
Deleting edges to restrict the size of an
epidemic: a new application for treewidth

Jessica Enright1 and Kitty Meeks2

1 Computing Science and Mathematics, University of Stirling jae@cs.stir.ac.uk
2 School of Mathematics and Statistics, University of Glasgow

kitty.meeks@glasgow.ac.uk

Abstract. Motivated by applications in network epidemiology, we con-
sider the problem of determining whether it is possible to delete at most k
edges from a given input graph (of small treewidth) so that the maximum
component size in the resulting graph is at most h. While this problem is
NP-complete in general, we provide evidence that many of the real-world
networks of interest are likely to have small treewidth, and we describe
an algorithm which solves the problem in time O((wh)2wn) on an in-
put graph having n vertices and whose treewidth is bounded by a fixed
constant w.

1 Introduction

Network epidemiology seeks to understand the dynamics of disease spreading
over a network or graph, and is an increasingly popular method of modelling
real-world disease. The rise of network epidemiology corresponds to a rapid in-
crease in the availability of contact network datasets that can be encoded as
networks or graphs: typically, the vertices of the graph represent agents that can
be infected and infectious, such as individual humans or animals, or appropri-
ate groupings of these, such as cities, households, or farms. The edges are then
the potentially infectious contacts between those agents. Considering the con-
tacts within a population as the edges of a graph can give a large improvement
in disease modelling accuracy over mass action models, which assume that a
population is homogeneously mixing. For example, if we consider a sexual con-
tact network in which the vertices are people and the edges are sexual contacts,
the heterogeneity in contacts is very important for explaining the pattern and
magnitude of an AIDS epidemic [1].

Our work has been especially motivated by the idea of controlling diseases
of livestock by preventing disease spread over livestock trading networks. As
required by European law, individual cattle movements between agricultural
holdings in Great Britain are recorded by the British Cattle Movement Service
(BCMS) [20]; in early 2014, this dataset contained just under 300 million trades
and just over 133,000 agricultural holdings. For modelling disease spread across
the British cattle industry, it is common to create vertices from farms, and edges
from trades of cattle between those farms: a disease incursion starting at a single

The final publication is available at Springer via http://
dx.doi.org/10.1007/978-3-319-26626-8_42

farm could spread across this graph through animal trades, as is thought to
have happened during the economically-damaging 2001 British foot-and-mouth
disease crisis [15].

We are interested in controlling or limiting the spread of disease on this sort
of network, and so have focussed our attention on edge deletion, which might
correspond to forbidden trade patterns or, more reasonably, extra vaccination
or disease surveillance along certain trade routes. Introducing extra controls of
this kind is costly, so it is important to ensure that this is done as effectively as
possible. Our target graph class is also informed by our disease motivation: when
a contagion spreads over the edges of a graph, the maximum component size is an
upper bound on the maximum number of vertices infected from a single initially
infected vertex. To this end, we consider the problem of determining whether a
given graph can be modified, using only up to k edge-deletion operations, so that
the resulting graph has maximum component size at most h. We also discuss a
number of relevant extensions:

– assigning different weights to different vertices (e.g. corresponding to the
number of animals in a particular animal holding), and seeking to bound
the total weight of each connected component;

– associating different costs with the deletion of different edges;

– imposing different limits on the size of components containing individual
vertices (for example, we might want to enforce a smaller size limit for com-
ponents containing certain vertices considered to be particularly high risk).

This problem is intractable in general, so in order to develop useful algorithms
for real-world applications we need to exploit structural properties of the input
network. In Section 2 we provide evidence that many animal trade networks
of interest are likely to have small treewidth. In Section 3 we then go on to
describe an algorithm to solve the problem whose running time on an n-vertex
graph of treewidth w is bounded by O((wh)2wn); this algorithm is easily adapted
to output an optimal solution. Many problems that are thought to be intractable
in general are known to admit polynomial-time algorithms when restricted to
graphs of bounded treewidth, often by means of a dynamic programming strategy
similar to that used to attack the problem considered here; however, to the best
of the authors’ knowledge, the usefulness of such algorithms for solving real-world
network problems has yet to be investigated thoroughly.

In reality, policy decisions about where to introduce controls are likely to
be influenced by a range of factors, which cannot all be captured adequately
in a network model. Thus, the main application of our algorithm will be in
comparing any proposed strategy with the theoretical optimum: a policy-maker
can determine whether there is a solution with the same total cost that results
in a smaller maximum component size; extensive experiments on real animal
movement data are left as a task for future work.

In the remainder of this section, we begin by reviewing previous related work
in Section 1.1 before introducing some important notation in Section 1.2 and
reviewing the key features of tree decompositions in Section 1.3. A discussion of

the treewidth of real-world networks is given in Section 2, and our algorithm is
described in Section 3.

1.1 Review of Previous Work

The problem of modifying a graph to bound the maximum component size has
previously been studied both in the setting of epidemiology [18] and in the study
of network vulnerability [13, 7]. The edge-modification version we consider here
appears in the literature under various names, including the component order
edge connectivity problem [13] and the minimum worst contamination problem
[18]. Li and Tang [18] show that it is NP-hard to approximate the minimisa-
tion version of the problem to within 2 − ε, while Gross et. al.[13] describe a
polynomial-time algorithm to solve the problem when the input graph is a tree.

From a combinatorial perspective, this problem belongs to the more general
family of edge-deletion problems. An edge-deletion problem asks if there is a set
of at most k edges that can be deleted from an input graph to produce a graph
in some target class. In contrast to the related well-characterised vertex-deletion
problems [17], there is not yet a complete characterisation of the hardness of
edge-deletion problems by target graph class.

Yannakakis [24] gave early results in edge-deletion problems, showing that
edge-deletion to planar graphs, outer-planar graphs, line graphs, and transi-
tive digraphs is NP-complete. Subsequently, Watanabe, Ae and Nakamura [23]
showed that edge-deletion problems are NP-complete if the target graph class
can be finitely characterised by 3-connected graphs. There are a number of fur-
ther hardness results known for edge-deletion to well-studied graph classes, in-
cluding for interval and unit interval graphs [11], cographs [8], and threshold
graphs [19] and, as noted in [21], hardness of edge-deletion to bipartite graphs
follows from the hardness of a MAX-CUT problem. Natanzon, Shamir and Sha-
ran [21] further showed NP-completeness of edge-deletion to disjoint unions of
cliques, and perfect, chain, chordal, split, and asteroidal-triple-tree graphs, but
also give polynomial-time algorithms, in the special case of the input graph
having bounded degree, for edge-deletion to chain, split, and threshold graphs.

Given the large number of hardness results in the literature, it is natural
to consider the parameterised complexity of these problems. Cai [5] initiated
this investigation, showing that edge-deletion to a graph class characterisable
by a finite set of forbidden induced subgraphs is fixed-parameter tractable when
parameterised by k (the number of edges to delete): he gave an algorithm to
solve the problem in time O(d2k ·nd+1), where n is the number of vertices in the
input graph and d is the maximum number of vertices in a forbidden induced
subgraph. Further fpt-algorithms have been obtained for edge-deletion to split
graphs [10] and to chain, split, threshold, and co-trivially perfect graphs [14].

Considering the problem of deleting edges to obtain a graph with restricted
maximum componet size, restricted to graphs of small treewidth, the algorithm
we describe in this paper represents a significant improvement on Cai’s result
[5] above, which implies the existence of an algorithm running in time O(h2k ·
nh) (on arbitrary input graphs). While the fixed parameter tractability of this

problem (parameterised by the maximum component size h) restricted to graphs
of bounded treewidth does follow from the optimization version of Courcelle’s
Theorem [3, 6], this does not lead to a practical algorithm for addressing real-
world problems.

1.2 Notation and Problem Definition

Unless otherwise stated, all graphs are simple, undirected, and loopless. For
graph G = (V,E), V = V (G) is the vertex set of G, and E = E(G) the edge set
of G. We denote the sizes of the edge and vertex sets of G as e(G) = |E(G)| and
v(G) = |V (G)|. For further general graph notation, we direct the reader to [12].

A partition P of a set X is a collection of disjoint, non-empty sets whose
union is X. We call each set in the partition a block of the partition, and every
partition corresponds to a unique equivalence relation on X where x ∼ y if and
only if x and y belong to the same block of X.

In this paper, we consider the following problem, were Ch is the set of all
connected graphs on h vertices.

Ch-Free Edge Deletion
Input: A Graph G = (V,E) and an integer k.
Question: Does there exist E′ ⊆ E with |E′| = k such that G \ E′ does not
contain any H ∈ Ch as an induced subgraph?

This problem is NP-complete even for h = 4: in [9] we outline an easy proof
of this result, by means of a reduction from Perfect Triangle Cover, which
relies on the observation that the maximum number of edges in a graph having
maximum component size h is obtained if the graph is a disjoint union of h-
cliques. In particular, this indicates that parameterisation by h alone will not be
sufficient to give an fpt-algorithm.

1.3 Tree Decompositions

In this section we review the concept of a tree decomposition (introduced by
Robertson and Seymour in [22]) and introduce some of the key notation we will
use throughout the rest of the paper.

Given any tree T , we will assume that it contains some distinguished vertex
r(T), which we will call the root of T . For any vertex v ∈ V (T)\r(T), the parent
of v is the neighbour of v on the unique path from v to r(T); the set of children
of v is the set of all vertices u ∈ V (T) such that v is the parent of u. The leaves
of T are the vertices of T whose set of children is empty. We say that a vertex u
is a descendant of the vertex v if v lies somewhere on the unique path from u to
r(T) (note therefore that every vertex is a descendant of the root). Additionally,
for any vertex v, we will denote by Tv the subtree induced by v together with
the descendants of v.

We say that (T,D) is a tree decomposition of G if T is a tree and D = {D(t) :
t ∈ V (T)} is a collection of non-empty subsets of V (G) (or bags), indexed by
the nodes of T , satisfying:

1. V (G) =
⋃
t∈V (T)D(t),

2. for every e = uv ∈ E(G), there exists t ∈ V (T) such that u, v ∈ D(t),
3. for every v ∈ V (G), if T (v) is defined to be the subgraph of T induced by

nodes t with v ∈ D(t), then T (v) is connected.

The width of the tree decomposition (T,D) is defined to be maxt∈V (T) |D(t)|−1,
and the treewidth of G is the minimum width over all tree decompositions of G.

We will denote by Vt the set of vertices in G that occur in bags indexed by
the descendants of t in T . Thus, Vt =

⋃
t′∈V (Tt)

D(t′).

Although it is NP-hard to determine the treewidth of an arbitrary graph [2],
it is shown in [4] that the problem of determining whether a graph has treewidth
at most w, and if so computing a tree-decomposition of width at most w, can
be solved in linear time for any constant w.

Theorem 1 ([4]). For each w ∈ N , there exists a linear time algorithm, that
tests whether a given graph G = (V,E) has treewidth at most w, and if so,
outputs a tree decomposition of G with treewidth at most w.

A special kind of tree decomposition, known as a nice tree decomposition,
was introduced in [16]. The nodes in such a decomposition can be partitioned
into four types (examples in Figure 1):

Leaf nodes: t is a leaf in T .
Introduce nodes: t has one child t′, such that D(t′) ⊂ D(t) and |D(t)| =
|D(t′)|+ 1.

Forget nodes: t has one child t′, such thatD(t′) ⊃ D(t) and |D(t)| = |D(t′)|−1.
Join nodes: t has two children, t1 and t2, with D(t1) = D(t2) = D(t).

Fig. 1. The four types of node in a nice tree decomposition. From left to right: a leaf,
an introduce node, a forget node, and a join node.

Any tree decomposition can be transformed into a nice tree decomposition
in linear time:

Lemma 1 ([16]). For constant k, given a tree decomposition of a graph G of
width w and O(n) nodes, where n is the number of vertices of G, one can find
a nice tree decomposition of G of width w and with at most 4n nodes in O(n)
time.

2 Treewidth of real networks

While the overall graph of cattle trades in Great Britain from 2001 to 2014 is
fairly dense, many of the edges are repeated or parallel trades: that is, a farm
sending animals over time to the same place, or many individual animals being
moved at the same time; when we restrict our attention to a limited time frame,
and ignore movements that would generate multiple edges (that is, we require our
graph to be simple), the graph is quite sparse. When considering an epidemic, it
is much more relevant only to consider trades occurring within some restricted
time frame (whose precise duration depends on the disease under consideration).

Moreover, the networks that are obtained by considering shorter time frames
typically have an approximately hub-and-spoke or tree-like structure, which re-
sults in small treewidth. This can be explained to some extent by considering the
structure of the industry and the directionality of farm management styles. For
example, beef cattle are likely to flow through dealers or markets, and lead quite
short lives, which is likely to result in a hub-and-spoke network. Additionally,
farms can sometimes be characterised by “type”, with breeders producing calves
who then might be grown at one or two other farms before eventual slaughter:
this means that cycles are unlikely to occur frequently in the network.

These anecdotal observations about the treewidth of livestock trade networks
have been supported by computational calculations on some examples of real
cattle trading graphs. First of all, for each year from 2009 to 2014, we generated
a graph from a type of persistent trade link recorded by BCMS in Scotland. The
largest of these is derived from the trades in 2013, and includes approximately
7,000 nodes and 6,000 edges (this lower density is typical when considering only
persistent trade links, or trades over a restricted time period). None of these six
graphs has treewidth more than four.

Secondly, in addition to these persistent trade links, we have computed an
upper bound of the treewidth of the largest component of an aggregated, undi-
rected version of the overall network of cattle trades in Scotland in 2009 over a
variety of time windows 2. The treewidths of these components remains low even
for large time windows: for an aggregation of all movements in a 200-day window
the treewidth is below 10, and for all movements over the year it is below 18. It
is unlikely to be necessary to include a full year of movements in the analysis of
any single epidemic, as the time scale of most exotic epidemics is much shorter.

While we have by no means completed an exhaustive study of the structural
properties of real-world livestock trade networks, the evidence given here seems
sufficient to suggest that algorithms which achieve a good running time on graphs
of bounded treewidth will be useful for this application in practice.

0 50 100 150 200 250 300 350 400
Days Included

2

4

6

8

10

12

14

16

18

T
re

e
w

id
th

Treewidth of an undirected graph of cattle movements in Scotland
 over a variety of time windows

Fig. 2. A plot of an upper bound treewidth of the largest component in an undirected
version of the cattle movement graph in Scotland in 2009 over a number of different
days included: all day sets start on January 1, 2009. Treewidths below eight are exact,
treewidths over eight are upper bounds of the true treewidth.

3 The Algorithm

In this section, we describe an algorithm which, given a graph G together with a
nice tree decomposition (T,D) of G of width at most w, determines whether or
not it is possible to delete at most k edges from G so that the resulting graph has
no component on more than h vertices. Since there exist linear-time algorithms
both to compute a tree-decomposition of any graph G of fixed treewidth w, and
to transform an arbitrary tree-decomposition into a nice tree decomposition, this
in fact gives an algorithm which takes as input just a graph G of treewidth at
most w. Thus, we prove the following theorem.

Theorem 2. There exists an algorithm to solve Ch-Free Edge Deletion in
time O((wh)2wn) on an input graph with n vertices whose treewidth is at most
w.

As with many algorithms that use tree decompositions, our algorithm works
by recursively carrying out computations for each node of the tree, using the
results of the same computation carried out on any children of the node in
question. In this case, we recursively compute the signature of each node: we
define the signature of a node in Section 3.1. It is then possible to determine
whether we have a yes- or no-instance to the problem by examining the signature
of the root of T .

The techniques used to calculate each node’s signature from those of its
children (which differ slightly depending on which of the four types of node
in the nice tree decomposition is being considered) are fairly standard in the

literature, and are omitted here due to space constraints. Full details of the
algorithm, together with a mathematical proof of its correctness, are given in
[9]. The running time of the algorithm is justified in Section 3.2, and several
extensions are also discussed.

3.1 The Signature of a Node

In this section, we describe the information we compute for each node, and define
the signature of a node.

Throughout the algorithm, we need to record the possible states correspond-
ing to a given bag. A valid state of a bag D(t) is a triple consisting of:

1. a partition P of D(t) into disjoint, non-empty subsets or blocks of size at
most h, and

2. a function c : P → [h] such that, for each X ∈ P, |X| ≤ c(X).

We will write u ∼P v to indicate that u and v belong to the same block of P.
Intuitively, P tells us which vertices are allowed to belong to the same com-

ponent of the graph we obtain after deleting edges and c tells us the maximum
number of vertices which are permitted in components corresponding to a given
block of the partition.

For any bag D(t), we denote by st(t) the set of possible states of D(t). Note
that there are at most Bw partitions of a set of size w (where Bw is the wth Bell
number) and at most hw functions from a set of size at most w to [h]; thus the
total number of valid states for D(t) is at most Bwh

w < (wh)w (although not
all possible combinations of a partition and a function will give rise to a valid
state).

For any given state σ = (P, c) ∈ st(t), we set E(t, σ) to be the set of edge-sets

E′ ⊂ E(G[Vt]) such that G̃t = G[Vt] \ E′ has the following properties:

1. for each connected component C of G̃t:

(a) |V (C)| ≤ h, and
(b) if Ct = V (C)∩D(t) 6= ∅, then Ct is contained in a single block XC of P,

2. for each block X in P, the total number of vertices in connected components
of G̃t that intersect X is at most c(X).

Note that, whenever σ is a valid state for t, the set E(t, σ) will be non-empty:
setting E′ = E(G[Vt]) will always satisfy both conditions. Since we are interested
in determining whether it is possible to delete at most k edges to obtain a graph
with maximum component size h, we will primarily be interested in a subset of
E(t, σ): for any node t and σ ∈ st(t) we define this subset as

Ek(t, σ) = {E′ ∈ E(t, σ) : |E′| ≤ k}.

We then define

delk(t, σ) = min
E′∈Ek(t,σ)

|E′|,

adopting the convention that the minimum, taken over an empty set, is equal to
infinity. To simplify notation, given any a, b ∈ N, we define [a]≤b to be equal to
a if a ≤ b, and equal to ∞ otherwise. Finally, we define the signature of a node
t to be the function sigt : st(t)→ {0, 1, . . . , k,∞} such that sigt(σ) = delk(t, σ).

Observe that, with this definition, our input graph is a yes-instance to Ch-
Free Edge Deletion if and only if there exists some σ ∈ st(r) such that
sigr(σ) ≤ k, where r is the root of the tree indexing the decomposition.

3.2 Running time and extensions

At each of the O(n) nodes of the nice tree decomposition, we will generate, and
then iterate over, fewer than (wh)w states for that node. For each of those states,
we will need to consider a collection of inherited states for the node’s children;
there are at most (wh)w such states (or pairs of states, in the case of a join node)
that need to be considered for each state of the parent node. In the algorithm,
we first generate each of the states for a given node, and the corresponding set
of inherited states for its children, then iterate over each relevant combination of
states, performing various constant-time operations. Thus, at each of O(n) nodes
we do O

(
(wh)2w

)
work, giving an overall time complexity of O((wh)2wn).

For simplicity, we have only described the most basic version of the algo-
rithm; however, it is straightforward to extend it to deal with more complicated
situations, involving any or all of the following.

Deleting edges so that the sum of weights of vertices in any component is at most
h, where a weight function w : V (G) → N is given: change condition 1(a) in
the definition of E(t, σ) to

∑
v∈V (C) w(v) ≤ h, and add to the definition of the

set of valid states for a node the condition that, for each block X of P, we have∑
v∈X w(X) ≤ c(X).

Determining if it is possible to delete a set of edges whose total cost is at
most k, where a cost function f : E(G) → N is given: define delk(t, σ) to
be minE′∈E(σ,t)

∑
e∈E′ f(e).

Deleting edges so that each vertex v belongs to a component containing at most
`(v) vertices, where a limit function ` : V (G) → N is given: change condition
1(a) in the definition of E(t, σ) to |V (C)| ≤ minv∈V (C) `(v), and add to the def-
inition of the set of valid states for a node the condition that, for each block X
of P, we have c(X) ≤ minv∈X `(v).

None of these adaptations changes the asymptotic running time of the algorithm.
Additionally, if we wish to output an optimal set of edges to delete in any

of the variants (note that in general there may be many such optimal sets),
we can simply record, for each node t and each state σ ∈ st(t), a set of edges
E′ ∈ Ek(t, σ) such that |E′| = delk(t, σ); computing such a set from the relevant
sets for the node’s children requires only basic set operations. An element of
E(r, σ), where r is the root of the tree decomposition and delk(r, σ) = minσ∈st(r)
is then an optimal solution for the problem.

4 Conclusions and Open Problems

We have investigated the relevance of the well-studied graph parameter treewidth
to the structure of real-world animal trade networks, and have provided evidence
that this parameter is likely to be small for many networks of interest for epi-
demiological applications. Motivated by this observation, we have derived an
algorithm to solve Ch-Free Edge Deletion on input graphs having n ver-
tices and treewidth bounded by some fixed constant w in time O((wh)2wn). It is
straightforward to adapt this algorithm to deal with more complicated situations
likely to arise in the application.

An implementation of our approach and its application to real livestock data
sets will be one of our next steps; this presents an unusual opportunity to apply
a treewidth-based optimisation algorithm to a real-life problem.

Many open questions remain concerning the complexity of this problem more
generally, as we are far from having a complete complexity classification. We
know that useful structure in the input graph is required to give an fpt-algorithm:
we demonstrated that it is not sufficient to parameterise by the maximum compo-
nent size h alone (unless P=NP). However, it remains open whether the problem
might belong to FPT when parameterised only by the treewidth w; we conjec-
ture that treewidth alone is not enough, and that the problem is W[1]-hard with
respect to this parameterisation. Considering other potentially useful structural
properties of input graphs, one question of particular relevance to epidemiology
would be the complexity of the problem on planar graphs: this would be relevant
for considering the spread of a disease based on the geographic location of ani-
mal holdings (in situations where a disease is likely to be transmitted between
animals in adjacent fields).

Furthermore, animal movement networks can capture more information on
real-world activity when considered as directed graphs, and the natural gener-
alisation of the problem to directed graphs in this context would be to consider
whether it is possible to delete at most k edges from a given directed graph so
that the maximum number of vertices reachable from any given starting vertex
is at most h. Exploiting information on the direction of movements might allow
more efficient algorithms for this problem when the underlying undirected graph
does not have very low treewidth; a natural first question would be to consider
whether there exists an efficient algorithm to solve this problem on directed
acyclic graphs.

Finally, based on our investigation of the treewidth of real-world animal
trade networks, it is natural to ask what other relevant problems can be solved
efficiently on graphs of bounded treewidth. For example, we might wish to delete
edges to achieve membership in a more complicated graph class (for example,
some class of graphs on which intervention strategies used in the event of a
disease outbreak are likely to be effective); alternatively, if deleting edges to
achieve a small component size is too costly to be practical in some situations,
we might wish to consider more relaxed criteria that nevertheless retain some
desirable properties.

Acknowledgements

We are very grateful to Ivaylo Valkov for his assistance in implementing this
algorithm as part of a summer research project, and to EPIC: Scotland’s Centre
of Expertise on Animal Disease Outbreaks, which supported JE for part of her
work on this project.

References

1. R.M. Anderson, S. Gupta, and W. Ng, The significance of sexual partner con-
tact networks for the transmission dynamics of HIV, Journal of Acquired Immune
Deficiency Syndromes and Human Retrovirology 3 (1990), 417–429.

2. S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings
in a k-tree, SIAM J. Alg. Disc. Meth. 8 (1987), 277–284.

3. S. Arnborg, J. Lagergren, and D. Sesse, Easy problems for tree-decomposable
graphs, Journal of Algorithms 12 (1991), 308–340.

4. Hans L. Bodlaender, A linear time algorithm for finding tree-decompositions of
small treewidth, Proceedings of the Twenty-fifth Annual ACM Symposium on The-
ory of Computing (New York, NY, USA), STOC ’93, ACM, 1993, pp. 226–234.

5. Leizhen Cai, Fixed-parameter tractability of graph modification problems for hered-
itary properties, Inf. Process. Lett. 58 (1996), no. 4, 171–176.

6. B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-
decomposable graphs, Theoretical Computer Science 109 (1993), no. 12, 49 – 82.

7. P̊al Grøn̊as Drange, Markus Sortland Dregi, and Pim van ’t Hof, On the com-
putational complexity of vertex integrity and component order connectivity, Algo-
rithms and Computation (Hee-Kap Ahn and Chan-Su Shin, eds.), Lecture Notes in
Computer Science, vol. 8889, Springer International Publishing, 2014, pp. 285–297
(English).

8. Ehab S. El-Mallah and Charles J Colbourn, The complexity of some edge deletion
problems, IEEE Trans. Circuits and Systems 3 (1988), 354–362.

9. Jessica Enright and Kitty Meeks, Deleting edges to restrict the size of an epidemic,
arXiv:1504.05773 [cs.DS], 2015.

10. Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan,
Ashutosh Rai, and M.S. Ramanujan, Faster parameterized algorithms for deletion
to split graphs, Algorithm Theory SWAT 2012 (FedorV. Fomin and Petteri Kaski,
eds.), Lecture Notes in Computer Science, vol. 7357, Springer Berlin Heidelberg,
2012, pp. 107–118 (English).

11. Paul W. Goldberg, Martin C. Golumbic, Haim Kaplan, and Ron Shamir, Four
strikes against physical mapping of DNA, Journal of Computational Biology 2
(1993), 139–152.

12. Martin Charles Golumbic, Algorithmic graph theory and perfect graphs, vol. 57,
Elsevier, 2004.

13. Daniel Gross, Monika Heinig, Lakshmi Iswara, L. William Kazmierczak, Kristi
Luttrell, John T. Saccoman, and Charles Suffel, A survey of component order
connectivity models of graph theoretic networks, SWEAS Trans. Math. 12 (2013),
no. 9.

14. Jiong Guo, Problem kernels for NP-complete edge deletion problems: Split and
related graphs, Algorithms and Computation (Takeshi Tokuyama, ed.), Lecture
Notes in Computer Science, vol. 4835, Springer Berlin Heidelberg, 2007, pp. 915–
926 (English).

15. Rowland R. Kao, Darren M. Green, Jethro Johnson, and Istvan Z. Kiss, Disease
dynamics over very different time-scales: foot-and-mouth disease and scrapie on the
network of livestock movements in the UK, Journal of The Royal Society Interface
4 (2007), no. 16, 907–916.

16. Ton Kloks, Treewidth, Lecture Notes in Computer Science, vol. 842, Springer-
Verlag, Berlin, 1994, Computations and approximations.

17. John M. Lewis and Mihalis Yannakakis, The node-deletion problem for hereditary
properties is NP-complete, Journal of Computer and System Sciences 20 (1980),
no. 2, 219 – 230.

18. Angsheng Li and Linqing Tang, The complexity and approximability of minimum
contamination problems, Theory and Applications of Models of Computation (Mit-
sunori Ogihara and Jun Tarui, eds.), Lecture Notes in Computer Science, vol. 6648,
Springer Berlin Heidelberg, 2011, pp. 298–307 (English).

19. F. Margot, Some complexity results about threshold graphs, Discrete Applied Math-
ematics 49 (1994), no. 1:3, 299 – 308, Special Volume Viewpoints on Optimization.

20. A. Mitchell, D. Bourn, J. Mawdsley, W. Wint, R. Clifton-Hadley, and M. Gilbert,
Characteristics of cattle movements in britain: an analysis of records from the cattle
tracing system, Animal Science 80 (2005), 265–273.

21. Assaf Natanzon, Ron Shamir, and Roded Sharan, Complexity classification of some
edge modification problems, Discrete Applied Mathematics 113 (2001), no. 1, 109
– 128, Selected Papers: 12th Workshop on Graph-Theoretic Concepts in Computer
Science.

22. Neil Robertson and P.D Seymour, Graph minors. III. planar tree-width, Journal
of Combinatorial Theory, Series B 36 (1984), no. 1, 49 – 64.

23. Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura, On the NP-hardness of
edge-deletion and -contraction problems, Discrete Applied Mathematics 6 (1983),
no. 1, 63 – 78.

24. Mihalis Yannakakis, Node-and edge-deletion NP-complete problems, Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing (New York, NY,
USA), STOC ’78, ACM, 1978, pp. 253–264.

