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Abstract. The Restricted Boltzmann Machines (RBM) can be used either a
classifiers or as generative models. The quality of the géinerRBM is mea-
sured through the average log-likelihood on test data. Duthé high com-
putational complexity of evaluating the partition funetjcexact calculation of
test log-likelihood is very difficult. In recent years sonsimation methods are
suggested for approximate computation of test log-likegith In this paper we
present an empirical comparison of the main estimation atsthnamely, the
AIS algorithm for estimating the partition function, the C8ethod for directly
estimating the log-likelihood, and the RAISE algorithmttbambines these two
ideas. We use the MNIST data set to learn the RBM and then aenthase
methods for estimating the test log-likelihood.

1 Introduction

The Restricted Boltzmann Machines (RBM) are among the Hasiding blocks of
deep learning models. They can be used as classifiers asswgglharative models. The
parameters of an RBM are learnt with an objective of maxingzhe log-likelihood
using, e.g., the contrastive divergence [5]. The qualittheflearnt generative RBM is
evaluated based on the average log-likelihood which, faestisamples, is given by,

N
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wherep(v(?) is the probability (or the likelihood) of thé" test sampley"). The model
with higher average test log-likelihood is better. The kegtlikelihood can also be used
in devising a stopping criterion for the learning and forrigithe hyper-parameters
through cross validation.

The likelihoodp(v) can be written ag*(v)/Z. While p*(v) is easy to evaluate,
the normalizing constarif, called the partition function, is computationally expeas
Therefore, various sampling based estimators have begroged for the estimation
of the log-likelihood. In this paper we present an empiraadlysis of the two main
approaches for estimating the log-likelihood.

The first approach of estimating the average test log-hikeld is to approximately
estimate the partition function of the model distributioxdahen use it to calculate the
log-likelihood. The patrtition function can be estimatedhwhe Monte Carlo method us-
ing the samples obtained from the model distribution. He®vgyenerating independent
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samples is difficult since the model distribution which thBNRrepresents is compli-
cated and high dimensional in most applications. A usefugang technique in such
case is the importance sampling where samples obtaineddrsimple distribution,

called the proposal distribution, are used to estimate #rgtjon function. However,

for large models, the variance of this estimator is very lag may even be infinite|[6]
when the proposal distribution is not a good approximatithetarget distribution. To

overcome this difficulty of choosing a good proposal disttiln, a sequence of inter-
mediate distributions is used. The annealed importancelgag{AlS) based estimator
is one such estimatdr|[7].

The second approach s to estimate the average test Idindike directly by marginal-
izing over the hidden variables from the model distributibacause the conditional
distribution of the visible units given the hidden unitsimple to evaluate in an RBM.
However, the computational complexity grows exponentiafith the number of hid-
den units present in the model. Also, this computation hdetoepeated for each test
sample. Hence, an approximate method which uses a sammd basmator called
conservative sampling based likelihood estimator (CSLyrigposed inl[1]. A more
efficient method called reverse annealed importance sagpbtimator (RAISE) im-
plements CSL by formulating the problem of marginalizatasna partition function
estimation problem.

In this paper, we present an empirical comparison of theop@dince of the sam-
pling based estimators, namely, annealed importance sagrgstimator(AIS)[7], con-
servative sampling based likelihood estimator (CSL) [&é}erse annealed importance
sampling estimator (RAISE)[2]. Since our main aim is to ea& the learnt RBM, the
issues associated with the learning are not addressedsipalpier. Initially we learn
RBM models (with different number of hidden units) using gh@ndard CD algorithm
on the MNIST dataset with suitably chosen hyperparametégsevaluate the average
test log-likelihood of each of the learnt models using thinestors mentioned above
and compare their performance. For models with small nurobleidden units we can
calculate the test log-likelihood through the brute forppraach. When the ground
truth is known we can readily evaluate the performance dédift estimators. How-
ever, for large models we do not know the ground truth.

The rest of the paper is organized as follows. In sedflon 2 msebiriefly describe
the RBM model. We then explain the problem of computing therage test log likeli-
hood for an RBM and explain the two approaches used for gpltitVe then describe
the different sampling methods considered in this studyettien[3. In sectiofil4 we
describe the simulation setting, the parameters used fiareift estimators and then
present results of our empirical study. Finally we concltidepaper in sectidd 5.

2 Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is a special cash®Boltzmann Machine
where the intra-layer connections are restricted[[9,4,b¢ visible stochastic unii(sr)

are connected to the hidden stochastic uftitsthrough bidirectional links. We restrict
our study to the binary RBM witly € {0,1}" andh € {0,1}", being the states
of visible and hidden units respectively. Note thatandn are the number of visible



and hidden units. For the binary RBM, the energy function taiedprobability that the
model assigns tév, h} is given by,

E(v,h;0) Zwuh v; — ibivi_icihi (2)
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whereZ = Y e~ ¥ is the partition function and = {w € R"*™ b €
R™, c € R"} is the set of model parameters.

2.1 Evaluation of the Average Test L og-likelihood for an RBM

As mentioned in sectioinl 1 the parameters of an RBM are leaingithe contastive
divergence algorithm. Once the model is learnt, for a paldictest datav the log-
likelihood can be calculated as (seé [3] for details),

log p(v) = log Z e Bv:hit) oo 7
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The difficulty in evaluating the above equation is due to thespnce of intractable
log partition function. The log partition function can bepexided as,

log Z = logZe (v:h;6)
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Similarly, it can be written in terms di as,

1ogZ 1ng 207 i H( +€bj+;wijhi) (6)
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The above equation can also be written in term&ofHence, to evaluate the parti-
tion function by using either e@l(5) or €d.(6) we have to sfmterms, wherel, =
min{m, n}, which is computationally expensive for large models. Hesveif we can
estimate the partition function by some other method thercaveefficiently estimate
the log-likelihood using ed.[4).



The test log-likelihood can also be estimated directly bygimalizing the model
distribution over the latent variablethrough a sample average as,

log p(v logZp p(v|h) ~1og—2p (vh®) (7)

=1

whereN samples oh are obtained aB(*) ~ p(h), Vi.

3 Sampling Based Estimatorsfor Evaluating RBMs

In this section we briefly discuss various sampling baseithastrs for the test log-
likelihood. As mentioned earlier, we either need a methoddtimate”, so that we
can use ed.{4); or we need a method to sample fsm) so that we can use €g.(7) for
evaluating the test log-likelihood. We discuss

3.1 Annealed Importance Sampling for Estimating Partition Function

Suppose two distributions: (x) = f}(x)/Z4 andfg(x) = f}(x)/Zp are given such
that f4(x) # 0 when fg(x) # 0 and it is possible to obtain independent samples from
fa(x). Itis also assumed thdf; (x), f;(x) andZ 4 are easy to evaluate. Then the ratio
of partition functions can be written as,

Zp [ . [ fpx) L& fp(x®
Z_A_ BZA dx = f;(x)fA(x)dXNM;fg(xi ]\/[Z imp

wherewImp f5(x@)/ f1(xD) is termed as thé" importance weight anst(*) are
independent samples from the distributifn However, the variance of this estimator
is very high unless the proposal distributigh, is a good approximation of the target
distribution, f5 [6]. Hence, unless we can find a proposal distributifn,that is easy
to sample from, and at the same time, it is close to the targétlltion, fz, the
importance sampling method does not give a good estimatedir to overcome this
issue with choosing a good proposal distribution, a seqeiefhintermediate probability
distributions is introduced to assist in moving gradualbyni the proposal to the target
distribution [7]. This method is called annealed imporeampling and it is the state
of the art estimator for the partition function.

Suppose there at& — 1 intermediate distributionss = fo, f1,---, fk—1, [k =
fB. As earlier, let each distribution be given By(x) = f*(x)/Z;,i = 0,1,..., K.
Then using ed.{8), we have, forevery0 < k < K — 1,

M (i
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If we can ensure that thé, and fx,; are close to each other then the above is a good
estimate of the ratio of the partition functions. Furthee, @an write,

ZK Zl Z2 ZkJrl
= | | 10
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Since fy = f4 is a simple distribution, we can calculatg and hence the above gives
us a good estimate fof .

The next question is, how does one sample from each ofithe < k < K — 1?.

A standard method for this is as follows. Initally a samgleis drawn fromfy(x) =
fa(x). Thenforl <k < K — 1, the(k + 1) samplex;_ 1, is obtained by sampling
from T} (xr+1|xx) whereTy, is a transition function of a (reversible) Markov chain for
which f; is the invariant distribution. This sequence of states,xy,...xx IS one
sample to estimat&;, using eq[(P) and ed.(IL0). Then we can get M samples by startin
in an initial state sampled frornfiy and then going through th& Markov transitions,

M times.

The key idea in this method is that by moving gradually from pinoposal to the
target distribution, the variance of importance weights loa kept small if the two con-
secutive intermediate distributions differ by a small amiogor the detailed analysis
and conditions for this estimator to work, refer[to [7].

The choice of intermediate probability distributions i®ipiem specific. The geo-
metric average of 4 (x) and fz(x) is a popular choice in literature. Thus we keep,

Fr(x) o< fa(x)' %% fp(x)% (11)

wheregy’s are chosen suchthat= 8y < ... < g = 1.

The following two facts give some insight about the partitfanction estimate ob-
tained using the AIS estimatar|[2]. The AIS estimator yieltbiased estimate df.
However, the Jensen’s inequality shows that, on the avefd@eestimator underesti-
mates the log partition function,

E [log ZA} <logE [ZA} =log Z (12)

The underestimate of the log partition function resultsuerestimate for the test log-
likelihood (see ed.{4)). Then it is difficult to infer whetitee model is good or we got
an optimistic likelihood estimate. However, the Markovdoality shows that overesti-
mating the log partition function by a large amount is notnéeely,

: A B |2
P |log Z > logZ—i—k} =P [Z > elogZJrk] <7 =eF (13)
e

Estimating the Partition Function of an RBM: The partition function of an RBM can
be evaluated using the AIS estimafar [8]. Consider the twiyRRith parameterg” =
{w4,b4 ¢4} and§B = {wB, b8, cP} corresponding to the proposal distribution
(fa) and the target distributiofif5) respectively. The proposal RBM distribution is
chosen such that obtaining independent samples from itnisle. The objective is to
estimate the partition function of the RBM given by the pagtem?, which is nothing
but the set of model parameters of the learnt RBM.

The two choices for the proposal RBM used in the present sameytheuniform
and thebase rate RBM. The uniform distribution as a proposal can be impleradiity
takingw? = 0,b* = 0,c* = 0. If we consider all zero weight matrix and nonzero



biases the proposal distribution is given as,

e bivj

I = T1rew

(14)

The ML solution forb; (solving % = 0) turns out to béog(v) — log(1 — v) wherev
is the mean of the training samples. This is is termed as thex'bate’RBM.

The intermediate distributions are constructed using #wergetric average path. It
corresponds to averaging the energy functitiv, h*; %) of the proposal RBM and
E(v,h?;6B) of the target RBM, i.e.,

Ey(v,h)=— ((1 — Bx) E(v,h*;0%) + B, E(v,h",67)) (15)

whereE} (v, h) denotes the energy function for the intermediate distidiouf;, andh
denotes the stacked hidden urfits*, h®}. The ™ intermediate distribution is given

by,

fk(v) _ f]:Z(:) _ Zik Ze*Ek(v,h) (16)
h

Since each of the intermediate distributigfags defined by the RBM, the samples
are obtained from the invariant distribution through Gishmpler. More details on the
Gibbs sampler implementation and the exact form of the im¢eliate distributions are
available in[[8].

The algorithm works as follows. Initially, a samplg is generated from the pro-
posal RBM. Then, foil < k < K — 1, the(k + 1) samplev(**1 is to be generated
by fi (given in eq. eq[(16)). This is done by sampling frai{v(**+|v(*)) whereT},
refers to the transition operator for whigh is the invariant distribution. Sincg; is
naturally defined for an RBM, th@&),(v(*+1) |v(¥)) corresponds to Gibbs ampler for
the RBM whose energy function B}, (given in eq. eq.{15)). Once the samples are
obtained, the ratio in e@.(IL0) is used to calculate the tmartfunction.

3.2 Conservative Sampling Based L og-likelihood Estimator

Given the conditional probability(v|/h) and a set of samplegh(®) h(® .. h(")}
from the distributiorp(h), the log-likelihood on a test sample using the CSL estimator
is given in eq[{I7).

The hidden units samples are obtained using the Gibbs safoplihe RBM. The
state of the visible units can be initialized randomly (edlthe unbiased CSL) or by
using the training samples (called the biased CSL). Thenhitden units and the visi-
ble units are sampled alternately from the correspondingitional distributions for a
large number of iterations.

The Jensen’s inequality shows that the CSL estimator ustlarates the test log-
likelihood [1], i.e.,

En[log p(v)] < log En[p(v|h)] = logp(v) (7)



3.3 Revers AlSEstimator

The RAISE estimates the log-likelihood similar to the CSipigach while implement-
ing it through the AIS approachl|[2]. Consider the likelihanda given test data as in
eq.[7).p(v) = >, p(h)p(v|h). Finding thisp(v) is equivalent to finding the partition
function of a distribution given by (h) = p(h)p(v|h) for a fixedv. Hence, the AIS
estimator (with suitable modifications) can be used. Foattaysis and the implemen-
tation details of the method refer|[2]. The brief descriptaf the algorithm is given
below.

The test datav is assumed to be a sample from the target distribution. HBsfs t
sample is used as the initial state of the AIS Markov chainctviis defined to move
gradually from the target to the proposal distribution apasged to moving from the
proposal to the target distribution as in the AIS estimatscuksed in sectidn 3.1. The
visible and hidden unitd andv, of intermediate distributions are sampled alternately
from this chain using the transition operators similar te tmes defined for the AIS
estimator. Once the samples are obtained the estimate lifelibood is given as[?],

p v H fr—1 Xk (18)

fr(xk)

4 Experimental Results and Discussions

In this section we present the results of estimating thetfmarfunction and the average
test log-likelihood using the different methods discussethe previous section. We
first learn the RBMs with different number of hidden uni2§,(200 and500, denoted
as RBM20, RBM200, RBM500) using the standard CP8 algorithm on the MNIST
dataset. We fix the learning rate,= 0.1, batch size= 100, weight decay= 0.001,
initial momentum= 0.5, final momentum= 0.9 and change the momentumt step.
Initial weights are sampled froli[—1/+/L, 1/v/L] whereL = min{m,n}.

Then, for each of the learnt RBMs, we estimate the test logjiiood on the MNIST
test dataset using the different estimators. Note that) éveugh learning the RBM
with different hyperparameter settings produce (signifiga different models, we have
observed that the behaviour of estimators are similar ogetimeodels. Therefore we
present results for one such RBM which is learnt using thealyperparameter set-
tings. For the case of RB®0, the ground truth is calculated by summing over2afl
states so that we can assess accuracy of the estimates.

41 AIS

The performance of the AIS estimator depends on the disiibof the proposal RBM,

the number of intermediate distributior’s Y and the number of sample&, also called
AIS runs). We fixM = 500 and use uniform or baserate as the proposal distribution.
The value ofK is chosen from{100, 1000,10000} and we use the linear path =

[0 : 1/K : 1] for all the experiments. The handcrafted schedule haking: 14500
given in [€] with 3 = [0 : 1/1000 : 0.5,0.5 : 1/10000 : 0.9,0.9 : 1/100000 : 1] is



also implemented for comparison. In order to estimate thianree of the estimator we
repeat the experime#id times with a random initial state each time. Tdble 1 gives the
estimate ofog Z, . ando (the standard deviation of the estimatd@f 7).

Table 1. AIS estimate ofZ, Ground truth: log Z = 230.61, . = —141.24 for RBM 20

Uniform Proposal Baserate Proposal
n K log/\Z % o log/\Z % o

1000 | 229.2660 | —139.8933 | 0.2905 || 230.5353 | —141.1626 | 0.2114
20 | 10000 | 229.5245 | —140.1518 | 0.2423 || 230.6192 | —141.2465 | 0.0629
14500 | 229.8978 | —140.5250 | 0.6095 || 230.6082 | —141.2355 | 0.0431
1000 | 174.1720 | —111.2346 | 0.6724 || 173.5514 | —110.6140 | 1.2344
200 | 10000 | 174.7664 | —111.8290 | 0.1528 || 174.6819 | —111.7445 | 0.2408
14500 | 174.7424 | —111.8050 | 0.2623 || 174.7512 | —111.8138 | 0.1300
1000 | 173.4807 | —114.8451 | 0.3071 || 172.2157 | —113.5801 | 1.1597
500 | 10000 | 173.4802 | —114.8446 | 0.1207 || 173.4767 | —114.8411 | 0.2244
14500 | 173.4567 | —114.8211 | 0.1902 || 173.4240 | —114.7883 | 0.1717

Based on the ground truth available for RB0J we observe that the AIS estimator, on
the average, overestimates the test log-likelihood. Tleeofibase rate proposal distri-
bution gives slightly better estimate with less variancepared to using the uniform
proposal distribution for the RBRD. However, for the RBM00 and RBM500 the pro-
posal distribution has no significant effect on the estimiatgue though it affects the
variance of the estimate. On the whole, the linear anneatthgdule withi' = 10, 000
seems to perform as well as the hand-crafted annealing gieheith X' = 14, 500.

42 CSL

The samples required for the CSL estimator are obtainedigiivéhe Gibbs sampler
which alternately samples the hidden and the visible uigsignore the firsB samples
to allow burn-in and then collect samples after evErfcalled 'Thin’ parameter) steps,
discarding the samples in between, to avoid correlationoki¢erved that the estimates
obtained with a single chain is poor even if we run the Giblnsdar for a large number
of steps. This possibly indicates the poor mixing rate ofGilgbs chain. Therefore we
experiment with many parallel Gibbs chains with differanitial states.

We first simulates,, parallel Gibbs chains with steps for both the biased and the
unbiased CSL. Under various values of the parametém=ndT’, the samples oh (to
estimate the log-likelihood) are selected from these satedl chains. The experiment
is repeated 00 times to find the variance of the estimate, where for eachrarpat we
select a random burn-in value and select chains randomlgohngiderS,, = 5000 and



St = 25000 for RBM20 and.Sy; = 2500 and.St = 50000 for the other two RBMs.
We consider both small and large burn-in setup for the bi&®id estimator.

We fix the value off" to 100 and vary the number of chains{, keeping the number
of samples)V, constant and these results are presented in Table 2. Wevelisem the
table that better estimates with less variance can be @utdin increasing the number
of chains. Note that we are keeping the total number of sagfipled even when we vary
the number of chains. Thus, for example, for RBM, we get lower variance by having
a total 0f100, 000 samples fron1000 chains rather than havirz)0, 000 samples but
from only 500 chains. Thus having more chains also reduces the total daiqmal
effort (because we can do with less number of samples).

The final estimates are close to ground truth in case of RBMven though the
accuracy here is a bit poorer than that of AlS. For RBRland RBM500, the estimates
differ by a large amount from those obtained with the AlS,rewaenV is very large.
This deviation is smaller for the biased CSL estimates abthivith small burn-in than
that of the unbiased CSL estimates and the biased CSL estimmatained with large
burn-in (refer Tabld.]2). This may be due to high level of etation among the samples.
Further, we observe that, for the RBB] the biased CSL estimate gives a lower bound.

We also experimented with varyirif keepingM and N constant (not presented
here). We found that the improvement in the accuracy of edmobtained with higher
values ofT" is not very significant though it uses higher number of Giltbps when
N is large and a very small value of burn-in is used.

4.3 RAISE

The RAISE estimator requires implementation of the AIS oHar each test sample.
This makes the estimator computationally expensive bectiesMNIST dataset con-
tains10, 000 test samples. Therefore, for the experiment we randomécteal subset
of size500 (50 from each class) from the test dataset and then estimate¢hage test
log-likelihood on this subset. We experiment with both onifi and base rate proposal
distribution by fixing the number of AIS runs and varying thewber of intermediate
distributions, K. We also estimate the test log-likelihood on the choserstdstet using
the AIS and CSL estimators, for comparison with the RAISEnestes. We keep the
number of Gibbs steps used in the AIS and CSL estimators equal

We observe that, only wheR is very large and proposal distribution is uniform,
the estimator provides conservative estimates. Howelierpaiserate proposal gives
overestimates even whdd = 10000. The lower bound on the test log-likelihood is
similar to that of CSL estimate for RB&0. However, unlike the case for CSL, for
larger RBMs, the RAISE estimates matches closely with th& édtimates.

5 Conclusion

Calculating the average test log-likelihood of a learnt RBNmportant for evaluating
different learning strategies. In this paper we presengresite empirical analysis of
the sampling based estimators for average test log-lizetito gain insight into the
performance of these methods. We experiment with RBMs 26itR00 and500 hidden
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Table 2. CSL estimate ofZ for T' = 100 and for various values a#/, keeping N constant.
Ground truth: log Z = 230.61, . = —141.24 for RBM 20

a. Unbiased CSL
n = 500 n = 200 n =20
N M & o2 < o2 M & o?

250 | —296.18 | 5.90 || —183.67 | 2.31 500 | —153.83 | 0.83
100 x 10° | 500 | —284.25 | 5.87 || —175.54 | 1.65 || 1000 | —150.39 | 0.58
1000 | —272.62 | 3.92 || —167.70 | 1.45 || 2000 | —147.94 | 0.31
500 | —270.14 | 4.56 —172.41 | 1.65 1000 | —148.61 | 0.35
200 x 10° | 1000 | —257.29 | 3.19 —165.04 | 1.01 2000 | —146.31 | 0.20
2000 | —244.87 | 2.49 —158.76 | 0.68 || 4000 | —144.44 | 0.09

b. Biased CSL with large Burn-in
250 | —219.34 | 4.64 || —176.94 | 1.89 || 500 | —151.18 | 0.53
100 x 10° | 500 | —208.12 | 3.86 || —169.26 | 1.47 || 1000 | —148.41 | 0.37
1000 | —197.22 | 2.17 || —162.05 | 0.92 || 2000 | —146.22 | 0.25
500 | —198.84 | 2.61 || —167.04 | 1.56 || 1000 | —147.17 | 0.26
200 x 10* | 1000 | —188.32 | 1.65 || —160.11 | 0.93 || 2000 | —145.27 | 0.17
2000 | —179.69 | 1.24 || —154.05 | 0.54 || 4000 | —143.52 | 0.09

c. Biased CSL with small Burn-in
250 | —187.83 | 2.52 —166.91 | 1.04 500 | —147.82 | 0.22
100 x 10* | 500 | —178.12 | 1.99 || —160.23 | 0.98 || 1000 | —145.54 | 0.23
1000 | —169.56 | 1.50 || —154.03 | 0.54 || 2000 | —143.74 | 0.20
500 | —177.09 | 1.89 —159.31 | 0.99 1000 | —145.31 | 0.19
200 x 10° | 1000 | —168.82 | 1.42 —153.27 | 0.59 || 2000 | —143.57 | 0.14
2000 | —161.87 | 1.45 —148.01 | 0.39 || 4000 | —142.06 | 0.13

units. We observed that the AIS estimator delivers goodnedgés with low variance.
We also observe that the proposal distribution does not seé&ave much influence on
the estimate.

Compared to the AIS estimate the CSL estimate is poorer angitance is high
especially for the RBM00 and RBM500. The estimated value also differ significantly
with that of AIS. However, CSL is a much simpler estimator poitationally. We also
showed that better estimates can be obtained with less datignal effort by using
multiple independent chains to generate samples. Thedh@Se with a small burn-in
provides the best estimate.

Unlike AIS, the RAISE gives conservative estimates. Morgantantly, for large
RBMs, the deviation of RAISE estimate from the AIS estimataadt very large com-
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Table 3. RAISE estimate ofZ with 500 test setGround truth: . = —142.39 for RBM 20.
The baserate AIS witlk = 10000, M = 500 is used. For the CSL5000 x 10 samples are
used to make the number of Gibbs steps equal to that of AIS.

" | proposa K1 1000 10000 AlS CSL
% Uniform —147.25 | —145.99 —142.38 | —143.58
Baserate —146.97 | —144.14
200 Uniform ~109.29 | —112.46 —112.96 | —142.64
Baserate | —110.42 | —109.01
500 Uniform —114.75 | —118.02 —116.46 | —154.76
Baserate —108.75 | —112.04

pared to that of the deviation of CSL estimate from the Al$weate. It means, for large
K, the RAISE estimate will have tighter lower bound than thé.@Stimate. However
it is computationally much more expensive. The consergatgs of RAISE may not
be enough to justify the high computational cost.

Since large hidden unit RBMs are an important part of deepvords such as
stacked-RBMs and DBNs, one needs efficient estimators tuaeathe learnt net-
works. Our empirical study indicates that there may be maopea for improving CSL

like estimators to come up with computationally simple noelhto get good estimates
of the average test log-likelihood.
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