−1, fK =
fB. As earlier, let each distribution be given byfi(x) = f∗

i (x)/Zi, i = 0, 1, . . . ,K.
Then using eq.(8), we have, for everyk, 0 ≤ k ≤ K − 1,

Zk+1

Zk

≈ 1

M

M
∑

i=1

fk+1(x
(i)
k )

fk(x
(i)
k )

, wherex(i)
k ∼ fk (9)

If we can ensure that thefk andfk+1 are close to each other then the above is a good
estimate of the ratio of the partition functions. Further, we can write,

ZK

Z0
=

Z1

Z0

Z2

Z1
. . .

ZK

ZK−1
=

K−1
∏

k=0

Zk+1

Zk

(10)
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Sincef0 = fA is a simple distribution, we can calculateZ0 and hence the above gives
us a good estimate forZK .

The next question is, how does one sample from each of thefk, 0 ≤ k ≤ K − 1?.
A standard method for this is as follows. Initally a samplex1 is drawn fromf0(x) =
fA(x). Then for1 ≤ k ≤ K − 1, the(k + 1)th sample,xk+1, is obtained by sampling
from Tk(xk+1|xk) whereTk is a transition function of a (reversible) Markov chain for
which fk is the invariant distribution. This sequence of states,x1,x1, . . .xK is one
sample to estimateZk using eq.(9) and eq.(10). Then we can get M samples by starting
in an initial state sampled fromfA and then going through theK Markov transitions,
M times.

The key idea in this method is that by moving gradually from the proposal to the
target distribution, the variance of importance weights can be kept small if the two con-
secutive intermediate distributions differ by a small amount. For the detailed analysis
and conditions for this estimator to work, refer to [7].

The choice of intermediate probability distributions is problem specific. The geo-
metric average offA(x) andfB(x) is a popular choice in literature. Thus we keep,

fk(x) ∝ fA(x)
1−βkfB(x)

βk (11)

whereβk’s are chosen such that0 = β0 < . . . < βK = 1.
The following two facts give some insight about the partition function estimate ob-

tained using the AIS estimator [2]. The AIS estimator yieldsunbiased estimate ofZ.
However, the Jensen’s inequality shows that, on the average, AIS estimator underesti-
mates the log partition function,

E

[

log Ẑ
]

≤ logE
[

Ẑ
]

= logZ (12)

The underestimate of the log partition function results in overestimate for the test log-
likelihood (see eq.(4)). Then it is difficult to infer whether the model is good or we got
an optimistic likelihood estimate. However, the Markov inequality shows that overesti-
mating the log partition function by a large amount is not very likely,

P
[

log Ẑ > logZ + k
]

= P
[

Ẑ > elogZ+k
]

<
E

[

Ẑ
]

Z ek
= e−k (13)

Estimating the Partition Function of an RBM: The partition function of an RBM can
be evaluated using the AIS estimator [8]. Consider the two RBMs with parametersθA =
{wA,bA, cA} and θB = {wB,bB, cB} corresponding to the proposal distribution
(fA) and the target distribution(fB) respectively. The proposal RBM distribution is
chosen such that obtaining independent samples from it, is simple. The objective is to
estimate the partition function of the RBM given by the parameterθB, which is nothing
but the set of model parameters of the learnt RBM.

The two choices for the proposal RBM used in the present studyare theuniform
and thebase rate RBM. The uniform distribution as a proposal can be implemented by
takingwA = 0,bA = 0, cA = 0. If we consider all zero weight matrix and nonzero
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biases the proposal distribution is given as,

fA(v) =
e
∑

j bjvj

∏

j

1 + e−bj
(14)

The ML solution forbj (solving ∂fA
∂bj

= 0) turns out to belog(v̄)− log(1− v̄) wherev̄
is the mean of the training samples. This is is termed as the ‘base rate’RBM.

The intermediate distributions are constructed using the geometric average path. It
corresponds to averaging the energy functionE(v,hA; θA) of the proposal RBM and
E(v,hB ; θB) of the target RBM, i.e.,

Ek(v,h)= −
(

(1 − βk)E(v,hA; θA) + βk E(v,hB , θB)
)

(15)

whereEk(v,h) denotes the energy function for the intermediate distribution fk andh
denotes the stacked hidden units{hA,hB}. Thekth intermediate distribution is given
by,

fk(v) =
f∗

k (v)

Zk

=
1

Zk

∑

h

e−Ek(v,h) (16)

Since each of the intermediate distributionsfk is defined by the RBM, the samples
are obtained from the invariant distribution through Gibbssampler. More details on the
Gibbs sampler implementation and the exact form of the intermediate distributions are
available in [8].

The algorithm works as follows. Initially, a samplev1 is generated from the pro-
posal RBM. Then, for1 ≤ k ≤ K − 1, the(k + 1)th samplev(k+1) is to be generated
by fk (given in eq. eq.(16)). This is done by sampling fromTk(v

(k+1)|v(k)) whereTk

refers to the transition operator for whichfk is the invariant distribution. Sincefk is
naturally defined for an RBM, theTk(v

(k+1)|v(k)) corresponds to Gibbs ampler for
the RBM whose energy function isEk (given in eq. eq.(15)). Once the samples are
obtained, the ratio in eq.(10) is used to calculate the partition function.

3.2 Conservative Sampling Based Log-likelihood Estimator

Given the conditional probabilityp(v|h) and a set of samples{h(1),h(2) . . .h(N)}
from the distributionp(h), the log-likelihood on a test sample using the CSL estimator
is given in eq.(7).

The hidden units samples are obtained using the Gibbs sampler for the RBM. The
state of the visible units can be initialized randomly (called the unbiased CSL) or by
using the training samples (called the biased CSL). Then, the hidden units and the visi-
ble units are sampled alternately from the corresponding conditional distributions for a
large number of iterations.

The Jensen’s inequality shows that the CSL estimator underestimates the test log-
likelihood [1], i.e.,

Eh[log ˆp(v)] ≤ logEh[p(v|h)] = log p(v) (17)
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3.3 Reverse AIS Estimator

The RAISE estimates the log-likelihood similar to the CSL approach while implement-
ing it through the AIS approach [2]. Consider the likelihoodon a given test datav as in
eq.(7),p(v) =

∑

h
p(h)p(v|h). Finding thisp(v) is equivalent to finding the partition

function of a distribution given byf(h) = p(h)p(v|h) for a fixedv. Hence, the AIS
estimator (with suitable modifications) can be used. For theanalysis and the implemen-
tation details of the method refer [2]. The brief description of the algorithm is given
below.

The test datav is assumed to be a sample from the target distribution. This test
sample is used as the initial state of the AIS Markov chain which is defined to move
gradually from the target to the proposal distribution as opposed to moving from the
proposal to the target distribution as in the AIS estimator discussed in section 3.1. The
visible and hidden units,h andv, of intermediate distributions are sampled alternately
from this chain using the transition operators similar to the ones defined for the AIS
estimator. Once the samples are obtained the estimate of thelikelihood is given as [2],

ˆp(v) =
fK(v)

Z0

K
∏

k=1

fk−1(xk)

fk(xk)
(18)

4 Experimental Results and Discussions

In this section we present the results of estimating the partition function and the average
test log-likelihood using the different methods discussedin the previous section. We
first learn the RBMs with different number of hidden units (20, 200 and500, denoted
as RBM20, RBM200, RBM500) using the standard CD-20 algorithm on the MNIST
dataset. We fix the learning rate,η = 0.1, batch size= 100, weight decay= 0.001,
initial momentum= 0.5, final momentum= 0.9 and change the momentum at5th step.
Initial weights are sampled fromU [−1/

√
L, 1/

√
L] whereL = min{m,n}.

Then, for each of the learnt RBMs, we estimate the test log-likelihood on the MNIST
test dataset using the different estimators. Note that, even though learning the RBM
with different hyperparameter settings produce (significantly) different models, we have
observed that the behaviour of estimators are similar on these models. Therefore we
present results for one such RBM which is learnt using the above hyperparameter set-
tings. For the case of RBM20, the ground truth is calculated by summing over all220

states so that we can assess accuracy of the estimates.

4.1 AIS

The performance of the AIS estimator depends on the distribution of the proposal RBM,
the number of intermediate distributions (K) and the number of samples (M , also called
AIS runs). We fixM = 500 and use uniform or baserate as the proposal distribution.
The value ofK is chosen from{100, 1000, 10000} and we use the linear pathβ =
[0 : 1/K : 1] for all the experiments. The handcrafted schedule havingK = 14500
given in [8] with β = [0 : 1/1000 : 0.5, 0.5 : 1/10000 : 0.9, 0.9 : 1/100000 : 1] is



8

also implemented for comparison. In order to estimate the variance of the estimator we
repeat the experiment50 times with a random initial state each time. Table 1 gives the
estimate oflog Z, L andσ (the standard deviation of the estimate of̂log Z).

Table 1. AIS estimate ofL , Ground truth: log Z = 230.61, L = −141.24 for RBM20

Uniform Proposal

n K l̂og Z L̂ σ

20

1000 229.2660 −139.8933 0.2905

10000 229.5245 −140.1518 0.2423

14500 229.8978 −140.5250 0.6095

200

1000 174.1720 −111.2346 0.6724

10000 174.7664 −111.8290 0.1528

14500 174.7424 −111.8050 0.2623

500

1000 173.4807 −114.8451 0.3071

10000 173.4802 −114.8446 0.1207

14500 173.4567 −114.8211 0.1902

Baserate Proposal

l̂og Z L̂ σ

230.5353 −141.1626 0.2114

230.6192 −141.2465 0.0629

230.6082 −141.2355 0.0431

173.5514 −110.6140 1.2344

174.6819 −111.7445 0.2408

174.7512 −111.8138 0.1300

172.2157 −113.5801 1.1597

173.4767 −114.8411 0.2244

173.4240 −114.7883 0.1717

Based on the ground truth available for RBM20, we observe that the AIS estimator, on
the average, overestimates the test log-likelihood. The use of base rate proposal distri-
bution gives slightly better estimate with less variance compared to using the uniform
proposal distribution for the RBM20. However, for the RBM200 and RBM500 the pro-
posal distribution has no significant effect on the estimated value though it affects the
variance of the estimate. On the whole, the linear annealingschedule withK = 10, 000
seems to perform as well as the hand-crafted annealing schedule withK = 14, 500.

4.2 CSL

The samples required for the CSL estimator are obtained through the Gibbs sampler
which alternately samples the hidden and the visible units.We ignore the firstB samples
to allow burn-in and then collect samples after everyT (called ’Thin’ parameter) steps,
discarding the samples in between, to avoid correlation. Weobserved that the estimates
obtained with a single chain is poor even if we run the Gibbs sampler for a large number
of steps. This possibly indicates the poor mixing rate of theGibbs chain. Therefore we
experiment with many parallel Gibbs chains with different initial states.

We first simulateSM parallel Gibbs chains withST steps for both the biased and the
unbiased CSL. Under various values of the parametersM andT , the samples ofh (to
estimate the log-likelihood) are selected from these simulated chains. The experiment
is repeated100 times to find the variance of the estimate, where for each experiment we
select a random burn-in value and select chains randomly. WeconsiderSM = 5000 and
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ST = 25000 for RBM20 andSM = 2500 andST = 50000 for the other two RBMs.
We consider both small and large burn-in setup for the biasedCSL estimator.

We fix the value ofT to 100 and vary the number of chains,M , keeping the number
of samples,N , constant and these results are presented in Table 2. We observe from the
table that better estimates with less variance can be obtained by increasing the number
of chains. Note that we are keeping the total number of samples fixed even when we vary
the number of chains. Thus, for example, for RBM500, we get lower variance by having
a total of100, 000 samples from1000 chains rather than having200, 000 samples but
from only 500 chains. Thus having more chains also reduces the total computational
effort (because we can do with less number of samples).

The final estimates are close to ground truth in case of RBM20, even though the
accuracy here is a bit poorer than that of AIS. For RBM200 and RBM500, the estimates
differ by a large amount from those obtained with the AIS, even whenN is very large.
This deviation is smaller for the biased CSL estimates obtained with small burn-in than
that of the unbiased CSL estimates and the biased CSL estimates obtained with large
burn-in (refer Table. 2). This may be due to high level of correlation among the samples.
Further, we observe that, for the RBM20, the biased CSL estimate gives a lower bound.

We also experimented with varyingT keepingM andN constant (not presented
here). We found that the improvement in the accuracy of estimates obtained with higher
values ofT is not very significant though it uses higher number of Gibbs steps. when
N is large and a very small value of burn-in is used.

4.3 RAISE

The RAISE estimator requires implementation of the AIS chain for each test sample.
This makes the estimator computationally expensive because the MNIST dataset con-
tains10, 000 test samples. Therefore, for the experiment we randomly select a subset
of size500 (50 from each class) from the test dataset and then estimate the average test
log-likelihood on this subset. We experiment with both uniform and base rate proposal
distribution by fixing the number of AIS runs and varying the number of intermediate
distributions,K. We also estimate the test log-likelihood on the chosen testsubset using
the AIS and CSL estimators, for comparison with the RAISE estimates. We keep the
number of Gibbs steps used in the AIS and CSL estimators equal.

We observe that, only whenK is very large and proposal distribution is uniform,
the estimator provides conservative estimates. However, the baserate proposal gives
overestimates even whenK = 10000. The lower bound on the test log-likelihood is
similar to that of CSL estimate for RBM20. However, unlike the case for CSL, for
larger RBMs, the RAISE estimates matches closely with the AIS estimates.

5 Conclusion

Calculating the average test log-likelihood of a learnt RBMis important for evaluating
different learning strategies. In this paper we present extensive empirical analysis of
the sampling based estimators for average test log-likelihood to gain insight into the
performance of these methods. We experiment with RBMs with20, 200 and500 hidden
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Table 2. CSL estimate ofL for T = 100 and for various values ofM , keepingN constant.
Ground truth: log Z = 230.61, L = −141.24 for RBM20

a. Unbiased CSL

n = 500

N M L̂ σ
2

100× 103

250 −296.18 5.90

500 −284.25 5.87

1000 −272.62 3.92

200× 103

500 −270.14 4.56

1000 −257.29 3.19

2000 −244.87 2.49

n = 200

L̂ σ
2

−183.67 2.31

−175.54 1.65

−167.70 1.45

−172.41 1.65

−165.04 1.01

−158.76 0.68

n = 20

M L̂ σ
2

500 −153.83 0.83

1000 −150.39 0.58

2000 −147.94 0.31

1000 −148.61 0.35

2000 −146.31 0.20

4000 −144.44 0.09

b. Biased CSL with large Burn-in

100× 103

250 −219.34 4.64

500 −208.12 3.86

1000 −197.22 2.17

200× 103

500 −198.84 2.61

1000 −188.32 1.65

2000 −179.69 1.24

−176.94 1.89

−169.26 1.47

−162.05 0.92

−167.04 1.56

−160.11 0.93

−154.05 0.54

500 −151.18 0.53

1000 −148.41 0.37

2000 −146.22 0.25

1000 −147.17 0.26

2000 −145.27 0.17

4000 −143.52 0.09

c. Biased CSL with small Burn-in

100× 103

250 −187.83 2.52

500 −178.12 1.99

1000 −169.56 1.50

200× 103

500 −177.09 1.89

1000 −168.82 1.42

2000 −161.87 1.45

−166.91 1.04

−160.23 0.98

−154.03 0.54

−159.31 0.99

−153.27 0.59

−148.01 0.39

500 −147.82 0.22

1000 −145.54 0.23

2000 −143.74 0.20

1000 −145.31 0.19

2000 −143.57 0.14

4000 −142.06 0.13

units. We observed that the AIS estimator delivers good estimates with low variance.
We also observe that the proposal distribution does not seemto have much influence on
the estimate.

Compared to the AIS estimate the CSL estimate is poorer and its variance is high
especially for the RBM200 and RBM500. The estimated value also differ significantly
with that of AIS. However, CSL is a much simpler estimator computationally. We also
showed that better estimates can be obtained with less computational effort by using
multiple independent chains to generate samples. The biased CSL with a small burn-in
provides the best estimate.

Unlike AIS, the RAISE gives conservative estimates. More importantly, for large
RBMs, the deviation of RAISE estimate from the AIS estimate is not very large com-
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Table 3. RAISE estimate ofL with 500 test set,Ground truth: L = −142.39 for RBM20.
The baserate AIS withK = 10000, M = 500 is used. For the CSL,5000 × 103 samples are
used to make the number of Gibbs steps equal to that of AIS.

n

P
P
P
P
P
P
P

Proposal
K

1000 10000

20
Uniform −147.25 −145.99

Baserate −146.97 −144.14

200
Uniform −109.29 −112.46

Baserate −110.42 −109.01

500
Uniform −114.75 −118.02

Baserate −108.75 −112.04

AIS CSL

−142.38 −143.58

−112.96 −142.64

−116.46 −154.76

pared to that of the deviation of CSL estimate from the AIS estimate. It means, for large
K, the RAISE estimate will have tighter lower bound than the CSL estimate. However
it is computationally much more expensive. The conservativeness of RAISE may not
be enough to justify the high computational cost.

Since large hidden unit RBMs are an important part of deep networks such as
stacked-RBMs and DBNs, one needs efficient estimators to evaluate the learnt net-
works. Our empirical study indicates that there may be much scope for improving CSL
like estimators to come up with computationally simple methods to get good estimates
of the average test log-likelihood.
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