Skip to main content

Combining CNN and MIL to Assist Hotspot Segmentation in Bone Scintigraphy

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9492))

Included in the following conference series:

Abstract

Bone scintigraphy is widely used to diagnose tumor metastases. It is of great importance to accurately locate and segment hotspots from bone scintigraphy. Previous computer-aided diagnosis methods mainly focus on locating abnormalities instead of accurately segmenting them. In this paper, we propose a new framework that accomplish the two tasks at the same time. We first use sparse autoencoder and convolution neural network (CNN) to train an image-level classifier that label input image as normal or suspected. For suspected images, multiple instance learning (MIL) is applied to train a patch-level classifier. Then we use this classifier to produce a probability map of hotspots. Finally, level set segmentation is performed with the probability map as initial condition. The experimental results demonstrate that our method is more accurate and robust than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  2. Babenko, B., Dollár, P., Tu, Z., Belongie, S., et al.: Simultaneous learning and alignment: Multi-instance and multi-pose learning. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  3. Chang, Q., Wang, Q., Qiao, Y., Zhu, Y., Huang, G., Yang, J.: Adaptive detection of hotspots in thoracic spine from bone scintigraphy. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part I. LNCS, vol. 7062, pp. 257–264. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Hojjatoleslami, S., Kittler, J.: Region growing: a new approach. IEEE Trans. Image Procs. 7(7), 1079–1084 (1998)

    Article  Google Scholar 

  5. Huang, J.Y., Kao, P.F., Chen, Y.S.: A set of image processing algorithms for computer-aided diagnosis in nuclear medicine whole body bone scan images. IEEE Trans. Nucl. Sci. 54(3), 514–522 (2007)

    Article  Google Scholar 

  6. Kim, M., Wu, G., Shen, D.: Unsupervised deep learning for hippocampus segmentation in 7.0 tesla MR images. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 1–8. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Proces. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  9. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 759–766. ACM (2007)

    Google Scholar 

  10. Sadik, M., Hamadeh, I., Nordblom, P., Suurkula, M., Höglund, P., Ohlsson, M., Edenbrandt, L.: Computer-assisted interpretation of planar whole-body bone scans. J. Nucl. Med. 49(12), 1958–1965 (2008)

    Article  Google Scholar 

  11. Wang, L., Wu, H., Pan, C.: Region-based image segmentation with local signed difference energy. Pattern Recogn. Lett. 34(6), 637–645 (2013)

    Article  Google Scholar 

  12. Wu, J., Zhao, Y., Zhu, J.Y., Luo, S., Tu, Z.: Milcut: A sweeping line multiple instance learning paradigm for interactive image segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2014)

    Google Scholar 

  13. Xu, Y., Zhu, J.Y., Eric, I., Chang, C., Lai, M., Tu, Z.: Weakly supervised histopathology cancer image segmentation and classification. Med. Image Anal. 18(3), 591–604 (2014)

    Article  Google Scholar 

  14. Yin, T.K., Chiu, N.T.: A computer-aided diagnosis for locating abnormalities in bone scintigraphy by a fuzzy system with a three-step minimization approach. IEEE Trans. Med. Imaging 23(5), 639–654 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partly supported by NSFC, China (No: 61375048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Geng, S., Jia, S., Qiao, Y., Yang, J., Jia, Z. (2015). Combining CNN and MIL to Assist Hotspot Segmentation in Bone Scintigraphy. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9492. Springer, Cham. https://doi.org/10.1007/978-3-319-26561-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26561-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26560-5

  • Online ISBN: 978-3-319-26561-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics