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Abstract. DPillar has recently been proposed as a server-centric data
centre network and is combinatorially related to the well-known wrapped
butterfly network. We explain the relationship between DPillar and the
wrapped butterfly network before proving a symmetry property of DPil-
lar. We use this symmetry property to establish a single-path routing
algorithm for DPillar that computes a shortest path and has time com-
plexity O(k log(n)), where k parameterizes the dimension of DPillar and
n the number of ports in its switches. Moreover, our algorithm is triv-
ial to implement, being essentially a conditional clause of numeric tests,
and improves significantly upon a routing algorithm earlier employed for
DPillar. A secondary and important effect of our work is that it empha-
sises that data centre networks are amenable to a closer combinatorial
scrutiny that can significantly improve their computational efficiency and
performance.
Key words: data centre networks, routing algorithms, shortest paths

1 Introduction

A data centre network (DCN ) is the topology by which the servers, switches and
other components of a data centre are interconnected and the choice of DCN
strongly influences the data centre’s practical performance (see, e.g., [13]). DCNs
have traditionally been tree-like and switch-centric; that is, so that the servers
are located at the ‘leaves’ of a tree-like structure that is composed entirely of
switches and where the interconnection intelligence resides within the switches.
Typical examples of such switch-centric DCNs are ElasticTree [9], Fat-Tree [4],
VL2 [5], HyperX [3], Portland [14] and Flattened Butterfly [1]. However, it is gen-
erally acknowledged that tree-like, switch-centric DCNs have deficiencies when
it comes to, for example, scalability with the core switches (at the ‘roots’ of the
tree-like structure) quickly becoming bottlenecks.

Alternative architectures have recently emerged and server-centric DCNs
have been proposed whereby the interconnection intelligence resides within the
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servers as opposed to the switches. Now, switches only operate as dumb crossbars
(and so the need for high-end switches is diminished as are the infrastructure
costs). This paradigm shift means that more scalable topologies can be designed
and the fact that routing resides within servers means that more effective routing
algorithms can be adopted. However, packet latency can increase in server-centric
DCNs, with the need to handle routing providing a computational overhead on
the server. Nevertheless, server-centric data centres are now becoming commer-
cially available. Typical examples of server-centric DCNs are DCell [7], BCube
[8], FiConn [10], CamCube [2], MCube [15], DPillar [12], HCN and BCN [6] and
SWKautz, SWCube and SWdBruijn [11]. An additional positive aspect of some
server-centric DCNs is that not only can commodity switches be used to build
the data centres but commodity servers can too: the DCNs FiConn, MCube,
DPillar, HCN, BCN, SWKautz, SWCube and SWdBruijn are all such that any
server only needs two NIC ports (the norm in commodity servers) in order to
incorporate it into the DCN.

It is with the DCN DPillar that we are concerned here. In [12], basic prop-
erties of DPillar are demonstrated and single-path and multi-path routing al-
gorithms are developed (along with a forwarding methodology for the latter).
Our focus here is on single-path routing. The algorithm in [12] is appealing in
its simplicity but for most source-destination pairs it does not produce a path
of shortest length. We remedy this situation and develop a single-path rout-
ing algorithm that always outputs a shortest path and does so in linear time
complexity. What is more, although the proof of correctness of our algorithm is
non-trivial, the actual algorithm itself is a very simple sequence of numeric tests
and consequently yields no implementation difficulties.

A pervasive theme within our work is that the design and performance of
modern data centres can benefit significantly from additional combinatorial and
mathematical analysis. Often, when new DCNs are proposed they are done so
within a broader context so that the topology is considered as part of a wider
and more practically-driven network environment. As such, the analysis is often
empirical with a key aim being to demonstrate the practical viability of the DCN
taking into account issues relating to, for example, infrastructure costs, traffic
patterns, fault tolerance, network protocols and so on. Such presentations are
often impressive in holistic terms but unavoidably basic in terms of combinatorial
sophistication: the driver of practical viability means that there is a lessened
inclination to optimize the various intrinsic components. It is once practical
viability has been established that a closer combinatorial scrutiny can lead to
improved performance (as we demonstrate here).

2 The DCN DPillar

We abstract the DCN DPillar as an undirected graph whose nodes represent the
servers of the DCN DPillar and whose edges represent pairs of servers that are
connected to the same switch. Representing a sever-switch-server connection of
the DCN DPillar by one edge of the graph serves to reflect the negligible latency
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Fig. 1. Visualizing DPillar6,3.

overheads encountered in a crossbar switch as compared to the overheads of
routing through a server. We call this graph DPillarn,k when the DCN has
dimension k and each switch has n-ports, where 2|n. A node in column c with
row-index vk−1vk−2 · · · v0 is labelled (c, vk−1vk−2 · · · v0) with 0 ≤ c < k and
0 ≤ vi < n

2
for 0 ≤ i < k. DPillarn,k has 4 types of edges, called clockwise

edges (c-edges), anti-clockwise edges (a-edges), basic static edges (b-edges), and
decremented static edges (d-edges), which are of the following form:

(c): ((c, vk−1 . . . vc+1vcvc−1 . . . v0), (c+ 1, vk−1 . . . vc+1 ∗ vc−1 . . . v0))

(a): ((c, vk−1 . . . vcvc−1vc−2 . . . v0), (c− 1, vk−1 . . . vc ∗ vc−2 . . . v0))

(b): ((c, vk−1 . . . vc+1vcvc−1 . . . v0), (c, vk−1 . . . vc+1 ∗ vc−1 . . . v0))

(d): ((c, vk−1 . . . vcvc−1vc−2 . . . v0), (c, vk−1 . . . vc ∗ vc−2 . . . v0)).

The c and b edges characterise the servers connected to the same column-c
switch as the server represented by (c, vk−1vk−2 · · · v0), whilst the a and d edges
characterise the servers connected to the same column-(c − 1) switch as the
server represented by (c, vk−1vk−2 · · · v0). The DCN DPillar6,3 can be visualized
as in Fig. 1, where switches are shown and the left-most and right-most columns
are actually the same columns, represented twice for clarity, with the graph
DPillar6,3 obtained by replacing each switch by a clique of edges on 6 nodes.

We shall rely on symmetry within DPillarn,k; the term is used but not defined
in [12], and the literature on DCN design tends to use ‘symmetry’ somewhat
loosely. We omit the (straightforward) proof of the following result due to space
constraints. Our notion of symmetry is node-symmetry (i.e., vertex-transitivity).

Lemma 1. The graph DPillarn,k is node-symmetric.

As a result of Lemma 1, the problem of routing from a node src to a
node dst, is equivalent to the problem of routing from node φ(src) to the
node φ(dst) = (0, 00 · · ·0), where φ is an automorphism of DPillarn,k (such



automorphisms may be constructed explicitly to prove Lemma 1). Suppose
a (φ(src), φ(dst))-path p0, p1, . . . , pℓ−1 is found. The desired (src, dst)-path is
φ−1(p0), φ

−1(p1), . . . , φ
−1(pℓ−1).

3 Abstracting routing in DPillar

In this section we describe the single-path routing algorithms from [12] in order
to motivate an abstraction that serves to describe a broad class of useful single-
path routing algorithms.

Let 0 denote the node (0, 00 · · ·0). Consider the problem of routing from
src = (c, vk−1vk−2 · · · v0) to dst = 0 where each step is made using an edge of
type c, a, b, or d. The nodes reachable from src via c-, a-, b-, and d-edges, given
in Section 2, differ from src in at most one of coordinates c− 1 and c of the row-
index (and no others), and lie in one of columns c− 1, c, or c+ 1. Any non-zero
symbols vi of the row-index of src must be ‘fixed’ in one of these steps in order to
reach dst, which has row index 00 · · ·0; vi can only be fixed by visiting a column
of the graph where coordinate i can be changed by one of the edges of type c, a, b,
or d. Recall that edges of type c and b outgoing from src, in column c, enable
us to change symbol vc to whichever element of {0, 1, . . . , n/2 − 1} is desired; as
such, we say that c- and b-edges cover the column they originate in. Edges of
type a and d cover column c− 1; as such, we say that a- and d-edges cover the
anti-clockwise neighbouring column. In addition to fixing bits by covering the
appropriate columns, the route may need to travel from column to column, via
c- and a- edges, possibly without changing the row-index.

One of the routing algorithms detailed in [12] is to travel from src only along
c-edges whilst changing a symbol vi to 0, if necessary, at each step until dst is
reached. After at most k steps, every column i with a non-zero coordinate vi has
been covered and fixed and the node (j, 00 · · · 0) is reached, for some j. We then
continue to travel along c-edges to increase j until 0 is reached and the route
is complete. The other single-path routing algorithm of [12] is the anticlockwise
analogue, where only a-edges are used. It is very easy to see (by looking at some
typical source-destination examples) that this routing algorithm is by no means
optimal and that more often than not much shorter paths exist (an upper bound
of 2k−1 on the lengths of paths produced was stated in [12]). For example, if one
chooses to route with only c-edges (in a clockwise fashion) in DPillarn,k and the
source is 0 and the destination is (1, 10 . . .0) then the routing algorithm in [12]
yields a path of length k+1 because the (k−1)st column must be visited in order
to change the (k − 1)st coordinate; the a-edge algorithm in [12] yields a path of
length k − 1. Neither of these algorithms are optimal (when k > 3), however,
since the shortest path is of length 2 and can only be achieved by following a
d-edge and then a c-edge to yield the path 0, (0, 10 . . .0) , (1, 10 . . .0).

3.1 Another abstraction: the marked cycle

Observe in the above discussion that the need to cover column c and fix the
cth coordinate of the row-index arises if, and only if, vc 6= 0, but it does not



matter here what other value vc may take on. Consequently, for arbitrary nodes
src and dst, we instead consider a walk on a cycle on k-nodes, Gn,k(src, dst),
with a node corresponding to each column of DPillarn,k in which we mark the
ith node whenever the ith column must be covered in DPillarn,k; that is, where
the coordinates of the row-indices of src and dst differ. Let src′ and dst′ be the
columns of src and dst. We abstract a path from src to dst in DPillarn,k by a
sequence of moves in Gn,k(src, dst) starting with node src′ and ending at node
dst′, where each move is analogous to a c-, a-, b-, or d-edge. From node c: (i) a
c-move covers node c and moves to node c+1, (ii) an a-move covers and moves
to node c−1, (iii) a b-move covers and stays at node c; and, (iv) a d-move covers
node c− 1 and stays at node c. We call Gn,k(src, dst) a marked cycle.

It should be clear as to how moves in the marked cycle Gn,k(src, dst) corre-
spond to edges of type c, a, b, and d in DPillarn,k (and so to server-switch-server
link-pairs in the DCN DPillarn,k) with the coverage of a node in Gn,k(src, dst)
and a node of DPillarn,k being in direct correspondence. A path in Gn,k(src, dst)
is a sequence of moves leading from src′ to dst′ and corresponds to a path of
the same length in DPillarn,k from node src to node dst (and vice versa). Con-
sequently, in order to find a shortest (src, dst)-path in the DCN DPillarn,k, it
suffices to find a shortest (src′, dst′)-path in the marked cycle Gn,k(src, dst) so
that every marked node is covered by a move.

4 Routing in a marked cycle

We make some initial observations about shortest paths in a marked cycle, and
then prove a structural result on shortest paths. Let src and dst be nodes of
DPillarn,k, in columns src′ and dst′, respectively. Henceforth, ρ is a shortest
path from src′ to dst′ in Gn,k(src, dst); therefore, ρ is a sequence of moves. We
denote a sequence of moves by strings of the (corresponding) letters c, a, b, and
d so that, for example, ccbaaa represents two c-moves, followed by a b-move,
followed by three a-moves. In addition i repeated symbols, say, cc · · · c can be
written ci so that ccbaaa = c2ba3.

We can often rule out certain consecutive pairs of moves in ρ. For example,
if we have a subsequence bd then this has the same effect as db, and so we may
suppose that a subsequence db within ρ is forbidden. We can achieve much more
by arguing on the optimality (as regards length) of ρ; for example, suppose
the subsequence of moves ca occurs in ρ. We can replace ca by a b-move so
as to obtain a shorter path with identical coverage to ρ. This contradicts the
optimality of ρ, so we may assume that ca does not occur in ρ. Similarly, ac can
be replaced by a d-move, so we may assume ac does not occur in ρ. Continuing
in this manner, we obtain two tables of move-pair replacements, given below,
whose (i, j)th entries represent the following: the move in the i-th position of
the first column followed by the move in the j-th position of the first row must
be replaced by the move given in the the (i, j)th entry of the table.
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We describe the structure of paths resulting from similar arguments.

Lemma 2. If ρ has length at least 3 then it must be of one of two forms:

dǫci1baj1dci2 . . . cimbδ or dǫci1baj1dci2 . . . ajmdδ, (1)

for some m ≥ 1, where i1, i2, . . . , im, j1, j2, . . . , jm > 1 and where ǫ, δ ∈ {0, 1};

bǫai1dcj1bai2 . . . aimdδ or bǫai1dcj1bai2 . . . cjmbδ, (2)

for some m ≥ 1, where i1, i2, . . . , im, j1, j2, . . . , jm > 1 and where ǫ, δ ∈ {0, 1}.

Proof. Omitted due to space constraints (it is a simple case analysis).

4.1 A shortest path has at most two turns

If we have a c-move followed by a b-move followed by an a-move in ρ then we say
that an anti-clockwise turn, or simply an a-turn, occurs at the b-move; similarly,
if we have an a-move followed by a d-move followed by a c-move then we say
that a clockwise turn, or simply a c-turn, occurs at the d-move. Note that if we
have an a-turn in ρ then the node at which this turn occurs, i.e., the node that is
covered by the d-move, must be marked in Gn,k(src, dst) as otherwise we could
delete the corresponding d-move from ρ and still have a sequence from src′ to
dst′ covering all the marked nodes, which would yield a contradiction. Similarly,
if we have a c-turn then the node at which this c-turn occurs, i.e., the node that
is covered by the b-move, must be marked. We will use these observations later;
but now we prove that any shortest path ρ must contain at most 2 turns.

Suppose that ρ is a shortest path and has at least 3 turns.
Case (a): Suppose that ρ is of Form (1) and has a prefix ρ′ of the form cibajdclba,
where i, j, l ≥ 1. By this we mean that ρ begins with i c-moves followed by a b-
move followed by j a-moves followed by a d-move followed by l c-moves followed
by a b-move followed by an a-move.

If j < i then we can replace the prefix cibajdc in ρ′ with cibaj−1 and still
obtain the same coverage; this contradicts that ρ is a shortest path (note that
we have actually only assumed so far that ρ has 2 turns). If j = i then we can
replace the prefix cibaidc in ρ′ with dcibai−1 so as to obtain a contradiction (we
have still actually only assumed that ρ has 2 turns). Hence, we must have that
j > i. Suppose that j ≥ l > j − i. We can replace the prefix cibajdcl in ρ′ with
aj−idcjbaj−l so as to obtain a contradiction (we have still actually only assumed
that ρ has 2 turns). Hence, j > i and either l ≤ j − i or l > j.

Suppose that l > j. We can replace the prefix cibajdcl in ρ′ with aj−idcl so
as to obtain a contradiction (we have still actually only assumed that ρ has 2
turns). Hence, we must have that j > i and l ≤ j − i. However, if we replace ρ′

with cibajdcl−1 then we obtain a contradiction (here we do use the fact that ρ
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Fig. 2. Visualizing paths with 2 turns.

has at least 3 turns). So, ρ has at most 2 turns and if it has 2 turns then ρ is of
the form cibajdcl where j > i and l ≤ j − i.

We can say more if ρ has 2 turns. Suppose that j ≥ k − 1. The b-move can
be deleted from ρ′ and we obtain a contradiction. Hence, if ρ has 2 turns then
ρ is of the form cibajdcl where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i. We can
visualize ρ as in Fig. 2(i). The marked cycle Gn,k(src, dst) is shown as a cycle
where a black node denotes a node of B; that is, a node that needs to be covered
by some path in Gn,k(src, dst) (with 0 = src′ 6= dst′ = x in this illustration).
The path ρ is depicted as a dotted line partitioned into composite moves.
Case (b): Suppose that ρ is of Form (1) and has a prefix ρ′ of the form dcibajdclba,

where i, j, l ≥ 1. If j ≤ i then we can replace the prefix dcibajdc in ρ′ with dcibajc
so as to obtain a contradiction, and if j > i then we can delete the first d-move
from ρ to obtain a contradiction. Hence, if ρ starts with a d-move then it has at
most 1 turn.
Case (c): Suppose that ρ is of Form (2) and has a prefix ρ′ of the form aidcjbaldc,

where i, j, l ≥ 1. If j < i then we can replace the prefix aidcjba in ρ′ with aidcj−1

so as to obtain a contradiction. If i = j then we can replace the prefix aidciba
in ρ′ with baidci−1 so as to obtain a contradiction. Hence, j > i.

Suppose that j ≥ l > j − i. We can replace the prefix aidcjbal in ρ with
cj−ibajdcj−l so as to obtain a contradiction. Suppose that l > j. We can delete
the first occurrence of a d-move in ρ so as to obtain a contradiction. Hence,
l ≤ j − i. Note that if ρ has 2 turns then ρ is of the form aidcjbal where j > i
and l ≤ j − i. Alternatively, suppose that ρ has at least 3 turns. We can replace
the prefix aidcjbaldc in ρ with aidcjbcl−1 so as to obtain a contradiction. Hence,
ρ has at most 2 turns.

We can say more if ρ has 2 turns. Suppose that j ≥ k − 1. The d-move can
be deleted from ρ′ and we obtain a contradiction. Hence, if ρ has 2 turns then
ρ is of the form aidcjbdl where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i. We can
visualize ρ as in Fig. 2(ii).
Case (d): Suppose that ρ is of Form (2) and has a prefix ρ′ of the form baidcjbaldc,

where i, j, l ≥ 1. If j ≤ i then we can replace the prefix baidcjba with baidcja



so as to obtain a contradiction, and if j > i then we can delete the first b-move
from ρ to obtain a contradiction. Hence, if ρ starts with a b-move then it has at
most 1 turn.

So, we have proven the following lemma.

Lemma 3. If ρ is a shortest path (from src′ to dst′) in Gn,k(src, dst) then ρ
has at most 2 turns, and if ρ has 2 turns then it must be of the form cibajdcl or
aidcjbal, where k − 1 > j > i ≥ 1 and 1 ≤ l ≤ j − i.

With reference to Fig. 2, the numerical constraints in Lemma 3 mean that
there is no interaction or overlap involving the 2 turns in ρ.

5 An optimal routing algorithm for DPillar

We now develop an optimal single-path routing algorithm for DPillar. We do
this by finding a small set Π of paths (from src′ to dst′) in Gn,k(src, dst) so
that at least one of these paths is a shortest path. By Lemma 1, we may assume
that src = 0 and dst = (x, vk−1vk−2 . . . v0), and by Lemma 2, we may assume
that any shortest path has at most 2 turns.

5.1 Building our set of paths when x 6= 0

We first suppose that 0 6= x. Let B = {i : 0 ≤ i ≤ k − 1, vi 6= 0} (that is, the
bit-positions that need to be ‘fixed’). Suppose that B \ {0, x} = {il : 1 ≤ l ≤
r} ∪ {jl : 1 ≤ l ≤ s} so that we have 0 < js < js−1 < . . . < j1 < C < i1 <
i2 < . . . < ir < k (we might have that either r or s is 0 when the corresponding
set is empty). If r ≥ 2 then define δl = il+1 − il, for l = 1, 2, . . . , r − 1, with
δ = max{δl : l = 1, 2, . . . , r − 1}; and if s ≥ 2 then define ǫl = jl − jl+1, for
l = 1, 2, . . . , s − 1, with ǫ = max{ǫl : l = 1, 2, . . . , s − 1}. Also: define ∆0 = 1
(resp. 0), if 0 ∈ B (resp. 0 6∈ B); and ∆x = 1 (resp. 0), if x ∈ B (resp. x 6∈ B).
We can visualize the resulting marked cycle Gn,k(0, x) as in Fig. 3(i). Note that
in this particular illustration 0 6∈ B and x ∈ B; so, ∆0 = 0 and ∆x = 1. Of
course, what we are looking for is a sequence of (a-, b-, c- and d-)moves that
will take us from 0 to x in Gn,k(0, x) so that all nodes of B have been covered.

In what follows, we examine different scenarios involving the number of
marked nodes, r, and also the number of marked nodes, s. Each scenario for
r contributes certain paths to Π as does each scenario for s. Note that perhaps
the most obvious paths to consider as potential members of Π are the paths
ck+x and a2k−x which have lengths k+ x and 2k− x, respectively. So, we begin
by setting Π = {ck+x, a2k−x}.

From Lemma 3, any shortest path ρ from 0 to x having 2 turns requires that
r ≥ 2 or s ≥ 2 and that both nodes at which these turns occur are different from
0 and x and lie on the anti-clockwise path from 0 to x or on the clockwise path
from 0 to x, accordingly. Also, the node at which any turn occurs on a shortest
path ρ is necessarily a marked node (irrespective of the number of turns in ρ).
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Case (a): Suppose that r = 0. In this scenario, we contribute either the path cxb
to Π , if x ∈ B, or the path cx to Π , if x 6∈ B; either way, the length of the path
contributed is x+∆x.

Case (b): Suppose that s = 0. In this scenario, we contribute either the path

bak−x to Π , if 0 ∈ B, or the path ak−x to Π , if 0 6∈ B; either way, the length of
the path contributed is k − x+∆0.

Case (c): Suppose that r = 1. In this scenario, we contribute 2 paths to Π . If

x ∈ B then we contribute the path ak−i1−1dck−i1−1+xb to Π , or if x 6∈ B then
we contribute the path ak−i1−1dck−i1−1+x to Π ; either way, the length of the
resulting path is 2k − 2i1 + x − 1 +∆x. We also contribute the path ci1bai1−x

to Π of length 2i1 − x + 1. There is potentially another path when i1 = x + 1
and x ∈ B, namely ak−x−1dck−1, but the length of this path is 2k− x− 1 which
is greater than 2k − x − 3 +∆x which is 2k − 2i1 + x − 1 +∆x evaluated with
i1 = x+ 1.

Case (d): Suppose that s = 1. In this scenario, we contribute 2 paths to Π . If

0 ∈ B then we contribute the path bak−j1−1dcx−j1−1 to Π , or if 0 6∈ B then we
contribute the path ak−j1−1dcx−j1−1 to Π ; either way, the length of the resulting
path is k − 2j1 + x − 1 +∆0. We also contribute the path cj1bak+j1−x to Π of
length k+2j1−x+1. There is potentially another path when j1 = 1 and 0 ∈ B,
namely ak−1dcx−1, but the length of this path is k+ x− 1 which is greater than
k + x− 3 +∆0 which is k − 2j1 + x− 1 +∆0 evaluated with j1 = 1.

Case (e): Suppose that r ≥ 2. In this scenario, we contribute r+1 paths toΠ . For

each l ∈ {1, 2, . . . , r−1}, we contribute the path ak−il+1−1dck−il+1−1+ilbail−x to
Π of length 2k−2δl−x. If x ∈ B then we contribute the path ak−i1−1dck−i1−1+xb
to Π , or if x 6∈ B then we contribute the path ak−i1−1dck−i1−1+x to Π ; either
way, the length of the path is 2k− 2i1+x− 1+∆x. We also contribute the path
cirbair−x to Π of length 2ir−x+1. (These last 2 paths mirror those constructed
in Case (c).)

Case (f ): Suppose that s ≥ 2. In this scenario, we contribute s+ 1 paths to Π .

For each l ∈ {1, 2, . . . , s− 1}, we contribute the path cjl+1bajl+1+k−jl−1dax−jl−1



to Π of length k−2ǫl+x. If 0 ∈ B then we contribute the path bak−js−1dcx−js−1

to Π , or if 0 6∈ B then we contribute the path ak−js−1dcx−js−1 to Π ; either way,
the length of the path is k − 2js + x − 1 + ∆0. We also contribute the path
cj1baj1+k−x to Π of length k + 2j1 − x + 1. (These last 2 paths mirror those
constructed in Case (c).)

Thus, our set Π of potential shortest paths contains r + s + 2 paths (from
which at least one is a shortest path).

5.2 Building our set of paths when x = 0

Now we suppose that x = 0. We proceed as we did above and build a set Π
of potential shortest paths. Let B = {i : 0 ≤ i ≤ k − 1, vi 6= 0}. Suppose that
B \ {0} = {il : 1 ≤ l ≤ r} so that we have 0 < i1 < i2 < . . . < ir < k (we
might have that r is 0 when the corresponding set is empty). If r ≥ 2 then define
δl = il+1 − il, for l = 1, 2, . . . , r − 1, with δ = max{δl : l = 1, 2, . . . , r − 1}. We
define ∆0 = 1, if 0 ∈ B, and ∆0 = 0, if 0 6∈ B. We can visualize the resulting
marked cycle Gn,k(0, 0) as in Fig. 3(ii). Again, the most obvious path to consider
is ck (or ak) which has length k. We begin by setting Π = {ck}.
Case(a): Suppose that r = 0. In this scenario, we contribute the path b of
length 1 (note that in this case the node 0 is necessarily marked as we originally
assumed that we started with distinct source and destination servers in the DCN
DPillarn,k).
Case(b): Suppose that r = 1. If i1 = k − 1 then we contribute the path bd, if
0 ∈ B, and the path d, if 0 6∈ B; either way, the path has length 1 + ∆0. If
1 = i1 6= k−1 then we contribute the path cba of length 3. If 1 6= i1 6= k−1 then
we contribute 2 paths. The first of these paths is the path bak−i1−1dck−i1−1, if
0 ∈ B, and the path ak−i1−1dck−i1−1, if 0 6∈ B; either way, this path has length
2k− 2i1− 1+∆0. The second of these paths is the path ci1bai1 of length 2i1+1.
Case(c): Suppose that r ≥ 2. In this scenario, we contribute r + 1 paths to Π .

For each l ∈ {1, 2, . . . , r − 1}, we contribute the path ak−il+1−1dck−il+1−1+ilbail

to Π of length 2k − 2δl. If 0 ∈ B then we contribute the path bak−i1−1dck−i1−1

to Π , or if 0 6∈ B then we contribute the path ak−i1−1dck−i1−1 to Π ; either way,
this path has length 2k − 2i1 − 1 +∆0. We also contribute the path cirbair to
Π of length 2ir + 1. (These last 2 paths mirror those constructed in Case (b).)

Thus, our set Π of potential shortest paths contains at most r + 1 paths
(from which at least one is a shortest path).

5.3 Our algorithm

We now use our set Π of potential shortest paths so as to find a shortest path
or the length of a shortest path. Our algorithm for Gn,k(0, x) is as follows.

calculate B
if 0 6= x then

L = min{k + x, 2k − x}
calculate r, s, δ, ǫ, ∆0 and ∆x



if r = 0 then L = min{L, x+∆x}
if s = 0 then L = min{L, k − x+∆0}
if r = 1 then L = min{L, 2k − 2i1 + x− 1 +∆x, 2i1 − x+ 1}
if s = 1 then L = min{L, k − 2j1 + x− 1 +∆0, k + 2j1 − x+ 1}
if r ≥ 2 then

calculate δ % we need only consider the maximal δl
L = min{L, 2k− 2δ − x, 2k − 2i1 + x− 1 +∆x, 2ir − x+ 1}

if s ≥ 2 then

calculate ǫ % we need only consider the maximal ǫl
L = min{L, k − 2ǫ+ x, k − 2js + x− 1 +∆0, k + 2j1 − x+ 1}

else

calculate r and δ
if r = 0 then L = 1
if r = 1 then

if i1 = k − 1 then L = 1 +∆0

if 1 = i1 6= k − 1 then L = 3
if 1 6= i1 6= k − 1 then L = min{2k − 2i1 − 1 +∆0, 2i1 + 1}

if r ≥ 2 then L = min{k, 2k − 2δ, 2k − 2i1 − 1 +∆0, 2ir + 1}
output L

If we wish to output a shortest path then all we do is apply the above algorithm
but remember which shortest path corresponds to the final value of L and output
this shortest path (note that there may be more than one shortest path; exactly
which path one obtains depends upon how one implements checking the paths
of Π). The time complexity of both algorithms is clearly O(k log(n)) (that is,
linear in the length of the input).

It should be clear (using Lemma 2) that the different considerations for r and
s exhaust all possibilities and that consequently the set of paths Π considered by
the above algorithm is such as to contain a shortest path. Hence, our algorithm
outputs the length of a shortest path from some source node to some destination
node in DPillarn,k. The validity of our algorithm was verified with a breadth-first
search and we also found that it yields a 20–30% improvement in the average
length of a path over the algorithms given in [12], for various small parameters n
and k; for example, DPillar16,5, which has 163840 server-nodes, has an average
shortest path length of 4.77, but employing the clockwise algorithm from [12]
yields an average path length of 6.86.

6 Conclusions

In this paper we have developed an optimal and efficient single-path routing
algorithm for the DCN DPillar and have shown that DPillar is node-symmetric.
We feel that there are other areas where efficiency gains might be made; in
particular, we intend to focus on multi-path routing in forthcoming research.
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