
Line Segment Covering of Cells in Arrangements∗

Matias Korman Sheung-Hung Poon Marcel Roeloffzen

October 25, 2018

Abstract

Given a collection L of line segments, we consider its arrangement and
study the problem of covering all cells with line segments of L. That is,
we want to find a minimum-size set L′ of line segments such that every
cell in the arrangement has a line from L′ defining its boundary. We show
that the problem is NP-hard, even when all segments are axis-aligned. In
fact, the problem is still NP-hard when we only need to cover rectangular
cells of the arrangement. For the latter problem we also show that it is
fixed parameter tractable with respect to the size of the optimal solution.
Finally we provide a linear time algorithm for the case where cells of
the arrangement are created by recursively subdividing a rectangle using
horizontal and vertical cutting segments.

1 Introduction

Set cover [3] is one of the most fundamental problems of computer science.
This problem is usually formulated in terms of hypergraphs: the input of the
problem is a hypergraph H = (X,F) where F ⊆ 2X is a collection of subsets
of X, and we aim for a subset F ′ ⊆ F of smallest cardinality that covers X
(i.e., ∪F∈F ′F = X). This problem is known to be NP-hard and even hard to
approximate [3, 6].

Given its importance, it is not surprising that this problem has been studied
extensively. In most cases, the set F is given implicitly (this is specially true
when considering geometric variants of the problem). For example, in the well-
known k-center problem [5] we want to cover a set S of n points with unit disks.
In the hypergraph definition, this is equivalent to X = S and F is the collection
of subsets of S that can be covered with a single unit disk.

Sometimes the relationship between X and F is much more involved. For
example, in the discrete center problem, we only consider the disks whose center
is a point of S. Akin to the discrete variant of the k-center problem, in this
paper we study a geometric setting where the elements X and sets F are defined
by the same geometric primitives. Specifically, we study the problem of covering

∗A preliminary version of this paper appeared in the proceedings of the COCOA 2015
conference [8]

1

ar
X

iv
:1

70
8.

00
57

6v
1

 [
cs

.C
G

]
 2

 A
ug

 2
01

7

the cells of an arrangement of line segments L with segments of L. Given a
set L of line segments in the plane a cell in the arrangement of L is defined
as a maximally connected region that is not intersected by any segments of L.
Essentially the cells are the ‘empty’—not intersected by segments of L—regions
in the arrangement defined by L. Now let C denote the set of all cells in the
arrangement of L. We say that a cell c ∈ C is covered by a line segment ` ∈ L if
and only if ` is part of the boundary of c. Similarly c is covered by a set L′ of
line segments if and only if there is a segment ` ∈ L′ that covers c. The goal is
then to find a minimum-size set L′ ⊂ L that covers all cells of C. We call this
the line-segment covering problem.

The problem can also be viewed as a guarding problem. In the traditional
art gallery problem, the goal is to place guards so that the guards together see
the whole gallery (often a simple polygon). Many variants of this have been
studied. Bose et al. [2] study guarding and coloring problems between lines.
They provide results for several types of guards and objects to guard, such as
guarding the cells of the arrangement with the lines, or guarding the lines by
selecting cells. Their results however do not extend to line segments as they use
properties of the lines that do not hold for line segments. To the best of our
knowledge covering cells in an arrangement of line segments with the segments
has not been studied before.

We study three different variants of this problem. First, in Section 2 we show
that the line-segment covering problem is NP-hard, even when all segments of L
are axis-aligned. In Section 3 we consider a slightly different variant, where we
are required to cover only rectangular cells, those defined by four line segments.
For this variant we show that the NP-hardness reduction still works. However, we
show that this variant is fixed parameter tractable with respect to the size of the
optimal solution. In Section 4, inspired by subdivisions induced by KD-trees, we
study a variant where the line segments define a type of rectangular subdivision.
That is, an axis aligned rectangle that is recursively subdivided with horizontal
or vertical line segments, similar to the subdivision defined by a KD-tree [1].
For this case we show that an optimal cover can be computed in linear time,
assuming that the partitioning is given as a tree-structure defined by the splitting
lines.

2 NP-hardness for Rectilinear Line Segments

In this section we show that the line-segment covering problem is NP-hard, even
if the input consists of only horizontal and vertical line segments. We reduce
the problem from planar 3SAT [9]. An input instance for the 3SAT problem
is a set {x1, x2, . . . , xn} of n variables and a Boolean expression in conjunctive
normal form. That is, the expression is a conjunction of clauses Φ = c1∧ . . .∧ cm
such that each clause ci is a disjunction of three literals (a variable or negation of
a variable). The problem is then to decide if there is a truth assignment for the
variables so that Φ is true. In planar 3SAT we impose further restrictions by
looking at the representation of Φ as a bipartite graph with variables and clauses

2

x1 x2 x3 x4 x5

(x1 ∧ x2 ∧ x3)

(x1 ∧ x3 ∧ x5)

(x2 ∧ x3 ∧ x4)

(x1 ∧ x2 ∧ x5)

(x2 ∧ x4 ∧ x5)

(x3 ∧ x4 ∧ x5)

Figure 1: planar 3SAT problem instance along with a planar embedding.

2m+ 4
lines

︸ ︷︷ ︸
2m lines 2m lines

}
︸ ︷︷ ︸

︸︷︷︸︸︷︷︸

}
}

}
︸ ︷︷ ︸

}
︸ ︷︷ ︸

︸︷︷︸︸︷︷︸

}
}

}

Figure 2: Gadget for a variable with a true (left) and false (right) assignment.
Red (thick) edges show the two possible covers with m + 1 segments.

as vertices. A variable-node v is connected to a clause-node c if and only if v
occurs in c. In planar 3SAT we assume that this graph is planar. Specifically
we assume that a planar embedding is given that places all variable-nodes on
a horizontal line and all clause-nodes above or below this line (see Fig. 1). We
also assume that no variable appears more than once in any clause (that is, the
above described bipartite graph is a proper graph and not a multigraph).

It is well-known that the planar 3SAT problem is NP-hard [9]. Also note
that it is easy to see that the line-segment covering problem is in NP. Indeed,
given a possible covering, we can construct the arrangement of line segments
and verify in polynomial time that indeed all cells are covered. In the remainder
of this section we provide a polynomial time reduction and prove its correctness.

2.1 Reduction

For each variable in Φ we create a gadget consisting of 4m+8 horizontal segments
and 4m + 2 vertical segments. The leftmost and rightmost vertical line stab all

3

Figure 3: A clause gadget used in showing NP-hardness in Section 2, parts
are variable gadgets that connect to the edges of a clause gadget (marked with
thicker line segments).

horizontal lines of the gadget, whereas 2m of the other lines stab the top 2m+ 4
horizontal lines and 2m stab the lower 2m + 4 horizontal lines as illustrated in
Fig. 2. As we describe later, some of the vertical line segments may be further
extended (above or below) to connect to the clause gadgets, but the horizontal
segments will not cross any segments of other gadgets.

Intuitively speaking, we will show that any covering of the variable gadgets
must choose one every other vertical segment, including either the right or
leftmost segment. The choice of using either the rightmost or leftmost vertical
segment is equivalent to assigning the variable to be true or false. The clause
gadget will create additional cells that will be covered for free (without selecting
additional line segments) provided that at least one variable satisfies the clause.

Let s
(i)
1 , . . . , s

(i)
2m be the vertical segments created in the gadget for variable

xi (numbered from left to right). We would like to sort the clauses c1, . . . , cj
in which xi occurs in the order in which they appear on the embedding of
the planar 3SAT instance. However, this is not well-defined (since it is not
always clear when a segment goes before another), so we proceed as follows: let
c1, . . . , cj′ be the clauses that contain variable xi and are embedded above the
line containing all variable nodes, sorted in clockwise order of their connections
to xi. Similarly, let cj′+1, . . . , cj be the clauses that are embedded below the
line (this time in counter-clockwise order). We define the ordering of the clauses
around xi as the concatenation of both orderings. Since we have 2m vertical
line segments for each clause and m clauses we ensure that any vertical segment
of a variable gadget is extended only towards a single clause, and any clause is
associated to exactly three segments.

We now detail the gadget associated to clause c = `i ∧ `j ∧ `k (for i < j < k),
where `i is a literal of variable xi (similarly, `j and `k are literals of variables xj

and xk, respectively). First, we extend the three segments associated to clause c
(above or below depending on where c is placed in the embedding). We extend
the segments associated to variables xi and xk slightly further than the segment
of xj . We complete our transformation by adding two horizontal segments that

4

create a rectangle with the three extended segments, see Fig. 3.
This concludes the construction of a line-segment-covering instance L from a

planar 3SAT input Φ. Next we show that there is a satisfying assignment for
Φ if and only if there is a subset L′ of L of size at most n(2m + 1) that covers
all cells in the arrangement.

2.2 Correctness

In the following theorem, we show that the line segment covering problem is
NP-complete even when the input line segments are rectilinear.

Lemma 1. A planar 3SAT expression Φ is satisfiable if and only if there is
a cover of size at most n(2m + 1) for its corresponding line-segment-covering
instance L.

Proof. First we prove that given a satisfying assignment for Φ we can cover L
with n(2m + 1) segments. If a variable is true, then we select the rightmost
vertical segment, and for each set of 2m segments that only intersect the top or
bottom we select the odd ones counting from the leftmost segment starting at
one, see also Fig. 2. If the variable is false we select the leftmost longer segment
and the even ones from the sets of shorter segments.

Next we show that all cells are covered. We consider three types of cells: cells
in the interior of the grids created of the variable gadgets are called variable cells,
the single rectangular cell associated to a clause gadget is called clause cell; any
other cell (included the unbounded one) that is created with our construction is
simply called an other cell.

Since we have selected one every other segment, clearly all variable cells are
covered. The fact that the variable assignment satisfies all clauses implies that at
least one of the three vertical segments defining a clause cell has been selected, so
the clause cell is covered. Hence, all clause cells are also covered. Finally, for the
remaining cells it suffices to see that each such cell always has two consecutive
vertical segments of a variable gadget in its boundary. Indeed, Such cells are only
created when connecting clauses and variables and in particular, their left and
right boundaries are created by those extensions. Thus, when walking along the
boundary of any such cell, we will find the next vertical segment of the variable
gadget (or the predecessor in case the segment was the last one). One of the
segments must have been selected, so also these cells are covered.

The reverse statement is similar. Assume that we have a cover L′ for L of size
n(2m+ 1). First observe that each variable gadget needs at least 2m+ 1 selected
line segments to cover its interior cells. To achieve this we must select either the
left or rightmost segment, after which there is a unique cover for the remaining
cells that uses only 2m segments. Covering the cells within the variable gadgets
with fewer than 2m + 1 segments is not possible, so any cover consist of exactly
2m + 1 segments per variable gadget. Furthermore, none of these segments
can be reused between different variable gadgets. Thus, we conclude that each
clause gadget must be covered by the lines selected from the variable gadgets.

5

We create a variable assignment for each variable as before, depending if the
leftmost or rightmost segments has been selected.

Since L′ covers all cells, it must also cover the clause cells, which implies that
at least one of the three vertical segments has been selected. Equivalently, this
implies that in each clause the choice of assignment of the variables makes at
least one of its literals true and the formula Φ is satisfiable.

Since the reduction is easily computed in polynomial time we conclude the
following result.

Theorem 2. Given a set L of axis-aligned line segments, it is NP-hard to find
a minimum-size set L′ ⊆ L so that for each cell of the arrangement at least one
of its defining segments is in L′.

3 Covering only rectangular cells

From the above reduction we can see that the main difficulty of the problem lies
in covering the rectangular cells. Thus, in this section we turn our attention
to a variant of the problem in which segments are axis-aligned and we are not
required to cover all cells, but only those that are rectangles. That is, cells whose
boundary is formed by exactly four line segments. First we briefly argue that
this variant is also NP-hard by adapting the NP-hardness proof in the previous
section. Then we show that the problem is fixed parameter tractable (FPT)
with respect to k, the number of segments in the optimal solution.

3.1 NP-hardness

The hardness almost follows from the construction of Section 2. Indeed, clause
cells are the only critical part of the reduction that need to be modified. Instead,
we create the clause gadget with 6 segments as shown in Figure 4. This modified
gadget contains three rectangular cells. Note that incoming segments from
variables can cover at most two of these cells, but at least one segment must
be added so as to cover the intermediate rectangular cell. This additional edge
can cover two cells, either the left and middle cells, or the middle and right
cells. Thus, it follows that we can find a covering of all rectangular cells of this
modified instance with n(2m + 1) + m segments if and only if the associated
planar 3SAT instance is satisfiable, and thus this variation is also NP-hard.

Theorem 3. Given a set L of axis-aligned line segments, it is NP-hard to find
a minimum-size set L′ ⊆ L so that for each rectangular cell of the arrangement
at least one of its defining segments is in L′.

3.2 FPT on the size of the optimal solution

Next we show that the problem is fixed parameter tractable (FPT) with respect
to k, the size of the optimal solution. Our aim is to compute a kernel of small
size (or conclude that there is no solution of size at most k).

6

Figure 4: Modified clause gadget. The three dashed vertical segments connect to
the corresponding variable gadgets. This new gadget creates three rectangular
cells that can be guarded with one additional segment if and only if the variable
assignment satisfies the clause.

Since we want to cover only rectangular cells we can represent each cell by an
associated subset (or subset for short) C = {`1, `2, `3, `4} with the four bounding
line segments as its elements. This reduces the line segment covering problem to
a hitting set problem for a collection C of subsets of size four. Our approach is
to reduce the number of subsets to consider; first to a set C1 where for any two
line segments there are at most 2k subsets that contain both these line segments;
then to a set C2 where for any single line segment there are at most 2k2 subsets
containing it. First we prove the following lemma.

Lemma 4. Let `, `′ and `′′ be any three line segments in L. There are at most
two subsets in C containing all three line segments, `, `′ and `′′.

Proof. Since the arrangement is rectilinear, two lines, say ` and `′ are parallel
and the other is orthogonal to these. This means that any cell having all three
line segments `, `′ and `′′ on its boundary must span the strip between ` and `′.
However at most two such cells can also be adjacent to the third line segments
`′′.

We start reducing our problem instance by looking at pairs of line segments.
Specifically we count for every pair of line segments how many subsets contain
both. Then for any pair `, `′ shared in more than 2k subsets we add the subset
{`, `′} and remove all subsets containing both ` and `′. Let C1 denote this
reduced subset.

Lemma 5. A set L′ ⊂ L of line segments, with |L′| ≤ k is a minimum-size
cover of C1 if and only if it is a minimum-size cover of C.

Proof. Clearly the claim holds if C = C1. Thus, from now on we assume that
C+ = C1\C and C− = C\C1 are two nonempty sets that contain all elements that
were added and removed from C, respectively.

Now assume that L′ with |L′| ≤ k is a minimum size cover for C1. Observe
that all subsets of C− must also be covered, since for every subset C ∈ C− there
is a subset {`, `′} such that both ` and `′ occur in C (and {`, `′} ∈ C+). It follows

7

that L′ is a also a cover for C. To show that L′ is of minimum size assume for
a contradiction that a smaller set L′′ is also a cover for C. Clearly, L′′ covers
C ∩ C1. Now take any set {`, `′} in C+, if neither ` nor `′ is part of L′′, then we
claim that |L′′| > k. Indeed, we introduced {`, `′} into C1 only when more than
2k subsets in C contain both ` and `′. If neither ` nor `′ are part of L′′, then
Lemma 4 implies that every other line can cover at most two of these subsets.
In particular, the cardinality of L′′ will be larger than k, contradicting with
the fact that L′′ is smaller than L′. A similar argumentation shows that any
minimum-size cover of C is also a minimum-size cover of C1, which concludes the
proof.

Now we further reduce our problem instance to a set C2 as follows. We count
for each line how many subsets of C1 contain it. Then for each line ` that has
more than 2k2 subsets containing it we replace all these subsets by subset {`}.

Lemma 6. A set L′, with |L′| ≤ k is a minimum-size cover for C1 if and only
if it is a minimum-size cover of C2.

Proof. As before, it suffices to consider the case in which C1 6= C2. Let C+1 = C2\C1
and C−1 = C1\C2 denote the sets that were added and removed from C1 to create
C2. Since all sets in C−1 contain a line of one of the singleton sets of C+1 , a set L′,
with |L′| ≤ k that is a minimum size cover of C2 is also a cover of C1. To show
that L′ is also a minimum-size cover for C1, assume for a contradiction that there
is a smaller cover L′′ for C1. The lines of L′′ also cover C2\C+1 . Therefore, if L′′

is not a cover of C2, then there must be a subset {`} ∈ C+1 that is not covered by
L′′. Recall that {`} was added to C2 because there were more than 2k2 sets in
C1 that contain `. By construction of C1, no line `′ 6= ` can cover more than 2k
of these sets (otherwise, the pair {`, `′} would have been added to C1). Thus, we
conclude that L′′ has more than k segments, a contradiction.

In a similar way we can prove that a subset L′, with |L′| ≤ k, that is a
minimum-size cover for C1 is also a minimum size cover for C2, thus, concluding
the proof.

Lemma 7. If |C2| > 2k3, then there is no cover of size at most k for C.

Proof. Proof of this claim follows from Lemmas 5 and 6 and the fact that each
segment can only cover at most 2k2 sets of C2.

Now we look at the computational aspect of generating C2. Both reduction
steps from C to C1 and from C1 to C2 require counting subsets. Here we use the
fact that the subsets are of size at most 4 to show that this can be done in linear
time using hash tables. Note that linear time here is in the size of C, the size of
the arrangement, which may be quadratic with respect to the number of line
segments.

Lemma 8. The set C2 can be constructed in time O(n log n + C), where n is
the number of segments in L and C is the number of cells in the arrangement
induced by L.

8

Proof. To reduce C to C1 we count for every pair of line segments `, `′ the number
of subsets of C that contain both. We do this by making a single pass over all
subsets of C and maintaining for each pair `, `′ how many subsets contain them
thus far. To avoid having to initialize counts for all pairs `, `′, which may be
more than linear in the size of C we use a hash table and create a new count
whenever we encounter a new pair of line segments. Each subset contains at
most 4 segments and at most 6 pairs of segments, so we can process it in O(1)
time. After counting we can go through all pairs of line segments with non-zero
count and for each pair `, `′ that is contained in more than 2k subsets we remove
the sets (which is easily done by storing which sets contain the pair) and add a
new subset {`, `′}. To compute C2 from C1 we can use a similar construction.

Theorem 9. For the problem of finding a minimum-size cover for all rectangular
cells in an arrangement of n axis-parallel line segments L we can either find a
kernel of size O(k3) or conclude that no solution of at most size k is possible.
Moreover, the algorithm runs in O(n log n + C) time, where C is the number of
cells in the arrangement induced by L.

Since we now have a kernel of size O(k3) it follows that the problem is fixed
parameter tractable [4].

Corollary 10. Given a set L of line segments the problem of finding a minimum
size set L′ ⊆ L that covers the rectangular cells of the arrangement of L is fixed
parameter tractable with respect to the size k of the optimal solution.

4 Rectangular subdivisions

Although the problem of finding a minimum set of covering segments is NP-hard,
there are special cases where the problem can be solved in polynomial time.
One such case is that the input line segments form a special type of rectangular
subdivision. The rectangular subdivisions we consider are those defined by a
KD-tree [1]. That is, a recursive subdivision of a rectangle using horizontal or
vertical splitting segments (see Fig. 5). Note that the segments that have only
an endpoint on the boundary of a cell are not considered part of the boundary
of that cell. From now on we refer to such a subdivision simply as a rectangular
subdivision.

A rectangular subdivision provides a clear tree-structure which we can use
to compute an optimal covering in a bottom up fashion. Each node in the tree
is associated to some rectangle. For a leaf-node this rectangle is a cell of the
arrangement, whereas for an interior node its associated rectangle r is formed
by the union of the rectangles associated to its children. We also associate an
interior node of the tree with a horizontal or vertical segment that splits its
associated rectangle into two rectangles associated to its children.

Although the above FPT approach works we show there is a much faster exact
algorithm for rectangular subdivision. Without loss of generality we assume

9

r1

r1

r2

r2

r3

r3

r4

r4

r5 r6

r7 r8 r9 r10

r11

r12

r13

r14 r15

r5 r6

r7 r8
r9 r10

r11

r12 r13

r14 r15

a) b)

Figure 5: a) A rectilinear binary space partition within a rectangle. b) A possible
tree representing the partition.

that the subdivision is given as a binary tree (the KD-tree structure)1. We show
that an optimal covering can then be computed in linear time. Note that in this
definition the outer face is covered if and only if at least one of the edges of the
bounding rectangle is in the cover, and any other cell is covered if one of the
segments defining its boundary is chosen as a covering segment.

Theorem 11. Given the tree structure of a rectangular subdivision, where each
node stores the rectangle it represents and its splitting segment, we can compute
in linear time a segment-cover of the cells with a minimum size.

Proof. Starting at the leaves, we compute an optimal covering in a bottom up
fashion. For each node v of the tree we compute the solution to sixteen different
subproblems and store these solutions in the corresponding nodes. Let R be the
rectangle associated to a given node, and let {s1, . . . , s4} be the four segments
that define its boundary. For any subset S′ ⊆ {s1, . . . , s4}, we consider the
subproblem of finding the smallest covering of all the cells within R that contains
the segments of S′. For each such subproblem its cardinality as well as how
it is constructed from solutions of its children (this second part is needed to
reconstruct the optimal solution).

Clearly, if v is a leaf the optimal cover is simply S′ (unless S′ = ∅ in which
case there is no solution). For an interior node we proceed as follows: let v be
an interior node of the tree and R the rectangle stored at v. Without loss of
generality assume that R is split by a vertical line `. The children of v are vleft
and vright with corresponding rectangles Rleft and Rright. We must compute a
minimum-size cover for each possible choice of the top, left, bottom and right
edges of R. Note that a fixed choice of boundary edges for r already forces a
choice of three edges for Rleft and Rright. Only their shared edge ` is not fixed
by the choice of boundary edges of r. However, we can simply try both options
and see which results in the overall better cover of R. That is, we first assume `

1If the structure is not given as a binary tree, but a more general subdivision structure
such as a double-connected edge list, we can construct the tree in linear time.

10

is not part of the cover and retrieve our already computed solutions for Rleft and
Rright for the current selection of boundary edges. Then we do the same when
we do pick ` and choose the solution with the smallest number of edges. This
results in an optimal solution since the only edges shared by Rleft and Rright are
` and the top and bottom edge of R. We consider all possible selections of these
edges. For each selection the two subproblems of finding an optimal cover for
the Rleft and Rright are independent, so we can reuse our previously computed
solutions.

We now show that the algorithm indeed runs in linear time. Observe that
only a constant number of subproblems are considered at each node of the tree.
Moreover, each of these subproblems is solved in constant time by accessing the
solution to a constant number of subproblems. Thus, overall we spent a constant
amount of time per node of the tree, giving the desired bound.

5 Conclusions and open problems

Our results show that covering cells in an arrangement, similar to the original
set-cover problem, may be NP-hard or polynomial-time solvable depending on
various restrictions. It may be interesting to investigate further variants of the
problem to see which restriction makes the problem polynomial-time solvable—
this may be due to the lack of intersections between line segments or due to
the tree-structure of the subdivision. It would also be interesting to see if good
approximations are possible for the more general case or even the case with line
segments of arbitrary orientations.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag Berlin Heidelberg, 3rd edition, 2008.

[2] P. Bose, J. Cardinal, S. Collette, F. Hurtado, M. Korman, S. Langerman and P.
Taslakian. Coloring and Guarding Line Arrangements. Discrete Mathematics &
Theoretical Computer Science, 15(3):139–154, 2013.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. McGraw-Hill Science/Engineering/Math, 2nd edition, 2001.

[4] R.G. Downey and M.R. Fellows, Fundamentals of Parameterized Complexity.
Springer-Verlag, London, 1st edition, 2013.

[5] T. Feder and D. Greene. Optimal Algorithms for Approximate Clustering. in
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC’88), pages 434–444, 1988.

[6] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM
45(4):634–652, 1998.

[7] M.R. Gibson. Clusters and covers: geometric set cover algorithms. PhD Thesis,
University of Iowa, 2010.

11

[8] M. Korman, S.-H. Poon, M. Roeloffzen. Line Segment Covering of Cells in
Arrangements. in Proceedings of the Twentieth Annual International Conference
on Combinatorial Optimization and Applications (COCOA’15), pages 152–162,
2015.

[9] D. Lichtenstein. Planar formulae and their uses, SIAM Journal on Computing, 11,
329–343, 1982.

[10] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing (STOC’97), pages
475–484, 1997.

12

	1 Introduction
	2 NP-hardness for Rectilinear Line Segments
	2.1 Reduction
	2.2 Correctness

	3 Covering only rectangular cells
	3.1 NP-hardness
	3.2 FPT on the size of the optimal solution

	4 Rectangular subdivisions
	5 Conclusions and open problems

