Skip to main content

Improved MaxSAT Algorithms for Instances of Degree 3

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

  • 1063 Accesses

Abstract

The degree of a variable \(x_i\) in a MaxSAT instance is the number of times \(x_i\) and \(\bar{x}_i\) appearing in the given formula. The degree of a MaxSAT instance is equal to the largest variable degree in the instance. In this paper, we study techniques for solving the MaxSAT problem on instances of degree 3 (briefly, (n, 3)-MaxSAT), which is NP-hard. Two new non-trivial reduction rules are introduced based on the resolution principle. As applications, we present two algorithms for the (n, 3)-MaxSAT problem: a parameterized algorithm of time \(O^*(1.194^k)\), and an exact algorithm of time \(O^*(1.237^n)\), improving the previous best upper bounds \(O^*(1.2721^k)\) and \(O^*(1.2600^n)\), respectively.

This work is supported by the National Natural Science Foundation of China, under grants 61173051, 61232001, 61472449, and 61420106009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following the current convention in the research in exact and parameterized algorithms, we will use the notation \(O^*(f)\) to denote the bound \(f \cdot m^{O(1)}\), where f is an arbitrary function and m is the instance size.

References

  1. Bonet, M.L., Levy, J., Manya, F.: Resolution for max-sat. Artif. Intell. 171(8), 606–618 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bliznets, I., Golovnev, A.: A new algorithm for parameterized MAX-SAT. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 37–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bliznets, I.: A new upper bound for (n, 3)-MAX-SAT. J. Math. Sci. 188(1), 1–6 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Kanj, I.: Improved exact algorithms for Max-SAT. Discrete Appl. Math. 142, 17–27 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41, 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Xu, C., Wang, J.: Dealing with 4-variables by resolution: an improved MaxSAT algorithm. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 178–188. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gu, J., Purdom, P., Wah, W.: Algorithms for the satisfiability (SAT) problem: a survey. In: Satisfiability Problem: Theory and Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 19–152. AMS (1997)

    Google Scholar 

  9. Hochbaum, D. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  10. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62, 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Porschen, S., Speckenmeyer, E., Zhao, X.: Linear CNF formulas and satisfiability. Discrete Appl. Math. 157(5), 1046–1068 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Process. Lett. 65(1), 1–6 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kulikov, A.S.: Automated generation of simplification rules for SAT and MAXSAT. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 430–436. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Kratochvil, J., Savicky, P., Tuza, Z.: One more occurrence of variables makes satisfiability jump from trivial to NP-complete. SIAM J. Comput. 22(1), 203–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, C., Chen, J., Wang, J. (2015). Improved MaxSAT Algorithms for Instances of Degree 3. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics