
Improved Algorithms for the Evacuation Route
Planning Problem

Gopinath Mishra1, Subhra Mazumdar2, and Arindam Pal2

1 Advanced Computing and Microelectronics Unit
Indian Statistical Institute

Kolkata, India
gopianjan117@gmail.com

2 Innovation Labs, TCS Research
Tata Consultancy Services

Kolkata, India
{subhra.mazumdar,arindam.pal1}@tcs.com

Abstract. Emergency evacuation is the process of movement of people away
from the threat or actual occurrence of hazards such as natural disasters, ter-
rorist attacks, fires and bombs. In this paper, we focus on evacuation from a
building, but the ideas can be applied to city and region evacuation. We define
the problem and show how it can be modeled using graphs. The resulting opti-
mization problem can be formulated as an integer linear program. Though this
can be solved exactly, this approach does not scale well for graphs with thou-
sands of nodes and several hundred thousands of edges. This is impractical for
large graphs.
We study a special case of this problem, where there is only a single source and a
single sink. For this case, we give an improved algorithm Single Source Single Sink
Evacuation Route Planner (SSEP), whose evacuation time is always at most that
of a famous algorithm Capacity Constrained Route Planner (CCRP), and whose
running time is strictly less than that of CCRP. We prove this mathematically
and give supporting results by extensive experiments. We also study randomized
behavior model of people and give some interesting results.

1 Introduction

Emergency evacuation is the process of movement of people away from the threat or ac-
tual occurrence of hazards such as natural disasters, terrorist attacks, fires and bombs.
In this paper, we focus on evacuation from a building, though the ideas can be applied
to city and region evacuation. We are motivated by the evacuation drill that regu-
larly happens in our company Tata Consultancy Services. We are developing a system
SmartEvacTrak [1] for people counting and coarse-level localization for evacuation of
large buildings. Safe evacuation of thousands of employees in a timely manner, so that
no one is left behind, is a major challenge for the building administrators. Time is the
main parameter in our model. The travel time between different areas of the building is
part of the input and the evacuation time is the output. In the following discussion, we
use {graph, network}, {node, vertex}, {edge, arc}, and {path, route} interchangeably.

We have a building along with its floor plan. Employees are present in some portions
(rooms) of the building. There are some exits on the floor. Every corridor has a capacity,
which is the number of employees that can pass through the corridor per unit time. Every
corridor also has a travel time, which is the time required to move from the start of the

ar
X

iv
:1

60
5.

00
06

5v
1

 [
cs

.D
S]

 3
0

A
pr

 2
01

6

corridor to the end. The goal is to suggest a feasible route for each employee so that he
can be guided to an exit. It must be ensured that at any time the number of employees
passing through a corridor does not exceed it’s capacity.

A complex building does not provide its occupants with all the information required
to find the optimal route. In an emergency, people tend to panic and do not always follow
the paths suggested by the algorithm. They are not given enough time to establish a
cognitive map of the building. To address this issue, we need to model the behavior of
people in emergency situations. We have proposed a simple randomized behavior model
and analyzed it. The expected evacuation time comes out to be quite good. None of the
previous works considered any behavior model of people.

2 Related Work

In this section, we give a summary of different algorithms for the evacuation route plan-
ning problem. Skutella [12] has a good survey on the network flows over time problem.
The monograph by Hamacher and Tjandra [4] surveys the state of the art on the math-
ematical modeling of evacuation problems. Both these papers give a good introduction
and comprehensive treatment to this topic.

The LP based polynomial time algorithm for evacuation problem by Hoppe and
Tardos [5] uses the ellipsoid method and runs in O(n6T 6) time, where n is the number
of nodes in the graph and T is the evacuation egress time for the given network. It uses
time-expanded graphs for the network, where there are T + 1 copies of each node. The
expression for time complexity shows that it is not scalable even for mid-sized networks.
Another disadvantage is that it requires the evacuation egress time (T) apriori, which
is not easy to estimate. As the time complexity is a function of T , it is not a fully
polynomial time algorithm.

One of the earliest algorithms by Lu et al. [8] is Capacity Constrained Route Planner
(CCRP). CCRP uses Dijkstra’s generalized shortest path algorithm to find shortest
paths from any source to any sink, provided that there is enough capacity available on
all nodes and edges of the path. An important feature of CCRP is that instead of a single
value which does not vary with time, edge capacities and node capacities are modeled
as time series (function of time). Here, we need to update edge and node capacities
for each time period. The running time of CCRP is O(p(m + n log n)), (O(pn log n)
for sparse graphs, where m = O(n)) and space complexity is O((m + n)T) (O(nT) for
sparse graphs). Here m and n denotes the number of edges and the number of vertices of
the graph respectively, p denotes the number of evacuees, and T denotes the evacuation
egress time. As space complexity is always at most the time complexity, the running
time of CCRP is implicitly dependent on T . For sparse graphs, nT ≤ pn log n, i.e.,
T ≤ p log n. So, for sparse graphs the evacuation egress time is at most O(p log n). The
space complexity of O(nT) and unnecessary expansion of source nodes in each iteration
are two main disadvantages of CCRP.

To overcome the unnecessary expansion in each iteration, Yin et al. [14] introduced
the CCRP++ algorithm. The main advantage of CCRP++ is that it runs faster than
CCRP. But the quality of solution is not good, because availability along a path may
change between the times when paths are reserved and when they are actually used.

Min and Neupane [11] introduced the concept of combined evacuation time (CET)
and quickest paths, which considers both transit time and capacity on each path and
provides a fair balance between them. Let there be k edge-disjoint paths {P1, P2, . . . , Pk}

from source node s to sink node t. Then, the combined evacuation time is given by,

CET ({P1, P2, . . . , Pk}) =

⌈
p+

∑k
i=1 CiTi∑k
i=1 Ci

⌉
− 1 (1)

where Ci and Ti denotes the capacity and transit time of path Pi respectively, and p
denotes the number of evacuees. Time required to evacuate p people via a path P having
transit time T and capacity C is T +

⌈
p
C

⌉
− 1. So, Pi is said to be the quickest path if

and only if Ti +
⌈
p
Ci

⌉
− 1 ≤ Tj +

⌈
p
Cj

⌉
− 1, for all j ∈ {1, . . . , k} \ {i}.

The formula for combined evacuation time not only gives an exact expression for
the evacuation time, but it also gives the number of people that will be evacuated
on each path. The intuition behind the concept of CET is that paths having lesser
arrival time will evacuate more groups. This algorithm is known as QPER (Quickest
Path Evacuation Routing). The algorithm finds all edge-disjoint paths between a single
source and a single sink and orders them according to the quickest evacuation time
(calculated using CET) and adds them one by one. The algorithm is fairly simple. It
does not use time-expanded graphs and there is no need to store availability information
at each time stamp, as only edge-disjoint paths are considered. But their algorithm is
limited to single source and single sink evacuation problems. Besides these, the addition
of paths is not consistent, i.e., a path added at some point of time may be removed by
the algorithm at a latter point of time, in case removal makes the solution better.

The solutions produced by CCRP++ and QPER do not follow semantics of CCRP,
i.e., the solution quality is not better than that of CCRP. Recently Gupta and Sarda [3]
have given an algorithm called CCRP*, where evacuation plan is same as that of CCRP
and it runs faster in practice. Instead of running Dijkstra’s algorithm from scratch in
each iteration, they resume it from the previous iteration.

Kim et al. [6] studied the contraflow network configuration problem to minimize the
evacuation time. In the contraflow problem, the goal is to find a reconfigured network
identifying the ideal direction for each edge to minimize the evacuation time, by real-
locating the available capacity. They proved that this problem is NP-complete. They
designed a greedy heuristic to produce high-quality solutions with significant perfor-
mance. They also developed a bottleneck relief heuristic to deal with large numbers of
evacuees. They evaluated the proposed approaches both analytically and experimentally
using real-world data sets. Min and Lee [10] build on this idea to design a maximum
throughput flow-based contraflow evacuation routing algorithm.

Min [9] proposed the idea of synchronized flow based evacuation route planning. Syn-
chronized flows replace the use of time-expanded graphs and provides higher scalability
in terms of the evacuation time or the number of people evacuated. The computation
time only depends on the number of source nodes and the size of the graph.

Dressler et al. [2] uses a network flow based approach to solve this problem. They
use two algorithms: one is based on minimum cost transshipment and the other is based
on earliest arrival transshipment. They evaluate these two approaches using a cellular
automaton model to simulate the behavior of the evacuees. The minimum cost approach
does not consider the distances between evacuees and exits. It may fail if there are exits
very far away. Problems also arise if a lot of exits share the same bottleneck edges. The
earliest arrival approach uses an optimal flow over time and thus does not suffer from
these problems. But the exit assignment computed by the earliest arrival approach may
not be optimal.

There are some previous works which considered the behavior of people in an emer-
gency. Løvs [7] proposed different models of finding escape routes in an emergency. Song

et al. [13] collect big and heterogeneous data to capture and analyze human emergency
mobility following different disasters in Japan. They develop a general model of human
emergency mobility using a Hidden Markov Model (HMM) for generating or simulating
large amount of human emergency movements following disasters.

v2, 2 v3, 3

v9, 3 v10, 3

v7, 7

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(2, 1)

(2, 1)

p1

ex1 ex2

v1, 2

v4, 7 v5, 3

v8, 2

v6, 4

p2 p3

p4 p5 p7

p6

(2, 2)

(2, 1)(2, 1)(2, 1)(2, 1)

(2, 1)

(1, 1)

(2, 2)

(2, 2)

(1, 2) (1, 2)

(2, 1) (2, 1)

Fig. 1. A building graph, where vertices represented as squares denote exits. The vertex name
and capacity are written inside a vertex. The edge capacity and travel time are written beside
an edge. Persons residing on a vertex are specified beside that vertex.

3 Problem Definition and Model

The building floor plan can be represented as a graph G = (V,E), where V and E are
the set of vertices and edges respectively. The number of vertices and edges are n and m
respectively. Nodes represent rooms, lobbies and intersection points and arcs represent
corridors, hallways and staircases. Some nodes in the building having significant number
of people are modeled as source nodes. The exits of a building are represented as sink
nodes. Each node has a capacity, which is the maximum number of people that can stay
at that location at any given time and an occupancy, which is the number of people
currently occupying the location. Here, p is the total number of people who needs to be
evacuated.

Each edge has a capacity, which is the maximum number of people that can traverse
the edge per unit time and a travel time, which is the time needed to travel from one
node to another along that edge.

Figure 1 shows a building graph that consists of 10 vertices and 15 edges. For each
vertex v, it’s name and the capacity are specified by a pair of the form (v, c(v)). A
vertex representing an exit is drawn as a square, while the others are drawn as circles.
For each edge e, the capacity and the travel time are specified on the edge by the pair
(c(e), d(e)). The goal is to find the exit and the path (route) for each employee, subject
to the constraint that the number of source-sink paths passing through an edge does not
exceed the capacity of the edge at any unit time interval. The objective function we want
to minimize is the total time of evacuation, that is the time at which the last employee
is evacuated. Let’s define this as the evacuation time. In the quickest flow problem, we
are given a flow value f . We want to minimize the time T in which a feasible flow of
value at least f can be sent from sources to sinks.

4 The Single Source Single Sink Problem

In this section, we focus on the single source single sink evacuation (SSEP) problem.
In real life, single source single sink evacuation problem has many applications. For
example, if all the people are in an auditorium, and there is only one exit in the building,
we want to evacuate people as soon as possible, when there is an emergency. Throughout
the rest of this paper, s denotes the source and t denotes the sink. Before proceeding
further let’s have some definitions.

Definition 1. Transit time of a path is the sum of the transit times of all the edges in
P from s to t, and is denoted as T (P).

Definition 2. Destination arrival time of a path is the time required by a person to
move from s to t using path P subject to prior reservations, and is denoted as DA(P).
In other words, we can say that DA(P) is the sum of T (P) and any intermediate delay.
Note that DA(P) ≥ T (P).

Definition 3. Capacity of a path is the minimum of the capacities of all nodes and
edges present in the path P , and is denoted by C(P).

Definition 4. A node (edge) on a path P is called saturated if the capacity of the node
(edge) equals the capacity of P .

Definition 5. Two paths P1 and P2 are said to be distinct if V1 6= V2 or E1 6= E2,
where V1, V2 are the set of vertices and E1, E2 are the set of edges on the paths P1 and
P2 respectively.

4.1 Limitation of QPER Algorithm for SSEP

Using the concept of combined evacuation time, Min et al. [11] gave an algorithm QPER
for the single source single sink evacuation problem. Their algorithm works well when
we have already discovered k edge-disjoint paths. In QPER, paths from s to t are added
one by one in ascending order of quickest paths, and new CET is calculated after each
path addition. But after addition of a path, the new CET may be less than the transit
time of a previously added path. In that case, we have to delete those paths which have
higher transit time than the current CET . This in turn increases the running time,
since the addition of paths is not consistent.

We overcome the above limitations of the algorithm by adding paths in increasing
order of transit time in each iteration till the transit time of the currently discovered path
exceeds the CET of the previously added set of paths. Note that, we need not discover
all possible paths from source to sink, since unlike QPER, if a path is added in any
iteration, it will remain till the end. The CET after each iteration will be monotonically
non-increasing.

4.2 Modified algorithm for SSEP when we are given k edge-disjoint paths

Let P1, P2, . . . , Pk be k edge-disjoint paths from s to t in ascending order of their transit
time, i.e., T1 ≤ T2 ≤ . . . ≤ Tk. We define, Si = {P1, . . . , Pi}. We add paths to our set
of routes (R) in the following fashion.

1. R = {P1}.

2. CET = CET (S1).
3. Start with i = 1 Execute step 4 and 5 till i ≤ k and Ti+1 ≤ CET .
4. Add path Pi+1 to R.
5. CET = CET (Si+1) and i← i+ 1.
6. Return R.

Lemma 1. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by the above algorithm
then
1. Tl+1 ≤ CET (Sl), 1 ≤ l < j
2. CET (S1) ≥ CET (S2) ≥ . . . ≥ CET (Sj)
3. CET (Sj) ≤ CET (Sl), j < l ≤ k.

Proof. Directly follows from the algorithm.

Lemma 2. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by above algorithm then
T1 ≤ T2 ≤ . . . ≤ Tj ≤ CET (Sj) ≤ CET (Sj−1) ≤ . . . ≤ CET (S1)

Proof. Here T1 ≤ T2 ≤ . . . ≤ Tj and by Lemma 1 CET (Sj) ≤ CET (Sj−1) ≤ . . . ≤
CET (S1). So, the only thing remains to prove is Tj ≤ CET (Sj). Let by contrary assume
that Tj > CET (Sj). By putting formula for CET (Sj−1) from equation (1) and then
solving we get Tj > CET (Sj−1). By Lemma 1, Tj ≤ CET (Sj−1). This is a contradiction.

Lemma 3. If Sj = {P1, P2, . . . , Pj}, j ≤ k is returned as R by above algorithm then
CET (Sj) ≤ CET (Sj \ {Pi}), 2 ≤ i ≤ j.

Proof. We will prove this statement by contradiction. Let CET (Sj) > CET (Sj \ {Pi}),
which implies Ti > CET (Sj) by putting formula for CET from equation-1. It is not
possible by Lemma 2. Hence the claim holds.

Remark 1. The addition of paths by the above algorithm is consistent, i.e. if a path is
added then it will remain till the end of the algorithm execution.

4.3 An Important Observation

s

A

B

C E

F

G

t

(15, 1)

(15, 1)

(6, 4)

(4, 2)

(10, 8)

(12, 7)

(10, 5)

(8, 3)

(8, 3)

Fig. 2. An example to show that parallel flows can be sent on non edge-disjoint paths.

In Figure 2, ordered pair (C, T) denotes capacity and transit time of an edge. There
are two paths P1 and P2 between s and t.
P1 : s−B − C − E −G− t, C(P1) = 4, T (P1) = 19.
P2 : s−A− C − E − F − t, C(P2) = 6, T (P2) = 23.

P1 and P2 are not edge-disjoint, but common edge CE has capacity of 10 i.e. C(P1) +
C(P2) = C(CE). So, flow can be sent through P1 and P2 in parallel and we may think
like we have two copies of edge CE one having capacity 4, dedicated for P1 and other
one having capacity 6, dedicated for P2. We name such set of paths as ”virtually edge
disjoint”. Now it is easy to observe that to apply the formula of combined evacuation
time on a set of paths, defined in equation (1), the necessary condition is they should
be virtually edge disjoint rather than edge disjoint.

4.4 Our Algorithm for SSEP

The main idea of the algorithm is to find set of virtually edge disjoint paths one by one
and calculate CET as in section 4.2 after each path addition till it satisfies a required
condition.

We discover paths one by one in the order of their transit time as follows. We find
path P1 along with its capacity C1 having minimum transit time and decrease capacities
of each node and path of P1 by its capacity C1 permanently and delete saturated nodes
and edges. Let’s say we have already added paths {P1, P2, . . . , Pi}, i ≥ 1, and updated
the capacities of nodes and edges along with deletion of required saturated nodes and
edges. Note that P1, P2, . . . , Pi are virtually edge disjoint. Hence formula of CET can
be applied. In next iteration we discover a path Pi+1 in residual graph iff t is reachable
from s and i < p(see line number-4 in algorithm 1). We add the discovered path Pi+1

iff Ti+1 ≤ CET (Si)(see line number-6 in algorithm 1). As we delete saturated nodes
and edges in each iteration when a path is added we discover paths in maximum of
m+ n iterations i.e. at max m+ n paths and we are not going to discover more than p
paths as each path can evacuate atleast one people. So, our algorithm restricts finding
exponential number of possible paths from s to t . More clearly we discover at most
min(m+ n, p) paths.

Here one may think of we are adding paths only based on transit time without
considering capacity. Note that selection of a path for addition is based on transit time,
addition of selected path is done if its transit time less than or equal to previously
calculated CET, which is function of both capacities and transit times of previously
added paths. So, our addition of paths to the solution is based on both transit time and
capacities of paths implicitly.

4.5 Running Time Analysis of SSEP

From the above discussion it is clear that at most min(m+n, p) paths will be discovered
and equivalently our algorithm runs for at most min(m+n, p) iterations. As each path
discovery can be done in O((m+n log n) time, using well known Dijkstra algorithm for
shortest path, our entire algorithm requires O(min(m+n, p)(m+n log n) time. Assuming
m = O(n), this becomes O(min(n, p) · n log n), which is always at most O(pn log n).
Recall that the time-complexity of CCRP is O(pn log n). Hence, SSEP always performs
faster than CCRP. In real life, the number of evacuees is much larger than the number
of vertices, so SSEP runs much faster than CCRP.

4.6 CCRP Algorithm for SSEP and Some Observations

CCRP [8] is an industry standard algorithm. Many studies have shown that the quality
of solution produced by CCRP is better than most heuristic algorithms. We present the
CCRP algorithm in simplified form, when there is a single source and a single sink.

Algorithm 1: Single Source Single Sink Evacuation Route Planner (SSEP)

Input: A graph G(V,E) representing the network with designated source s ∈ V and sink t ∈ V .
Every node v ∈ V has an occupancy and maximum capacity. Every edge e ∈ E has a
maximum capacity and transit time. Initially, all persons are in s.

Output: Evacuation route plan for each person.
1 begin
2 Initialize R = ∅ and CET =∞.
3 Initialize i← 0.
4 while (t is reachable from s) and number of discovered paths ≤ p− 1 do
5 Find the shortest path Pi+1 from s to t in G(V,E)and let Ti+1, Ci+1 be its transit time and

capacity respectively.
6 if Ti+1 ≤ CET then
7 R = R∪ {Pi+1}.
8 CET = CET (Si+1).
9 Reduce capacity of each node and each edge of Pi+1 by Ci+1.

10 V = V \ {v : v is a saturated node of Pi+1}.
11 E = E \ {e : e is a saturated edge of Pi+1}.
12 end
13 else
14 break.
15 end

16 end
17 Let R = {P1, P2, . . . , Pk}.
18 Send xi persons via Pi, 1 ≤ i ≤ k, where Ti + d

xi
Ci
e − 1 = CET .

19 end

1. s is added to the priority queue. The nodes in priority queue are ordered based on
the distance calculated from s during algorithm execution.

2. While there are evacuees in s, find the path P having minimum destination arrival
time from s to t taking the capacity of the various nodes and edges into considera-
tion.

3. Find capacity of P and reserve capacity along the path for a group of size equal to
the minimum capacity.

4. If there are evacuees left at s, go to step 2.

Definition 6 (Group Size of a path). In each iteration of CCRP one path (say Pi)
from s to t is discovered along with maximum number of people that can be evacuated
through that path. This is defined as the group size of Pi for this iteration.

For the below sections we denote Ti, Ci as transit time and group size of path Pi
respectively.

Observation 1 Let’s consider execution of single source(s) single sink(t) evacuation
network by CCRP algorithm. Let P1, P2, . . . , Pk be distinct paths(not necessarily edge-
disjoint) from s to t discovered by CCRP such that T1 ≤ T2 ≤ . . . ≤ Tk. Here Ai(T) is
any permutation of P1(T), P2(T), . . . , Pi(T) and Pj(T) is the path Pj with destination
arrival time T .
Phase 1: A1(T1), A1(T1 + 1), . . . , A1(T2 − 1)
. . .
Phase i: Ai(Ti), Ai(Ti + 1), . . . , Ai(Ti+1 − 1), i < k
. . .
Phase k: Ak(Tk), Ak(Tk + 1), . . . , Ak(Tk + ε− 2), Ak(Tk + ε− 1).
Here ε is the maximum number of times any path is discovered in phase k. Note that
ε ≥ 1 as Pk is discovered at least once.
Number of times any path discovered in phase-k is either ε or ε− 1. It is because of the
following argument. By definition of ε there exists a path (say Pm) discovered ε number

of times. Let Pl is a path discovered less than ε− 1 number of times. In this case CCRP
algorithm would have returned Pl instead of Pm, because using path Pl some people can
reach destination before or at time Tk + ε − 2 and Pm has earliest destination arrival
time of Tk + ε− 1.
Consider the point when all k paths have been returned ε− 1 times in phase k. Now we
may not have enough evacuees such that CCRP will return each path once. We can add
some virtual evacuees such that we will use all the paths exactly ε times in phase-k and
for simplicity we can say ε is the number of times path Pk is returned by CCRP.
Here it is easy to note that evacuation egress time TCCRPEvac = Tk + ε − 1 and it is
independent of permutation of paths in any Ai(T). So, fix a permutation i.e. Ai(T) =
P1(T), P2(T), . . . , Pi(T). Fixing up this permutation doesn’t affect the solution, but it
will make the analysis easier.

Observation 2 Let P1, P2, . . . , Pk be distinct paths(not necessarily edge-disjoint) from
s to t discovered by CCRP such that T1 ≤ T2 ≤ . . . ≤ Tk. Here Pi is the shortest path
discovered after deletion of saturated nodes/edges of P1, P2, . . . , Pi−1.

Remark 2. Algorithm 1 finds a path even after we have deleted saturated nodes and
edges of all previously discovered path, if it satisfies the conditions given on line numbers
4 and 6.

Observation 3 Let’s consider the sequence of paths as in Observation 1 with the fixed
permutation of each Ai(T) as explained. A path Pi may be returned in many iterations
of CCRP. Group size returned in all iterations are equal possibly except last time when
Pi is discovered(in phase k) in case we don’t have enough evacuees left at s. This type of
situation might happen only once as we are dealing with single source single destination
network and it can happen in phase k after or while discovery of Pk for the first time.
In such cases we can add some virtual evacuees to s so that group size of a path remains
same in all iterations. It will not affect evacuation egress time but it will make the
analysis easier.

Remark 3. We can represent each path discovered by CCRP as an ordered pair of path
and its group size. Algorithm 1 returns a path with maximum number of people who can
travel by that path at any time. As each path is discovered only once, we can represent
each path along with the capacity as an ordered pair.

4.7 Analysis of Algorithm 1

Lemma 4. Let (P1, C1), (P2, C2), . . . , (Pk, Ck) be distinct paths (not necessarily edge-
disjoint) from s to t in order of their transit time discovered by CCRP.

1. Number of iterations that will return path Pi is Tk − Ti + ε, 1 ≤ i ≤ k, where ε
denotes number of iterations that returns path Pk.

2. Number of iterations that will return path Pi before phase j is Tj − Ti, where i ≤
j ≤ k.

3. The same paths will be returned by Algorithm 1, and T1 ≤ T2 ≤ . . . ≤ Tk.

Proof. Parts (1) and (2) directly follows from Observation 1. For part (3), by induction
we can prove that algorithm 1 finds each path Pj , 1 ≤ j ≤ k with available capacity Cj .

Base case: j = 1 i.e. (P1, C1) is added by Algorithm 1. This is obvious.
Inductive Step: Suppose paths (P1, C1), . . . , (Pj , Cj), 1 ≤ j < k have been added

by Algorithm 1. We have to prove that Algorithm 1 will also add (Pj+1, Cj+1).

Part 1: From Observation 2, Pj+1 is the shortest path from s to t in residual graph
i.e. if we delete saturated node(s) and/or edge(s) of the paths P1, P2, . . . , Pj . Algorithm 1
also adds paths one by one after deleting saturated node(s) and/or edges(s) of previously
discovered paths. So, structure of the graph remains same after addition of these j paths
both in CCRP and Algorithm 1. So, Pj+1 is also the best path w.r.t. transit time in
residual graph according to Algorithm 1. As Pj+1 is the best path in residual network
either no paths will be added or Pj+1 will be added to set of routes in Algorithm 1.

Let by contrary assume that Algorithm 1 doesn’t add path Pj+1 i.e. Algorithm 1
does not add any path. Clearly it may happen due to one of the two reasons i.e. either t
is not reachable from s or number of paths discovered = p(line number-4 in Algorithm
1) or Tj+1 > CET (Sj)(line number-6 in Algorithm 1).
Case 1(a): (t is not reachable from s)
As CCRP is able to find path Pj+1, t is reachable from s. Contradiction!
Case 1(b): (Number of paths discovered = p)
It is clear from CCRP Algorithm given in section 4.6 that it does not discover more
than p paths as in each path at least one people will be evacuated. As CCRP finds
path Pj+1, number of paths discovered before discovery of Pj+1 by Algorithm 1 can’t
be more than p− 1.
Case 2: (Tj+1 > CET (Sj))
Just come back to the point when CCRP adds path (Pj+1, Cj+1) for the first time. It
can happen only in phase j+1. From Lemma 4 Pi is returned in Tj+1−Ti, 1 ≤ i ≤ j < k,
iterations before phase j + 1. As Pj+1 discovered in phase j + 1 for the first time total
number of people evacuated through Pi before discovery of Pj+1 is at least Tj+1 − Ti.
As group size of path Pi is Ci, total number of people evacuated before discovery of
Pj+1 is at least

∑j
i=1 Ci(Tj+1−Ti). As CCRP adds the path Pj+1 we can say that still

there are people to be evacuated. Also from Observation 3 virtual evacuees are added
while or after addition of path Pk. So, total number of people evacuated before discovery
of Pj+1 is strictly less than p. Mathematically

∑j
i=1 Ci(Tj+1 − Ti) < p, which implies

Tj+1 ≤ CET (Sj). Contradiction!
Part 2: Now one thing remains to prove is available capacity of the path Pj+1 returned
by Algorithm 1 is also Cj+1. If Pj+1 doesn’t share any node or edge with previously
discovered path we are done. So, assume that there is some node or edge x which is
common to both Pj+1 and some Pi, 1 ≤ i ≤ j. Here we argue considering x as a node and
argument for x as an edge is same. Let tkn denotes time required to travel from s(source)
to node n via path Pk with out intermediate delay. Observe that tj+1

x ≥ tix. From
observation 1 Pj+1 is discovered in phase j+1 for the first time by CCRP algorithm. In
phase j + 1 consider Aj+1(Tj+1). Pi has been discovered once before discovery of Pj+1

with its destination arrival time Tj+1 i.e. it has made a reservation of Ci at x for the
time instance tj+1

x at node x. Now arrival time of evacuees via Pj+1 to x is also tj+1
x . At

tj+1
x we can not use that capacity of Ci for evacuees routing via Pj+1. In other words as

if node x has dedicated capacity of Ci at time tj+1
x for evacuees routing via Pi and that

can’t be used by evacuees routing via Pj+1. Here we have not assumed anything on i
and x. For each such i and x, Pj+1 can’t use the capacity of Ci at time tj+1

x at node x.
It is equivalent to permanently decrementing the capacity of such x’s by corresponding
Ci, because from observation 1 whenever Pj+1 is discovered prior to that a reservation
of Ci must have been done at common node x(of Pi and Pj+1) by path Pi. Now come
back to Algorithm 1. By induction each path Pi, i ≤ j is returned with capacity Ci.
We find path Pj+1 by decrementing the capacity of each path by Ci permanently. So,
just before addition of Pj+1 structure of the graph remains same w.r.t. capacity both

in CCRP and Algorithm 1. From this discussion we can say that capacity of path Pj+1

returned by Algorithm 1 is Cj+1.

Theorem 1. The evacuation time of the solution given by Algorithm 1 is at most as
that of the CCRP Algorithm for single source and single sink.

Proof. Let (P1, C1), (P2, C2), . . . , (Pk, Ck) be distinct paths (not necessarily edge-disjoint)
from s to t in order of their transit time (neglecting delays) discovered by CCRP. By
Lemma 4, Algorithm 1 also returns the same set of paths. From Observation 1, we
can say that evacuation time of CCRP is TCCRPEvac = Tk + ε − 1. Evacuation time
of Algorithm 1 is CET (Sk). Also from Lemma 4, number of people that are evacu-
ated through Pi is Ci(Tk − Ti + ε). As All people have been evacuated we can write∑k
i=1 Ci(Tk − Ti + ε) ≥ p, which implies TCCRPEvac ≥ CET (Sk).

Theorem 2. Upper bound on the evacuation time given by CCRP (hence by Algorithm
1) for single source single sink network is

⌊
p
k

⌋
+ (n− 1)τ − 1, where p is the number of

evacuees, n is the number of nodes in the graph, τ is the maximum transit time of any
edge and k is the number of paths used by CCRP (and Algorithm 1).

Proof. From Lemma 4, number of iterations executed by CCRP is
∑k
i=1(Tk−Ti+ε) ≤ p,

as in each iteration at least one person will be evacuated. Hence, TCCRPEvac ≤
⌊
p
k

⌋
+ (n−

1)τ − 1.

5 Randomized Behavior Model of People

The idea of combined evacuation time [11] can be extended by considering probabilistic
behavior of people. Suppose in an evacuation, people do not follow the paths suggested
by Algorithm 1 (or CCRP). Let’s say with probability α > 0 a person follows suggested
path and with probability 1 − α he follows the shortest path (to the nearest exit).
In this situation, we have to redistribute people via various paths. If we suggest xi
persons via Pi, i 6= 1, then the number of persons who will follow Pi and P1 is αxi and
(1−α)xi respectively (in expectation). The total number of people following P1 and Pi
are x1 +

∑k
i=2(1 − α)xi and αxi, i 6= 1 respectively. Expected time at which the last

person will arrive at destination via P1 is T1 +
x1+

∑k
i=2(1−α)xi

C1
− 1. Expected time at

which last person will arrive at destination via Pi is Ti + αxi

Ci
− 1, i 6= 1

Let the expected evacuation time in this scenario be E[T]. Now we can write,

E[T] = max

(
T1 +

(1− α)n

C1
− 1, max

2≤i≤k

(
Ti +

αxi
Ci
− 1

))
.

E[T] will be minimum when it satisfies the following equation,

E[T] = T1 +
x1 +

∑k
i=2(1− α)xi
C1

− 1

= Ti +
αxi
Ci
− 1, 2 ≤ i ≤ k. (2)

where
∑k
i=1 xi = n and xi ≥ 0,∀i. Solving the above equations we get,

E[T] =
n+

∑k
i=1 CiTi∑k
i=1 Ci

− 1 = CET ({P1, P2, . . . , Pk}) (3)

Expected evacuation time given by equation (3) doesn’t depend on α. This is true and
solution is feasible as long as x1 ≥ 0. But it is not always the case, specifically when
(1− α)

∑k
i=2 xi > C1(T − T1 + 1). So, implicitly evacuation time is dependent on α.

In the following sections we give the algorithm that considers the randomized be-
havior of people along with analysis for expected evacuation time.

5.1 Lower bound for expected evacuation time

On expectation x1+(1−α)
∑k
i=2 xi = αx1+(1−α)n number of people will be evacuated

via path P1. This is minimum when x1 = 0 as x1 ≥ 0. So, lower bound for expected

evacuation time is T1 + (1−α)n
C1

− 1.

5.2 Algorithm for randomized behavior of people

Algorithm 2:

1. Run Algorithm 1. Find CET and x1, x2, . . . , xk using Equation (2).
2. If x1 ≥ 0 then quit; else go to step 3. In this case, the expected evacuation time =

CET.
3. Assign x′1 to 0 and x′i = nxi∑k

j=2 xj
,∀i 6= 1. In this case, the expected evacuation time

= T1 + (1−α)n
C1

− 1.

Lemma 5. x′i < xi, ∀i 6= 1, and
∑k
i=2 x

′
i = n.

Proof. Directly follows from the algorithm.

Lemma 6. Above algorithm has a expected evacuation time of CET ({P1, P2, . . . , Pk})
when it quits from step-2.

Proof. In this case x1 ≥ 0. From the equation-4 also we can observe that xi ≥ 0,∀i 6= 1.
Hence the solution is feasible. So, we can safely say that the expected evacuation time
is CET .

Lemma 7. Above algorithm has a expected evacuation time of T1 + (1−α)n
C1

− 1 when it
quits from step-3.

Proof. In this case x1 < 0 and by Lemma 5 x′i < xi, i 6= 1. For i 6= 1 x′i number of

people are suggested path Pi. Hence Ti +
px′

i

Ci
− 1 < Ti + pxi

Ci
− 1 < CET , i 6= 1 and

T1 + (1−α)n
C1

− 1 > CET .

Theorem 3. In a single source single sink evacuation problem, if people follow the
path suggested by Algorithm 2 with probability α, then the expected evacuation time is

max(CET, T1 + (1−α)n
C1

− 1) and algorithm runs in O(min(n, p) · n log n) time.

6 Experimental Results

6.1 Details of the Experiments

We executed the SSEP and CCRP algorithms on a Dell Precision T7600 server having an
Intel Xeon E5-2687W CPU running at 3.1 GHz with 8 cores (16 logical processors) and
128 GB RAM. The operating system is Microsoft Windows 7 Professional 64-bit edition.
We used the C/C++ network analysis libraries igraph and LEMON to implement the
algorithms. We used netgen to generate synthetic graphs. The number of vertices in the
graph varies from 100 to 500,000. The number of people varies from 3,000 to 120,000.
The results are shown in Table 1. The graphs are plotted on a log-log scale.

50.0	

500.0	

100	
 1000	
 10000	
 100000	
 1000000	

Ev
ac
ua
&o
n	
 T
im
e	
 	

(in
	
 lo
g	
 s
ca
le)
	

Number	
 of	
 Nodes	
 	
 (in	
 log	
 scale)	

Evacua&on	
 Time	
 vs	
 Number	
 of	
 nodes	

CCRP	
 Evacua.on	
 Time	
 	

SSEP	
 Evacua.on	
 Time	

Fig. 3. Evacuation time vs number of nodes for SSEP and CCRP.

0.1	

1	

10	

100	

1000	

10000	

100000	

100	
 1000	
 10000	
 100000	
 1000000	

Al
go
rit
hm

	
 R
un

	
 T
im

e	

(in

	
 lo
g	

sc
al
e)
	

Number	
 of	
 Nodes	
 (in	
 log	
 scale)	

Algorithm	
 Run	
 Time	
 vs	
 Number	
 of	
 nodes	

CCRP	
 Run	
 Time	

SSEP	
 Run	
 Time	

Fig. 4. Run time vs number of nodes for SSEP and CCRP.

Table 1. Comparison of evacuation time and run time of SSEP and CCRP algorithms

Number of Nodes Number of Evacuees Evacuation Time Run Time Improvement in SSEP over CCRP
(
CCRP
SSEP

)
(n) (p) SSEP CCRP SSEP CCRP Evacuation Time Run Time

100 3000 68 69 0.124 1.326 1.01 10.69
500 5000 130 130 0.358 2.73 1.00 7.63
1000 7000 155 156 1.014 14.586 1.01 14.38
1500 9000 115 117 1.466 35.443 1.02 24.18
2000 15000 661 661 1.622 29.016 1.00 17.89
2500 25000 179 186 2.761 25.739 1.04 9.32
5000 40000 903 903 3.899 93.521 1.00 23.99
10000 65000 517 520 12.012 231.535 1.01 19.28
15000 95000 1848 1853 14.025 336.946 1.00 24.02
25000 100000 1126 1128 23.134 815.682 1.00 35.26
50000 120000 1436 1446 46.69 1684.217 1.01 36.07
100000 110000 1032 1044 93.4952 3016.3005 1.01 32.26
500000 100000 1698 1720 344.341 11363.253 1.01 33.00

6.2 Results

We show the variation of evacuation time and run time with number of nodes for SSEP
and CCRP algorithms in Figure 3 and Figure 4 respectively. From Figure 3, we can see
that the evacuation time of SSEP is at most that of CCRP. It is evident from Figure 4
that the running time of SSEP is much lower than that of CCRP. Hence, for all these
instances SSEP clearly outperforms CCRP with respect to both evacuation time and
run time. The absolute and relative amount by which SSEP performs better than CCRP
is shown in Table 1.

7 Conclusion and Future Work

In this paper, we have studied the evacuation route planning problem and given an
improved algorithm for the single source single sink case. We theoretically showed that
the SSEP algorithm performs better than the CCRP algorithm, both in terms of evac-
uation time and run time. This is also demonstrated by extensive experiments. We also
analyzed a simple probabilistic behavior model of people. Here are some open problems
which we would like to work in future.

– Design a system for real time monitoring of evacuation in a building using our indoor
localization app [1].

– Extend this algorithm to the multiple source multiple sink case, and compare it’s
performance with CCRP and other algorithms.

– Develop a more sophisticated probabilistic behavior model of people for the case
when they don’t follow the routes suggested by the algorithm.

– Give good lower and upper bounds for the problem.

References

1. Nasimuddim Ahmed, Avik Ghose, Amit K Agrawal, Chirabrata Bhaumik, Vivek Chan-
del, and Abhinav Kumar. SmartEvacTrak: A people counting and coarse-level localization
solution for efficient evacuation of large buildings. In Pervasive Computing and Communi-
cation Workshops (PerCom Workshops), 2015 IEEE International Conference on, pages
372–377. IEEE, 2015.

2. Daniel Dressler, Martin Groß, Jan-Philipp Kappmeier, Timon Kelter, Joscha Kulbatzki,
Daniel Plümpe, Gordon Schlechter, Melanie Schmidt, Martin Skutella, and Sylvie Temme.
On the use of network flow techniques for assigning evacuees to exits. Procedia Engineering,
3:205–215, 2010.

3. Ajay Gupta and Nandlal L Sarda. Efficient evacuation planning for large cities. In Database
and Expert Systems Applications, pages 211–225. Springer, 2014.

4. Horst W Hamacher and Stevanus A Tjandra. Mathematical modelling of evacuation prob-
lems: A state of art. Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraun-
hofer (ITWM), 2001.

5. Bruce Hoppe and Éva Tardos. Polynomial time algorithms for some evacuation problems.
In Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms, pages
433–441. Society for Industrial and Applied Mathematics, 1994.

6. Sangho Kim, Shashi Shekhar, and Manki Min. Contraflow transportation network re-
configuration for evacuation route planning. IEEE Transactions on Knowledge and Data
Engineering, 20(8):1115–1129, 2008.

7. Gunnar G Løvs. Models of wayfinding in emergency evacuations. European journal of
operational research, 105(3):371–389, 1998.

8. Qingsong Lu, Betsy George, and Shashi Shekhar. Capacity constrained routing algo-
rithms for evacuation planning: A summary of results. In Advances in spatial and temporal
databases, pages 291–307. Springer, 2005.

9. Manki Min. Synchronized flow-based evacuation route planning. In Wireless Algorithms,
Systems, and Applications, pages 411–422. Springer, 2012.

10. Manki Min and Jonguk Lee. Maximum throughput flow-based contraflow evacuation rout-
ing algorithm. In Pervasive Computing and Communications Workshops (PERCOM Work-
shops), 2013 IEEE International Conference on, pages 511–516. IEEE, 2013.

11. Manki Min and Bipin C Neupane. An evacuation planner algorithm in flat time graphs. In
Proceedings of the 5th International Conference on Ubiquitous Information Management
and Communication, page 99. ACM, 2011.

12. Martin Skutella. An introduction to network flows over time. In Research Trends in
Combinatorial Optimization, pages 451–482. Springer, 2009.

13. Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, Ryosuke Shibasaki, Nicholas Jing Yuan,
and Xing Xie. A simulator of human emergency mobility following disasters: Knowledge
transfer from big disaster data. In AAAI Conference on Artificial Intelligence, 2015.

14. Dafei Yin. A scalable heuristic for evacuation planning in large road network. In Proceedings
of the Second International Workshop on Computational Transportation Science, pages 19–
24. ACM, 2009.

	Improved Algorithms for the Evacuation Route Planning Problem

