Skip to main content

Prosthetic Motor Imaginary Task Classification Based on EEG Quality Assessment Features

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9492))

Included in the following conference series:

Abstract

Brain Computer Interface (BCI) plays an important role in the communication between human and machines. This communication is based on the human brain signals. In these systems, users use their brain instead of the limbs or body movements to do tasks. The brain signals are analyzed and translated into commands to control any communication devices, robots or computers. In this paper, the aim was to enhance the performance of a brain computer interface (BCI) systems through better prosthetic motor imaginary tasks classification. The challenging part is to use only a single channel of electroencephalography (EEG). Arm movement imagination is the task of the user, where (s)he was asked to imagine moving his arm up or down. Our system detected the imagination based on the input brain signal. Some EEG quality features were extracted from the brain signal, and the Decision Tree was used to classify the participant’s imagination based on the extracted features. Our system is online which means that it can give the decision as soon as the signal is given to the system (takes only 20 ms). Also, only one EEG channel is used for classification which reduces the complexity of the system which leads to fast performance. Hundred signals were used for testing, on average 97.4 % of the up-down prosthetic motor imaginary tasks were detected correctly. This method can be used in many different applications such as: moving artificial limbs and wheelchairs due to it’s high speed and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machado, S., Araújo, F., Paes, F., Velasques, B., Cunha, M., Budde, H., Basile, L.F., Anghinah, R., Arias-Carrión, O., Cagy, M., et al.: EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation. Rev. Neurosci. 21(6), 451–468 (2010)

    Article  Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M., et al.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  3. Soe, A.K., Nahavandi, S., Khoshmanesh, K.: Neuroscience goes on a chip. Biosens. Bioelectron. 35(1), 1–13 (2012)

    Article  Google Scholar 

  4. Zheng, H., Zhang, J., Nahavandi, S.: Learning to detect texture objects by artificial immune approaches. Future Gener. Comput. Syst. 20(7), 1197–1208 (2004)

    Article  Google Scholar 

  5. Zickler, C., Di Donna, V., Kaiser, V., Al-Khodairy, A., Kleih, S., Kübler, A., Malavasi, M., Mattia, D., Mongardi, S., Neuper, C., et al.: BCI applications for people with disabilities: defining user needs and user requirements. In: Assistive Technology from Adapted Equipment to Inclusive Environments, AAATE. Assistive Technology Research Series, vol. 25, pp. 185–189 (2009)

    Google Scholar 

  6. Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032–1043 (2008)

    Article  Google Scholar 

  7. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W.: A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1(2), 63 (2004)

    Article  Google Scholar 

  8. Gürkök, H., Nijholt, A., Poel, M.: Brain-computer interface games: towards a framework. In: Herrlich, M., Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, vol. 7522, pp. 373–380. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kotchetkov, I.S., Hwang, B.Y., Appelboom, G., Kellner, C.P., Connolly Jr., E.S.: Brain-computer interfaces: military, neurosurgical, and ethical perspective. Neurosurg. Focus 28(5), E25 (2010)

    Google Scholar 

  10. Shyu, K.K., Chiu, Y.J., Lee, P.L., Lee, M.H., Sie, J.J., Wu, C.H., Wu, Y.T., Tung, P.C.: Total design of an FPGA-based brain-computer interface control hospital bed nursing system. IEEE Trans. Industr. Electronics 60(7), 2731–2739 (2013)

    Article  Google Scholar 

  11. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  12. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  13. Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)

    Article  Google Scholar 

  14. Felton, E.A., Wilson, J.A., Williams, J.C., Garell, P.C.: Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants: report of four cases. J. Neurosurg. 106(3), 495–500 (2007)

    Article  Google Scholar 

  15. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J.: Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21(4), 1370–1377 (2001)

    Google Scholar 

  16. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  17. Burke, D.P., Kelly, S.P., de Chazal, P., Reilly, R.B., Finucane, C.: A parametric feature extraction and classification strategy for brain-computer interfacing. IEEE Trans. Neural Syst. Rehabil. Eng. 13(1), 12–17 (2005)

    Article  Google Scholar 

  18. Ball, T., Schreiber, A., Feige, B., Wagner, M., Lücking, C.H., Kristeva-Feige, R.: The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and FMRI. Neuroimage 10(6), 682–694 (1999)

    Article  Google Scholar 

  19. Al-Fahoum, A.S., Al-Fraihat, A.A.: Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. International Scholarly Research Notices 2014 (2014)

    Google Scholar 

  20. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4, R1–R13 (2007)

    Article  Google Scholar 

  21. Schiff, S.J., Aldroubi, A., Unser, M., Sato, S.: Fast wavelet transformation of EEG. Electroencephalogr. Clin. Neurophysiol. 91(6), 442–455 (1994)

    Article  Google Scholar 

  22. Chen, G.: Automatic EEG seizure detection using dual-tree complex wavelet-fourier features. Expert Syst. Appl. 41(5), 2391–2394 (2014)

    Article  Google Scholar 

  23. Zhou, S.M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178(6), 1629–1640 (2008)

    Article  Google Scholar 

  24. Farquhar, J., Hill, N.J.: Interactions between pre-processing and classification methods for event-related-potential classification. Neuroinformatics 11(2), 175–192 (2013)

    Article  Google Scholar 

  25. Berta, R., Bellotti, F., De Gloria, A., Pranantha, D., Schatten, C.: Electroencephalogram and physiological signal analysis for assessing flow in games. IEEE Trans. Comput. Intell. AI Games 5(2), 164–175 (2013)

    Article  Google Scholar 

  26. Yoo, J., Yan, L., El-Damak, D., Altaf, M.A.B., Shoeb, A.H., Chandrakasan, A.P.: An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE J. Solid-State Circuits 48(1), 214–228 (2013)

    Article  Google Scholar 

  27. Bhattacharyya, S., Khasnobish, A., Konar, A., Tibarewala, D., Nagar, A.K.: Performance analysis of left/right hand movement classification from EEG signal by intelligent algorithms. In: 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pp. 1–8. IEEE (2011)

    Google Scholar 

  28. Kim, M.K., Kim, M., Oh, E., Kim, S.P.: A review on the computational methods for emotional state estimation from the human EEG. Comput. Math. Methods Med. 2013, 1–13 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Rodrguez-Bermdez, G., García-Laencina, P.J., Roca-González, J., Roca-Dorda, J.: Efficient feature selection and linear discrimination of EEG signals. Neurocomputing 115, 161–165 (2013)

    Article  Google Scholar 

  30. Birbaumer, N., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)

    Article  Google Scholar 

  31. Haggag, S., Mohamed, S., Bhatti, A., Haggag, H., Nahavandi, S.: Neuron’s spikes noise level classification using hidden markov models. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014, Part III. LNCS, vol. 8836, pp. 501–508. Springer, Heidelberg (2014)

    Google Scholar 

  32. Zhou, X., Garcia-Romero, D., Duraiswami, R., Espy-Wilson, C., Shamma, S.: Linear versus mel frequency cepstral coefficients for speaker recognition. In: 2011 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 559–564 (2011)

    Google Scholar 

  33. Haggag, S., Mohamed, S., Bhatti, A., Gu, N., Zhou, H., Nahavandi, S.: Cepstrum based unsupervised spike classification. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3716–3720. IEEE (2013)

    Google Scholar 

  34. Haggag, S., Mohamed, S., Haggag, H., Nahavandi, S.: Hidden markov model neurons classification based on mel-frequency cepstral coefficients. In: 2014 9th International Conference on System of Systems Engineering (SOSE), pp. 166–170. IEEE (2014)

    Google Scholar 

  35. Haggag, S., Mohamed, S., Bhatti, A., Haggag, H., Nahavandi, S.: Neural spike representation using cepstrum. In: 2014 9th International Conference on System of Systems Engineering (SOSE), pp. 97–100. IEEE (2014)

    Google Scholar 

  36. Haggag, S., Mohamed, S., Haggag, H., Nahavandi, S.: Prosthetic motor imaginary task classification using single channel of electroencephalography. In: SMC IEEE International Conference, Hong Kong (2015)

    Google Scholar 

  37. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Haggag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Haggag, S., Mohamed, S., Haggag, O., Nahavandi, S. (2015). Prosthetic Motor Imaginary Task Classification Based on EEG Quality Assessment Features. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9492. Springer, Cham. https://doi.org/10.1007/978-3-319-26561-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26561-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26560-5

  • Online ISBN: 978-3-319-26561-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics