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Preface

This volume contains the papers presented at WAW2015, the 12th Workshop on
Algorithms and Models for the Web-Graph held during December 10–11, 2015, in
Eindhoven.

There were 24 submissions. Each submission was reviewed by at least one, and on
average two, Program Committee members. The committee decided to accept 15
papers. The program also included three invited talks, by Mariana Olvera-Cravioto
(Columbia University), Remco van der Hofstad (Eindhoven University of Technol-
ogy), and Paul Van Dooren (Catholic University of Louvain). This year the workshop
was accompanied by a school aimed at PhD students, postdocs, and young researchers.
The speakers of the school were Dean Eckles (Facebook), David F. Gleich, Kyle
Kloster (Purdue University), and Tobias Müller (Utrecht University).

Analyzing data as graphs has transitioned from a minor subfield into a major
industrial effort over the past 20 years. The World Wide Web was responsible for much
of this growth and the Workshop on Algorithms and Models for the Web-Graph
(WAW) originally started by trying to understand the behavior and processes under-
lying the Web. It has since outgrown these roots and WAW is now one of the premier
venues for original research work that blends rigorous theory and experiments in
analyzing data as a graph. We believe that the 12th WAW continues the high standards
of the earlier workshops and as a result maintains the tradition of a small, high-quality
workshop.

The organizers would like to thank EURANDOM, the NETWORKS grant,
Microsoft Research, and Google for contributing to the financial aspect of the work-
shop. We would especially like to thank EURANDOM and the Eindhoven University
of Technology for their hospitality and smooth organization of the material aspects
of the conference such as drinks/food, accommodation for speakers, etc.

The editorial aspects of the proceedings were supported via the online tool
EasyChair. It made our work easier and smoother.

September 2015 David F. Gleich
Júlia Komjáthy

Nelly Litvak
Yana Volkovich
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Robustness of Spatial Preferential Attachment
Networks

Emmanuel Jacob1 and Peter Mörters2(B)

1 École Normale Supérieure de Lyon, Lyon, France
2 University of Bath, Bath, UK

maspm@bath.ac.uk

Abstract. We study robustness under random attack for a class of net-
works, in which new nodes are given a spatial position and connect to
existing vertices with a probability favouring short spatial distances and
high degrees. In this model of a scale-free network with clustering one can
independently tune the power law exponent τ > 2 of the degree distribu-
tion and a parameter δ > 1 determining the decay rate of the probability
of long edges. We argue that the network is robust if τ < 2+ 1

δ
, but fails

to be robust if τ > 2 + 1
δ−1

. Hence robustness depends not only on the
power-law exponent but also on the clustering features of the network.

Keywords: Scale-free network · Barabasi-Albert model · Preferential
attachment · Geometric random graph · Power law · Clustering · Robust-
ness · Giant component · Resilience

1 Introduction

Scientific, technological or social systems can often be described as complex net-
works of interacting components. Many of these networks have been empirically
found to have strikingly similar topologies, shared features being that they are
scale-free, i.e. the degree distribution follows a power law, small worlds, i.e. the
typical distance of nodes is logarithmic or doubly logarithmic in the network
size, or robust, i.e. the network topology is qualitatively unchanged if an arbi-
trarily large proportion of nodes chosen at random is removed from the network.
Barabási and Albert [2] therefore concluded fifteen years ago ‘that the devel-
opment of large networks is governed by robust self-organizing phenomena that
go beyond the particulars of the individual systems.’ They suggested a model
of a growing family of graphs, in which new vertices are added successively and
connected to vertices in the existing graph with a probability proportional to
their degree, and a few years later these features were rigorously verified in the
work of Bollobás and Riordan, see [5,6,8].

A characteristic feature present in most real networks that is not picked up
by preferential attachment is that of clustering, the formation of clusters of nodes
with an edge density significantly higher than in the overall network. A natural
way to integrate this feature in the model is by giving every node an individual
c© Springer International Publishing Switzerland 2015
D.F. Gleich et al. (Eds.): WAW 2015, LNCS 9479, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-26784-5 1



4 E. Jacob and P. Mörters

feature and implementing a preference for edges connecting vertices with similar
features. This is usually done by spatial positioning of nodes and rewarding
short edges, see for example [1,17,21]. Here we investigate a model, introduced
in [19], which is a generalisation of the model of Aiello et al. [1]. It is defined
as a growing family of graphs in which a new vertex gets a randomly allocated
spatial position on the torus. This vertex then connects to every vertex in the
existing graph independently, with a probability which is a decreasing function
of the spatial distance of the vertices, the time, and the inverse of the degree
of the vertex. The relevance of this spatial preferential attachment model lies
in the fact that, while it is still a scale-free network governed by a simple rule
of self-organisation, it has been shown to exhibit clustering. The present paper
investigates the problem of robustness.

In mathematical terms, we call a growing family of graphs robust if the criti-
cal parameter for vertex percolation is zero, which means that whenever vertices
are deleted independently at random from the graph with a positive retention
probability, a connected component comprising an asymptotically positive pro-
portion of vertices remains. For several scale-free models, including non-spatial
preferential attachment networks, it has been shown that the transition between
robust and non-robust behaviour occurs when the power law exponent τ crosses
the value three, see for example [5,14]. Robustness in scale-free networks relies
on the presence of a hierarchically organised core of vertices with extremely high
degrees, such that every vertex is connected to the next higher layer by a small
number of edges, see for example [22]. Our analysis of the spatial model shows
that, if τ < 3, whether vertices in the core are sufficiently close in the graph
distance to the next higher layer depends critically on the speed at which the
connection probability decreases with spatial distance, and hence depending on
this speed robustness may hold or fail. The phase transition between robustness
and non-robustness therefore occurs at value of τ strictly smaller than three.

The main structural difference between the spatial and classical model of pref-
erential attachment is that the former exhibits clustering. Mathematically this
is measured in terms of a positive clustering coefficient, meaning that, starting
from a randomly chosen vertex, and following two different edges, the probability
that the two end vertices of these edges are connected remains positive as the
graph size is growing. This implies in particular that local neighbourhoods of
typical vertices in the spatial network do not look like trees. However, the main
ingredient in almost every mathematical analysis of scale-free networks so far
has been the approximation of these neighbourhoods by suitable random trees,
see [4,7,13,16]. As a result, the analysis of spatial preferential attachment mod-
els requires a range of entirely new methods, which allow to study the robustness
of networks without relying on the local tree structure that turned out to be so
useful in the past.

2 The Model

While spatial preferential attachment models may be defined in a variety of met-
ric spaces, we focus here on homogeneous space represented by a one-dimensional



Robustness of Spatial Preferential Attachment Networks 5

torus of unit volume, given as T1 = (−1/2, 1/2] with the endpoints identified.
We use d1 to denote the torus metric. Let X denote a homogeneous Poisson
point process of finite intensity λ > 0 on T1 × (0,∞). A point x = (x, s) in X is
a vertex x, born at time s and placed at position x. Observe that, almost surely,
two points of X neither have the same birth time nor the same position. We say
that (x, s) is older than (y, t) if s < t. For t > 0, write Xt for X ∩ (T1 × (0, t]),
the set of vertices already born at time t.

We construct a growing sequence of graphs (Gt)t>0, starting from the empty
graph, and adding successively the vertices in X when they are born, so that
the vertex set of Gt equals Xt. Given the graph Gt− at the time of birth of a
vertex y = (y, t), we connect y, independently of everything else, to each vertex
x = (x, s) ∈ Gt−, with probability

ϕ

(
t

f(Z(x, t−))
d1(x, y)

)
, (1)

where Z(x, t−) is the indegree of vertex x, defined as the total number of edges
between x and younger vertices, at time t−. The model parameters in (1) are
the attachment rule f : N ∪ {0} → (0,∞), which is a nondecreasing function
regulating the strength of the preferential attachment, and the profile function
ϕ : [0,∞) → (0, 1), which is an integrable nonincreasing function regulating the
decay of the connection probability in terms of the interpoint distance. The con-
nection probabilities in (1) may look arcane at a first glance, but are in fact
completely natural. To ensure that the probability of a new vertex connecting
to its nearest neighbour does not degenerate, as t ↑ ∞, it is necessary to scale
d1(x, y) by 1/t, which is the order of the distance of a point to its nearest neigh-
bour at time t. The linear dependence of the argument of ϕ on time ensures that
the expected number of edges connecting a new vertex to vertices of bounded
degree remains bounded from zero and infinity, as t ↑ ∞, as long as x �→ ϕ(|x|)
is integrable.

The model parameters λ, f and ϕ are not independent. If
∫

ϕ(|x|) dx = μ > 0,
we can modify ϕ to ϕ ◦ (μ Id) and f to μf , so that the connection probabilities
remain unchanged and ∫

ϕ(|x|) dx = 1. (2)

Similarly, if the intensity of the Poisson point process X is λ > 0, we can replace
X by {(x, λs) : (x, s) ∈ X} and f by λf , so that again the connection probabil-
ities are unchanged and we get a Poisson point process of unit intensity. From
now on we will assume that both of these normalisation conventions are in place.
Under these assumptions the regime for the attachment rule f which leads to
power law degree distributions is characterised by asymptotic linearity, i.e.

lim
k↑∞

f(k)
k

= γ,

for some γ > 0. We henceforth assume asymptotic linearity with the additional
constraint that γ < 1, which excludes cases with infinite mean degrees.
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Fig. 1. Simulations of the network for the two-dimensional torus, based on the same
realisation of the Poisson process, with parameters γ = 0.75 and δ = 2.5 (left) and
δ = 5 (right). Both networks have the same edge density, but the one with larger δ
shows more pronounced clustering. The pictures zoom into a typical part of the torus.

Fig. 2. Simulations of the network for the one-dimensional torus, the vertical axis
indicating birth time of the nodes. Parameters are γ = 0.75 and δ = 2 (left), resp.
δ = 5 (right) and both networks have the same edge density and power law exponent.
Our results show that the network on the left is robust, the one on the right is not.

We finally assume that the profile function ϕ is either regularly varying at
infinity with index −δ, for some δ > 1, or ϕ decays quicker than any regularly
varying function. In the latter case we set δ = ∞. Intuitively, the bigger δ, the
stronger the clustering in the network. See Figs. 1 and 2 for simulations of the
spatial preferential attachment network indicative of the parameter dependence.

A similar spatial preferential attachment model was introduced in [1] and
studied further in [10,20]. There it is assumed that the profile functions has
bounded support, more precisely ϕ = p1[0,r], for p ∈ (0, 1] and r satisfying (2).
This choice, roughly corresponding to the boundary case δ ↑ ∞, is too restrictive
for the problems we study in this paper, as it turns out that robustness does not
hold for any value of τ . Other spatial models with a phase transition between
a robust and a non-robust phase are the scale-free percolation model of Deijfen
et al. [11], and the Chung-Lu model in hyperbolic space, discussed in Candellero
and Fountoulakis [9]. In both cases the transition happens when the power law
exponent of the degree distribution crosses the value 3.

Local properties of the spatial preferential attachment model were studied
in [19], where this model was first introduced. It is shown there that

– The empirical degree distribution of Gt converges in probability to a deter-
ministic limit μ. The probability measure μ on {0} ∪ N satisfies

μ(k) = k−(1+ 1
γ )+o(1) as k ↑ ∞.
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The network (Gt)t>0 is scale-free with power-law exponent τ = 1 + 1
γ , which

can be tuned to take any value τ > 2. See [19, Theorems 1 and 2].
– The average over all vertices v ∈ Gt of the empirical local clustering coefficient

at v, defined as the proportion of pairs of neighbours of v which are themselves
connected by an edge in Gt, converges in probability to a positive constant
cav∞ > 0, called the average clustering coefficient. In other words the network
(Gt)t>0 exhibits clustering. See [19, Theorem 3].

3 Statement of the Result

Recall that the number of vertices of the graphs Gt, t > 0, form a Poisson
process of unit intensity, and is therefore almost surely equivalent to t as t ↑ ∞.
Let Ct ⊂ Gt be the largest connected component in Gt and denote by |Ct| its
size. We say that the network has a giant component if Ct is of linear size or,
more precisely, if

lim
ε↓0

lim sup
t→∞

P

( |Ct|
t

≤ ε

)
= 0;

and it has no giant component if Ct has sublinear size or, more precisely, if

lim inf
t→∞ P

( |Ct|
t

≤ ε

)
= 1 for any ε > 0.

If G is a graph with vertex set X , and p ∈ (0, 1), we write pG for the random
subgraph of G obtained by Bernoulli percolation with retention parameter p on
the vertices of G. We also use pX for set of vertices surviving percolation. The
network (Gt)t>0 is said to be robust if, for any fixed p ∈ (0, 1], the network
(pGt)t>0 has a giant component and non-robust if there exists p ∈ (0, 1] so that
(pGt)t>0 has no giant component.

Theorem 1. The spatial preferential attachment network (Gt)t>0 is

(a) robust if γ > δ
1+δ or, equivalently, if τ < 2 + 1

δ ;
(b) non-robust if γ < δ−1

δ or, equivalently, if τ > 2 + 1
δ−1 .

Remark 1. The network is also non-robust if γ < 1
2 or, equivalently, if τ > 3.

But the surprising result here is that for δ > 2 the transition between the two
phases occurs at a value strictly below 3. This phenomenon is new and due to the
clustering structure in the network. It offers a new perspective on the ‘classical’
results on network models without clustering.

Remark 2

– We conjecture that the result in (a) is sharp, i.e. nonrobustness occurs if
γ < δ

1+δ . If this holds, the critical value for τ equals 2+ 1
δ . Our proof techniques

currently do not allow to prove this.
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– Our approach also provides heuristics indicating that in the robust phase δ(τ−
2) < 1 the typical distances in the robust giant component are asymptotically

(4 + o(1))
log log t

− log(δ(τ − 2))
,

namely doubly logarithmic, just as in some nonspatial preferential attachment
models. The constant coincides with that of the nonspatial models in the
limiting case δ ↓ 1, see [12,15], and goes to infinity as δ(τ − 2) → 1. It is an
interesting open problem to confirm these heuristics rigorously.

4 Proof Ideas and Strategies

Before describing the strategies of our proofs, we briefly summarise the tech-
niques developed in [19] in order to describe the local neighbourhoods of typical
vertices by a limit model.

Canonical Representation. We first describe a canonical representation of
our network (Gt)t>0. To this end, let X be a Poisson process of unit intensity on
T1 × (0,∞), and endow the point process X ×X with independent marks which
are uniformly distributed on [0, 1]. We denote these marks by Vx,y or V(x,y),
for x,y ∈ X . If Y ⊂ T1 × (0,∞) is a finite set and W : Y × Y → [0, 1] a map,
we define a graph G1(Y,W) with vertex set Y by establishing edges in order of
age of the younger endvertex. An edge between x = (x, t) and y = (y, s), t < s,
is present if and only if

W(x,y) ≤ ϕ

(
s d1(x, y)

f(Z(x, s−))

)
, (3)

where Z(x, s−) is the indegree of x at time s−. A realization of X and V then
gives rise to the family of graphs (Gt)t>0 with vertex sets Xt = X ∩ (T1 × (0, t]),
given by Gt = G1(Xt,V), which has the distribution of the spatial preferential
attachment network.

Space-Time Rescaling. The construction above can be generalised in a
straightforward manner from T1 to the torus of volume t, namely Tt = (− 1

2 t, 1
2 t],

equipped with its canonical torus metric dt. The resulting functional, mapping
a finite subset Y ⊂ Tt × (0,∞) and a map from Y × Y → [0, 1] onto a graph, is
now denoted by Gt. We introduce the rescaling mapping

ht : T1 × (0, t] → Tt × (0, 1],
(x, s) �→ (tx, s/t)

which expands the space by a factor t, the time by a factor 1/t. The mapping ht

operates on the set X , but also on V, by ht(V)ht(x),ht(y) := Vx,y. The operation
of ht preserves the rule (3), and it is therefore simple to verify that we have

Gt(ht(Xt), ht(V)) = ht(G1(Xt,V)) = ht(Gt),



Robustness of Spatial Preferential Attachment Networks 9

that is, it is the same to construct the graph and then rescale the picture, or
to first rescale the picture, then construct the graph on this rescaled picture.
Observe also that ht(Xt) is a Poisson point process of intensity 1 on Tt × (0, 1],
while ht(V) are independent marks attached to the points of ht(Xt) × ht(Xt)
which are uniformly distributed on [0, 1].

Convergence to the Limit Model. We now denote by X a Poisson point
process with unit intensity on R × (0, 1], and endow the points of X × X with
independent marks V, which are uniformly distributed on [0, 1]. For each t > 0,
identify (− 1

2 t, 1
2 t] and Tt, and write X t for the restriction of X to Tt × (0, 1],

and Vt for the restriction of V to X t × X t. In the following, we write Gt or
Gt(X ,V) for Gt(X t,Vt). We have seen that for fixed t ∈ (0,∞), the graphs
Gt and ht(Gt) have the same law. Thus any results of robustness we prove for
the network (Gt)t>0 also hold for the network (Gt)t>0. It was shown in [19,
Proposition 5] that, almost surely, the graphs Gt converge to a locally finite
graph G∞ = G∞(X ,V), in the sense that the neighbours of any given vertex
x ∈ X coincide in Gt and in G∞, if t is large enough. It is important to note the
fundamentally different behaviour of the processes (Gt)t>0 and (Gt)t>0. While
in the former the degree of any fixed vertex stabilizes, in the latter the degree
of any fixed vertex goes to ∞, as t ↑ ∞. We will exploit the convergence of Gt

to G∞ in order to decide the robustness of the finite graphs Gt, and ultimately
Gt, from properties of the limit model G∞.

Law of Large Numbers. We now state a limit theorem for the graphs pGt

centred in a randomly chosen point. To this end we denote by p
P the law of X ,V

together with independent Bernoulli percolation with retention parameter p on
the points of X . For any x ∈ R × (0, 1] we denote by p

Px the Palm measure,
i.e. the law p

P conditioned on the event {x ∈ pX}. Note that by elementary
properties of the Poisson process this conditioning simply adds the point x to
pX and independent marks Vx,y and Vy,x, for all y ∈ X , to V. We also write
pEx for the expectation under p

Px. Let ξ = ξ (x, G) be a bounded functional of
a locally-finite graph G with vertices in R × (0, 1] and a vertex x ∈ G, which is
invariant under translations of R. Also, let ξt = ξt (x, G) be a bounded family
of functionals of a graph G with vertices in Tt × (0, 1] and a vertex x ∈ G,
invariant under translations of the torus. We assume that, for U an independent
uniform random variable on (0, 1], we have that ξt((0, U), pGt) converges to
ξ((0, U), pG∞) in p

P(0,U)-probability. By [19, Theorem 7], in p
P-probability,

1
t

∑
x∈pX t

ξt

(
x, pGt

) −→
t→∞ p

∫
01

p

E(0,u)[ξ((0, u), pG∞)] du. (4)

4.1 Robustness: Strategy of Proof

Existence of an Infinite Component in the Limit Model. We first show
that, under the assumptions that γ > δ

1+δ , or equivalently γ
δ(1−γ) > 1, the
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percolated limit model pG∞ has an infinite connected component. This uses the
established strategy of the hierarchical core. Young vertices, born after time 1

2 ,
are called connectors. We find α > 1 such that, starting from a sufficiently old
vertex x0 ∈ pG∞, we establish an infinite chain (xk)k≥1 of vertices xk = (xk, sk)
such that sk < sα

k−1, i.e. we move to increasingly older vertices, and xk−1 and
xk are connected by a path of length two, using a connector as a stepping stone.
The following lemma is the key. Roughly speaking, we call a vertex born at time
s good if its indegree at time 1

2 is close to its expectation, i.e. of order s−γ .

Lemma 1. Choose first α ∈ (1, γ
δ(1−γ) ) then β ∈ (α, γ

δ (1 + αδ)). If x is a good
vertex born at time s, then with very high probability there exists a good vertex y
born before time sα with |x − y| < s−β such that x and y are connected through
a connector.

Proof (Sketch).

– The existence of a good vertex y is easy because it just needs to be located in
a box of sidelengths sα and 2s−β , and sαs−β → ∞.

– At time 1
2 the good vertex x has indegree of order s−γ . The number of con-

nectors at distance ≤ s−γ , which are connected to x is therefore stochastically
bounded from below by a Poisson variable with intensity s−γ .

– For each of these connectors the probability that they connect to a good y is
at least

ϕ
( 1

2d(x, y)
s−αγ

)
≤ cst.s−δ(αγ−β).

We succeed because −γ − δ(αγ − β) < 0.

Transfer to Finite Graphs Using the Law of Large Numbers. To infer
robustness of the network (Gt)t>0 from the behaviour of the limit model we
use (4) on the functional ξt(x, G) defined as the indicator of the event that there
is a path in G connecting x to the oldest vertex of G. We denote by ξ(x, G) the
indicator of the event that the connected component of x is infinite and let

pθ :=
∫ 1

0

p
P(0,u)

{
the component of (0, u) in pG∞ is infinite

}
du. (5)

If lim ξt((0, U), pGt) = ξ((0, U), pG∞) in probability, then the law of large num-
bers (4) implies that lim(1/t)

∑
x∈pX t ξt(x, pGt) = p pθ. The sum is the number

of vertices in pGt connected to the oldest vertex, and we infer that this number
grows linearly in t so that a giant component exists in (pGt)t>0. This implies
that (Gt)t>0 and hence (Gt)t>0 is a robust network. However, while it is easy to
see that lim supt↑∞ ξt((0, U), pGt) ≤ ξ((0, U), pG∞), checking that

lim inf
t↑∞

ξt((0, U), pGt) ≥ ξ((0, U), pG∞), (6)

is the difficult part of the argument.
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The Geometric Argument. The proof of (6) is the most technical part of the
proof. We first look at the finite graph pGt and establish the existence of a core
of old and well-connected vertices, which includes the oldest vertex. Any pair of
vertices in the core are connected by a path with a bounded number of edges, in
particular all vertices of the core are in the same connected component. This part
of the argument is similar to the construction in the limit model. We then use a
simple continuity argument to establish that if the vertex (0, U) is in an infinite
component in the limit model, then it is also in an infinite component for the
limit model based on a Poisson process X with a slightly reduced intensity. In
the main step we show that under this assumption the vertex (0, U) is connected
in pGt with reduced intensity to a moderately old vertex. In this step we have
to rule out explicitly the possibilities that the infinite component of pG∞ either
avoids the set of eligible moderately old vertices, or connects to them only by a
path which moves very far away from the origin. The latter argument requires
good control over the length of edges in the component of (0, U) in pG∞. Once the
main step is established, we can finally use the still unused vertices, which form
a Poisson process with small but positive intensity, to connect the moderately
old vertex we have found to the core by means of a classical sprinkling argument.

4.2 Non-robustness: Strategy of Proof

Using the Limit Model. If γ < 1
2 it is very plausible that the spatial prefer-

ential attachment network is non-robust, as the classical models with the same
power-law exponents are non-robust [5,14] and it is difficult to see how the spa-
tial structure could help robustness. We have not been able to use this argument
for a proof, though, as our model cannot be easily dominated by a non-spatial
model with the same power-law exponent. Instead we use a direct approach,
which turns out to yield non-robustness also in some cases where γ > 1

2 . The
key is again the use of the limit model, and in particular the law of large num-
bers. We apply this now to the functionals ξ(k)(x, G) defined as the indicator
of the event that the connected component of x has no more than k vertices.
By the law of large numbers (4) the proportion of vertices in pGt which are in
components no bigger than k converge, as first t ↑ ∞ and then k ↑ ∞ to 1 −p θ.
Hence if pθ = 0 for some p > 0, then (Gt)t>0 and hence (Gt)t>0 is non-robust.
It is therefore sufficient to show that, for some sufficiently small p > 0, there is
no infinite component in the percolated limit model pG∞.

Positive Correlation Between Edges. We first explain why a näıve first
moment calculation fails. If (0, U) has positive probability of belonging to an
infinite component of pG∞ then, with positive probability, we could find an
infinite self-avoiding path in pG∞ starting from x0 = (0, U). A direct first
moment calculation would require to give a bound on the probability of the event
{x0↔x1↔ · · · ↔xn} that a sequence (x0, . . . ,xn) of distinct points xi = (xi, si)
conditioned to be in X forms a path in G∞. If this estimate allows us to bound
the expected number of paths of length n in G∞ starting in x0 = (0, U) by Cn,
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for some constant C, we can infer with Borel-Cantelli that, if p < 1/C, almost
surely there is no arbitrarily long self-avoiding paths in pG∞. The problem here
is that the events {xj↔xj+1} and {xk↔xk+1} are positively correlated if the
interval I = (sj , sj+1)∩ (sk, sk+1) is nonempty, because the existence of a vertex
in X ∩ (R× I) may make their indegrees grow simultaneously. Because the posi-
tive correlations play against us, it seems not possible to give an effective upper
bound on the probability of a long sequence to be a path, therefore making this
first moment calculation impossible.

Quick Paths, Disjoint Occurrence, and the BK Inequality. As a solution
to this problem we develop the concept of quick paths. If pG∞ contains an infinite
path, then there is an infinite quick path in G∞ with at least half of its points
lying in pG∞. The expected number of quick paths of length n can be bounded
by Cn, for some C > 0, and the näıve argument above can be carried through.

Starting with a geodesic path x0↔ · · · ↔x� in pG0
∞ we first construct a

subsequence yn = xϕ(n) by letting ϕ(0) = 0 and ϕ(n + 1) be the maximal k >
ϕ(n) such that there is y ∈ G∞ younger than xϕ(n) and xk with xϕ(n)↔y↔xk.
We emphasise that y need not be in pG∞ but only in G∞. The vertex y is called
a common child of the vertices xϕ(n) and xϕ(n+1), and if there is no common
child we let ϕ(n + 1) = ϕ(n) + 1. The quick path z0↔ · · · ↔zm associated with
the geodesic path x0↔ · · · ↔x� is obtained by inserting between yn and yn+1, if
they are not connected by an edge, their oldest common child y ∈ G∞. Quick
paths are characterised by the properties;

(i) A vertex which is not a local maximum (i.e. younger than its two neighbours
in the chain) cannot be connected by an edge to a younger vertex of the path,
except possibly its neighbours.

(ii) Two vertices zn and zn+j , with j ≥ 2, which are not local maxima, can have
common children only if j = 2 and zn+1 is a local maximum. In that case,
zn+1 is their oldest common child.

Introduce a splitting at index i if either zi is younger than both zi−1 and zi−2,
or younger than both zi+1 and zi+2. We write n0 = 0 < n1 < · · · < nk = m for
the splitting indices in increasing order. Let

Aj = {znj−1↔ · · · ↔znj
}.

Then if z0↔ · · · ↔zm is a path in G∞ that satisfies (i) and (ii), then A1, . . . , Ak

occur disjointly. The concept of disjoint occurrence is due to van den Berg and
Kesten. Two increasing events A and B occur disjointly if there exists disjoint
subsets of the domain of the Poisson process such that A occurs if the points
falling in the first subset are present, and B occurs if the points falling in the
second subset are present. The famous BK-inequality, see [3] for the variant most
useful in our context, states that the probability of events occurring disjointly is
bounded by the product of their probabilities. The events Aj involve five or fewer
consecutive vertices and Fig. 3 shows the six possible types, up to symmetry. The
probability of these types can be estimated by a direct calculation.
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(i) (ii) (iii)

(iv) (v) (vi)

Fig. 3. Up to symmetry there are six types of small parts after the splitting. Illustrated,
with the index of a point on the abscissa and time on the ordinate, these are (i) one
single edge, (ii) a V shape with two edges, (iii) a V shape with three edges and the end
vertex of the short leg between the two vertices of the long leg, (iv) a V shape with
three edges and both vertices of the long leg below the end vertex of the short leg,
(v) a W shape with the higher end vertex on the side of the deeper valley, (vi) a W
shape with the lower end vertex on the side of the deeper valley.

An Refinement of the Method. The method described so far, allows to
show non-robustness only in the case τ > 3. To show non-robustness in the case
τ > 2 + 1

δ−1 a refinement is needed, which we now briefly describe.
A vertex z born at time u has typically of order u−γ younger neighbours,

which may be a lot. As most of these neighbours are close to z, namely within
distance u−1, and their local neighbourhoods are therefore strongly correlated,
our bounds are far from sharp. No matter how many vertices within distance
u−1 of z belong to the component of z, it will not help much to connect z to
vertices far away. Indeed, defining the region around z as

Cz = {z′ born at u′ ≥ u, |z′ − z| ≤ 2u−1 − u′−1},

we show that the typical number of vertices outside Cz that are connected to z,
or any other vertex in Cz, is only of order log(u−1). To estimate the probability
of a path it therefore makes sense to take all the points within Cz for granted and
consider only those edges of a quick path straddling a suitably defined boundary
of Cz. This improves our bounds because few edges straddle the boundary, and
the boundary remains small as u becomes small.

Acknowledgements. We gratefully acknowledge support of this project by the Euro-
pean Science Foundation through the research network Random Geometry of Large
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Abstract. In this paper, we analyze the local clustering coefficient
of preferential attachment models. A general approach to preferential
attachment was introduced in [19], where a wide class of models (PA-
class) was defined in terms of constraints that are sufficient for the study
of the degree distribution and the clustering coefficient. It was previously
shown that the degree distribution in all models of the PA-class follows
a power law. Also, the global clustering coefficient was analyzed and a
lower bound for the average local clustering coefficient was obtained. We
expand the results of [19] by analyzing the local clustering coefficient for
the PA-class of models. Namely, we analyze the behavior of C(d) which
is the average local clustering for the vertices of degree d.

Keywords: Networks · Random graph models · Preferential attach-
ment · Clustering coefficient

1 Introduction

Nowadays there are a lot of practical problems connected with the analysis of
growing real-world networks, from Internet and society networks [1,6,9] to bio-
logical networks [2]. Models of real-world networks are used in physics, informa-
tion retrieval, data mining, bioinformatics, etc. An extensive review of real-world
networks and their applications can be found elsewhere (e.g., see [1,6,7,13]).

It turns out that many real-world networks of diverse nature have some typ-
ical properties: small diameter, power-law degree distribution, high clustering,
and others [15,17,18,24]. Probably the most extensively studied property of net-
works is their vertex degree distribution. For the majority of studied real-world
networks, the portion of vertices with degree d was observed to decrease as d−γ ,
usually with 2 < γ < 3 [3–6,10,14].

Another important characteristic of a network is its clustering coefficient,
which has the following two most used versions: the global clustering coefficient
and the average local clustering coefficient (see Sect. 2.3 for the definitions).
It is believed that for many real-world networks both the average local and the
global clustering coefficients tend to non-zero limit as the network becomes large.
c© Springer International Publishing Switzerland 2015
D.F. Gleich et al. (Eds.): WAW 2015, LNCS 9479, pp. 15–28, 2015.
DOI: 10.1007/978-3-319-26784-5 2
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Indeed, in many observed networks the values of both clustering coefficients are
considerably high [18].

The most well-known approach to modeling complex networks is the prefer-
ential-attachment idea. Many different models are based on this idea: LCD [8],
Buckley-Osthus [11], Holme-Kim [16], RAN [25], and many others. A general
approach to preferential attachment was introduced in [19], where a wide class
of models was defined in terms of constraints that are sufficient for the study of
the degree distribution (PA-class) and the clustering coefficient (T-subclass of
PA-class).

In this paper, we analyze the behavior of C(d) — the average local clustering
coefficient for the vertices of degree d — in the T-subclass. It was previously
shown that in real-world networks C(d) usually decreases as d−ψ with some
parameter ψ > 0 [12,21,23]. For some networks, C(d) scales as a power law
C(d) ∼ d−1 [13,20]. In the current paper, we prove that in all models of the T-
subclass the local clustering coefficient C(d) asymptotically behaves as C · d−1,
where C is some constant.

The remainder of the paper is organized as follows. In Sect. 2, we give a formal
definition of the PA-class and present some known results. Then, in Sect. 3, we
state new results on the behavior of local clustering C(d). We prove the theorems
in Sect. 4. Section 5 concludes the paper.

2 Generalized Preferential Attachment

2.1 Definition of the PA-class

In this section, we define the PA-class of models which was first suggested in [19].
Let Gn

m (n ≥ n0) be a graph with n vertices {1, . . . , n} and mn edges obtained
as a result of the following process. We start at the time n0 from an arbitrary
graph Gn0

m with n0 vertices and mn0 edges. On the (n + 1)-th step (n ≥ n0),
we make the graph Gn+1

m from Gn
m by adding a new vertex n + 1 and m edges

connecting this vertex to some m vertices from the set {1, . . . , n, n + 1}. Denote
by dn

v the degree of a vertex v in Gn
m. If for some constants A and B the following

conditions are satisfied

P
(
dn+1

v = dn
v | Gn

m

)
= 1 − A

dn
v

n
− B

1
n

+ O

(
(dn

v )2

n2

)
, 1 ≤ v ≤ n, (1)

P
(
dn+1

v = dn
v + 1 | Gn

m

)
= A

dn
v

n
+ B

1
n

+ O

(
(dn

v )2

n2

)
, 1 ≤ v ≤ n, (2)

P
(
dn+1

v = dn
v + j | Gn

m

)
= O

(
(dn

v )2

n2

)
, 2 ≤ j ≤ m, 1 ≤ v ≤ n, (3)

P(dn+1
n+1 = m + j) = O

(
1
n

)
, 1 ≤ j ≤ m , (4)
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then the random graph process Gn
m is a model from the PA-class. Here, as in [19],

we require 2mA + B = m and 0 ≤ A ≤ 1.
As it is explained in [19], even fixing values of parameters A and m does

not specify a concrete procedure for constructing a network. There are a lot of
models possessing very different properties and satisfying the conditions (1–4),
e.g., the LCD, the Buckley–Osthus, the Holme–Kim, and the RAN models.

2.2 Power Law Degree Distribution

Let Nn(d) be the number of vertices of degree d in Gn
m. The following theorems

on the expectation of Nn(d) and its concentration were proved in [19].

Theorem 1. For every model in PA-class and for every d ≥ m

ENn(d) = c(m, d)
(
n + O

(
d2+

1
A

))
,

where

c(m, d) =
Γ

(
d + B

A

)
Γ

(
m + B+1

A

)
A Γ

(
d + B+A+1

A

)
Γ

(
m + B

A

)d→∞∼ Γ
(
m + B+1

A

)
d−1− 1

A

A Γ
(
m + B

A

)
and Γ(x) is the gamma function.

Theorem 2. For every model from the PA-class and for every d = d(n) we have

P
(|Nn(d) − ENn(d)| ≥ d

√
n log n

)
= O

(
n− log n

)
.

Therefore, for any δ > 0 there exists a function ϕ(n) ∈ o(1) such that

lim
n→∞ P

(
∃ d ≤ n

A−δ
4A+2 : |Nn(d) − ENn(d)| ≥ ϕ(n)ENn(d)

)
= 0.

These two theorems mean that the degree distribution follows (asymptotically)
the power law with the parameter 1 + 1

A .

2.3 Clustering Coefficient

A T-subclass of the PA-class was introduced in [19]. In this case, the following
additional condition is required:

P
(
dn+1

i = dn
i + 1, dn+1

j = dn
j + 1 | Gn

m

)
= eij

D

mn
+ O

(
dn

i dn
j

n2

)
. (5)

Here eij is the number of edges between vertices i and j in Gn
m and D is a positive

constant. Note that this property still does not define the correlation between
edges completely, but it is sufficient for studying both global and average local
clustering coefficients.

Let us now define the clustering coefficients. The global clustering coefficient
C1(G) is the ratio of three times the number of triangles to the number of pairs of
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adjacent edges in G. The average local clustering coefficient is defined as follows:
C2(G) = 1

n

∑n
i=1 C(i), where C(i) is the local clustering coefficient for a vertex

i: C(i) = T i

P i
2
, where T i is the number of edges between neighbors of the vertex i

and P i
2 is the number of pairs of neighbors. Note that both clustering coefficients

are defined for graphs without multiple edges.
The following theorem on the global clustering coefficient in the T-subclass

was proven in [19].

Theorem 3. Let Gn
m belong to the T-subclass with D > 0. Then, for any ε > 0

(1) If 2A < 1, then whp 6(1−2A)D−ε
m(4(A+B)+m−1) ≤ C1(Gn

m) ≤ 6(1−2A)D+ε
m(4(A+B)+m−1) ;

(2) If 2A = 1, then whp 6D−ε
m(4(A+B)+m−1) log n ≤ C1(Gn

m) ≤ 6D+ε
m(4(A+B)+m−1) log n ;

(3) If 2A > 1, then whp n1−2A−ε ≤ C1(Gn
m) ≤ n1−2A+ε.

Theorem 3 shows that in some cases (2A ≥ 1) the global clustering coefficient
C1(Gn

m) tends to zero as the number of vertices grows.
The average local clustering coefficient C2(Gn

m) was not fully analyzed pre-
viously, but it was shown in [19] that C2(Gn

m) does not tend to zero for the
T-subclass with D > 0. In the next section, we fully analyze the behavior of the
average local clustering coefficient for the vertices of degree d.

3 The Average Local Clustering for the Vertices
of Degree d

In this section, we analyze the asymptotic behavior of C(d) — the average local
clustering for the vertices of degree d. Let Tn(d) be the number of triangles on
the vertices of degree d in Gn

m (i.e., the number of edges between the neighbors
of the vertices of degree d). Then, C(d) is defined in the following way:

C(d) =
Tn(d)

Nn(d)
(
d
2

) . (6)

In other words, C(d) is the local clustering coefficient averaged over all vertices
of degree d. In order to estimate C(d) we should first estimate Tn(d). After that,
we can use Theorems 1 and 2 on the behavior of Nn(d).

We prove the following result on the expectation of Tn(d).

Theorem 4. Let Gn
m belong to the T-subclass of the PA-class with D > 0. Then

(1) if 2A < 1, then ETn(d) = K(d)
(
n + O

(
d2+

1
A

))
;

(2) if 2A = 1, then ETn(d) = K(d)
(
n + O

(
d2+

1
A · log(n)

))
;

(3) if 2A > 1, then ETn(d) = K(d)
(
n + O

(
d2+

1
A · n2A−1

))
;

where K(d) = c(m, d)
(
D + D

m · ∑d−1
i=m

i
Ai+B

)
d→∞∼ D

A m · Γ(m+B+1
A )

A Γ(m+B
A ) · d− 1

A .
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Second, we show that the number of triangles on the vertices of degree d is
highly concentrated around its expectation.

Theorem 5. Let Gn
m belong to the T-subclass of the PA-class with D > 0. Then

for every d = d(n)

(1) if 2A < 1: P
(|Tn(d) − ETn(d)| ≥ d2

√
n log n

)
= O

(
n− log n

)
;

(2) if 2A = 1: P
(|Tn(d) − ETn(d)| ≥ d2

√
n log2 n

)
= O

(
n− log n

)
;

(3) if 2A > 1: P
(
|Tn(d) − ETn(d)| ≥ d2 n2A− 1

2 log n
)

= O
(
n− log n

)
.

Consequently, for any δ > 0 there exists a function ϕ(n) = o(1) such that

(1) if 2A ≤ 1: limn→∞ P
(
∃ d ≤ n

A−δ
4A+2 : |Tn(d) − ETn(d)| ≥ ϕ(n)ETn(d)

)
= 0;

(2) if 2A > 1:
limn→∞ P

(
∃ d ≤ n

A(3−4A)−δ
4A+2 : |Tn(d) − ETn(d)| ≥ ϕ(n)ETn(d)

)
= 0.

As a consequence of Theorems 1, 2, 4, and 5, we get the following result on
the average local clustering coefficient C(d) for the vertices of degree d in Gn

m.

Theorem 6. Let Gn
m belong to the T-subclass of the PA-class. Then for any

δ > 0 there exists a function ϕ(n) = o(1) such that

(1) if 2A ≤ 1: limn→∞ P

(
∃ d ≤ n

A−δ
4A+2 :

∣∣∣∣C(d) − K(d)

(d
2) c(m,d)

∣∣∣∣ ≥ ϕ(n)
d

)
= 0;

(2) if 2A > 1: limn→∞ P

(
∃ d ≤ n

A(3−4A)−δ
4A+2 :

∣∣∣∣C(d) − K(d)

(d
2) c(m,d)

∣∣∣∣ ≥ ϕ(n)
d

)
= 0.

Note that K(d)

(d
2) c(m,d)

= 2D
d (d−1)m

(
m +

∑d−1
i=m

i
Ai+B

)
d→∞∼ 2D

mA · d−1.

It is important to note that Theorems 5 and 6 are informative only for A < 3
4 ,

since only in this case the value n
A(3−4A)−δ

4A+2 grows.
In the next section, we first prove Theorem 4. Then, using the Azuma–

Hoeffding inequality, we prove Theorem 5. Theorem 6 is a corollary of Theo-
rems 1, 2, 4, and 5.

4 Proofs

In all the proofs we use the notation θ(·) for error terms. By θ(X) we denote an
arbitrary function such that |θ(X)| < X.

4.1 Proof of Theorem 4

We need the following auxiliary theorem.

Theorem 7. Let Wn be the sum of the squares of the degrees of all vertices in
a model from the PA-class. Then
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(1) if 2A < 1, then EWn = O(n),
(2) if 2A = 1, then EWn = O(n · log(n)),
(3) if 2A > 1, then EWn = O(n2A).

This statement is mentioned in [19] and it can be proved by induction. Also,
let S(n, d) be the sum of the degrees of all the neighbors of all vertices of degree
d. Note that S(n, d) is not greater than the sum of the degrees of the neighbors
of all vertices. The last is equal to Wn, because each vertex of degree d adds d2

to the sum of the degrees of the neighbors of all vertices. So, for any d we have

ES(n, d) ≤ EWn. (7)

Now we can prove Theorem 4. Note that we do not take into account the mul-
tiplicities of edges when we calculate the number of triangles, since the clustering
coefficient is defined for graphs without multiple edges. This does not affect the
final result since the number of multiple edges is small for graphs constructed
according to the model [7].

We prove the statement of Theorem 4 by induction on d. Also, for each d we use
induction on n. First, consider the case d = m. The expected number of triangles
on any vertex t of degree m is equal to E

∑
(i,j)∈E(Gt

m)

(
eij

D
mt + O

(
dt

id
t
j

t2

))
(see

(5)). As Gt
m has exactly mt edges, we get E

∑
(i,j)∈E(Gt

m)

(
eij

D
mt + O

(
dt

id
t
j

t2

))
=

D + o(1). The fact that E
∑

(i,j)∈E(Gt
m) O

(
didj

t2

)
= O

(
EWt

t2

)
= o(1) can be

shown by induction using the conditions (1–4). We also know (see Theorem 1) that
ENn(m) = c(m,m)n + O (1). So, ETn(m) = (D + o(1)) (c(m,m)n + O (1)) =
K(m) (n + O (1)). This concludes the proof for the case d = m for all values of A
(2A < 1, 2A = 1 and 2A > 1).

Consider the case d > m. Note that the number of triangles on a vertex of
degree d is O (d), since this number is O(1) when this vertex appears plus at
each step we get a triangle only if we hit both the vertex under consideration
and a neighbor of this vertex, and our vertex degree equals d, therefore we get
at most d m triangles. Also, ENn(d) = c(m, d)

(
n + O

(
d2+

1
A

))
. So we have

ETn(d) = O(d) c(m, d)
(
n + O

(
d2+

1
A

))
. In particular, for n ≤ Q · d2 (where

the constant Q depends only on A and m and will be defined later) we have
ETn(d) = O

(
c(m, d) d3+

1
A

)
= O

(
d2

)
= K(d) · O

(
d2+ 1

A

)
. This concludes the

proof for the case d > m, n ≤ Qd2 for all values of A.
Now, consider the case d > m, n > Q d2. Once we add a vertex n + 1 and m

edges, we have the following possibilities.

1. At least one edge hits a vertex of degree d. Then Tn(d) is decreased by the
number of triangles on this vertex (because this vertex is a vertex of degree
d + 1 now). The probability to hit a vertex of degree d is A d+B

n + O
(

d2

n2

)
.
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Summing over all vertices of degree d we obtain that ETn(d) is decreased by:
(

Ad + B

n
+ O

(
d2

n2

))
· ETn(d). (8)

2. Exactly one edge hits a vertex of degree d−1. Then Tn(d) is increased by the
number of triangles on this vertex. The probability to hit a vertex of degree
d−1 once is equal to A (d−1)+B

n +O
(

d2

n2

)
. Summing over all vertices of degree

d − 1 we obtain that the value ETn(d) is increased by:
(

A(d − 1) + B

n
+ O

(
d2

n2

))
· ETn(d − 1). (9)

3. Exactly one edge hits a vertex of degree d − 1 and another edge hits its
neighbor. Then, in addition to (9), Tn(d) is increased by 1. The probability
to hit a vertex of degree d− 1 and its neighbor is equal to D

mn +O
(

(d−1) di

n2

)
,

where di is the degree of this neighbor. Summing over the neighbors of a given
vertex of degree d − 1 and summing then over all vertices of degree d − 1 we
obtain that ETn(d) is increased by:

(d − 1)ENn(d − 1)
D

mn
+ O

⎛
⎝d · E

∑
i:i is a neighbor

of a vertex of degree d−1
di

n2

⎞
⎠

= (d − 1)ENn(d − 1)
D

mn
+ O

(
d ES(n, d)

n2

)
. (10)

4. Exactly i edges hit a vertex of degree d − i, where i is between 2 and m. If
no edges hit the neighbors of this vertex, then Tn(d) is increased only by the
number of triangles on this vertex. The probability to hit a vertex of degree
d − i exactly i times is equal to O

(
d2

n2

)
. If we also hit its neighbors, then

Tn(d) is additionally increased by 1 for each neighbor. The probability to hit
a vertex of degree d− i exactly i times and hit some its neighbor is, obviously,
O

(
d2

n2

)
. Summing over all vertices of degree d − i and then summing over all

i from 2 to m, we obtain that ETn(d) is increased by:

m∑
i=2

(
ETn(d − i) · O

(
d2

n2

)
+ O

(
d2

n2

)
· (d − i) · ENn(d − i)

)

= O

(
d2

n2

)
ETn(d) + O

(
d3

n2

)
ENn(d). (11)

Finally, using (8)–(11) and the linearity of the expectation, we get
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ETn+1(d) = ETn(d) −
(

Ad + B

n
+ O

(
d2

n2

))
ETn(d)

+
(

A(d − 1) + B

n
+ O

(
d2

n2

))
ETn(d − 1) + (d − 1)ENn(d − 1)

D

mn

+ O

(
d ES(n, d)

n2

)
+ O

(
d2

n2

)
ETn(d) + O

(
d3

n2

)
ENn(d)

=
(

1 − Ad + B

n

)
ETn(d) +

A(d − 1) + B

n
ETn(d − 1)

+ O

(
d2

n2

)
(ETn(d) + ETn(d − 1)) + O

(
d3

n2

)
ENn(d)

+
D

mn
(d − 1)ENn(d − 1) + O

(
d · ES(n, d)

n2

)
. (12)

Consider the case 2A < 1 (the cases 2A = 1 and 2A > 1 will be analyzed
similarly). We prove by induction on d and n that

ETn(d) = K(d)
(
n + θ

(
C · d2+

1
A

))
(13)

for some constant C > 0. Let us assume that ETi(d̃) = K(d̃)
(
i + θ

(
C · d̃2+

1
A

))
for d̃ < d and all i and for d̃ = d and i < n + 1.

Recall that K(d) = c(m, d)
(
D + D

m · ∑d−1
i=m

i
Ai+B

)
and ENn(d) = c(m, d) ·(

n + O
(
d2+

1
A

))
. If 2A < 1, then from (7) and Theorem 7 we get ES(n, d) =

O(n) and we obtain:

ETn+1(d) =

(
1 − Ad + B

n

)
K(d)

(
n + θ

(
Cd2+

1
A

))

+
A(d − 1) + B

n
K(d − 1)

(
n + θ

(
C(d − 1)2+

1
A

))

+ O

(
d2

n2

) (
K(d)

(
n + θ

(
Cd2+

1
A

))
+ K(d − 1)

(
n + θ

(
C(d − 1)2+

1
A

)))

+ O

(
d3

n2

)
c(m, d)

(
n + O

(
d2+

1
A

))

+
D

mn
(d − 1) c(m, d − 1)

(
n + O

(
d2+

1
A

))
+ O

(
d

n

)
.

Note that K(d) = A(d−1)+B
Ad+B+1 K(d − 1) + D(d−1)

m(Ad+B+1) c(m, d − 1). Therefore,
we obtain:



Local Clustering Coefficient in Generalized Preferential Attachment Models 23

ETn+1(d) = K(d) (n + 1) + K(d)
(

1 − Ad + B

n

)
θ
(
C d2+

1
A

)

+ K(d − 1)
A(d − 1) + B

n
θ
(
C (d − 1)2+

1
A

)

+
D(d − 1)

mn
c(m, d)O

(
d2+

1
A

)
+ O

(
d

n

)
+ O

(
d2

n2

)
(K(d)n

+K(d) θ
(
C d2+

1
A

)
+ K(d − 1)n + K(d − 1) θ

(
C (d − 1)2+

1
A

))

+ O

(
d3

n2

) (
c(m, d)n + c(m, d)O

(
d2+

1
A

))
.

In order to show (13), it remains to prove that for some large enough C:

K(d)
(

Ad + B

n

)
C d2+

1
A ≥ K(d − 1)

A(d − 1) + B

n
C (d − 1)2+

1
A

+O

(
d2

n

)
+ O

(
C

d4

n2

)
+ O

(
d4

n2

)
. (14)

First, we analyze the following difference:

K(d)

(
Ad + B

n

)
d2+

1
A − K(d − 1)

A(d − 1) + B

n
(d − 1)2+

1
A

=
Ad + B

n
d2+

1
A

(
A(d − 1) + B

Ad + B + 1
K(d − 1) +

D(d − 1)

m(Ad + B + 1)
c(m, d − 1)

)

− A(d − 1) + B

n
K(d − 1) (d − 1)2+

1
A =

(Ad + B)D(d − 1)

mn(Ad + B + 1)
c(m, d − 1) d2+

1
A

+ K(d − 1)
A(d − 1) + B

n

(
Ad + B

Ad + B + 1
d2+

1
A − (d − 1)2+

1
A

)

≥ (Ad + B)D(d − 1)

mn(Ad + B + 1)
c(m, d − 1) d2+

1
A

+ (d − 1)2+
1
A K(d − 1)

A(d − 1) + B

n
· 2A

2d + 2AB + B

Ad(Ad + B + 1)

≥ (Ad + B)D(d − 1)

mn(Ad + B + 1)
c(m, d − 1) d2+

1
A .

Therefore, Eq. (14) becomes:

C
(Ad + B)D(d − 1)
mn(Ad + B + 1)

c(m, d − 1) d2+
1
A ≥ O

(
d2

n

)
+ O

(
C

d4

n2

)
+ O

(
d4

n2

)
.

In the case 2A = 1 this inequality will be:

C
(Ad + B)D(d − 1)
mn(Ad + B + 1)

c(m, d − 1) d2+
1
A log(n)

≥ O

(
d2

n

)
+ O

(
C

d4 · log(n)
n2

)
+ O

(
d4

n2

)
+ O

(
d log(n)

n

)
.
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In the case 2A > 1 this inequality will be:

C
(Ad + B)D(d − 1)
mn(Ad + B + 1)

c(m, d − 1) d2+
1
A n2A−1

≥ O

(
d2

n

)
+ O

(
C

d4 n2A−1

n2

)
+ O

(
d4

n2

)
+ O

(
d n2A

n2

)
.

It is easy to see that for n ≥ Q · d2 (for some large Q which depends only on
the parameters of the model) these three inequalities are satisfied. This concludes
the proof of the theorem.

4.2 Proof of Theorem 5

This theorem is proved similarly to the concentration theorem from [19]. We also
need the following notation (introduced in [19]):

pn(d) = P
(
dn+1

v = d | dn
v = d

)
= 1 − A

d

n
− B

1
n

+ O

(
d2

n2

)
,

p1n(d) := P
(
dn+1

v = d + 1 | dn
v = d

)
= A

d

n
+ B

1
n

+ O

(
d2

n2

)
,

pj
n(d) := P

(
dn+1

v = d + j | dn
v = d

)
= O

(
d2

n2

)
, 2 ≤ j ≤ m,

pn :=
m∑

k=1

P(dn+1
n+1 = m + k) = O

(
1
n

)
.

To prove Theorem 5 we also need the Azuma–Hoeffding inequality:

Theorem 8 (Azuma, Hoeffding). Let (Xi)n
i=0 be a martingale such that |Xi−

Xi−1| ≤ ci for any 1 ≤ i ≤ n. Then P (|Xn − X0| ≥ x) ≤ 2e
− x2

2
∑n

i=1 c2
i for any

x > 0.

Consider the random variables Xi(d) = E(Tn(d) | Gi
m), i = 0, . . . , n. Note

that X0(d) = ETn(d) and Xn(d) = Tn(d). It is easy to see that Xn(d) is a
martingale.

We will prove below that for any i = 0, . . . , n − 1

(1) if 2A < 1, then |Xi+1(d) − Xi(d)| ≤ Md2,
(2) if 2A = 1, then |Xi+1(d) − Xi(d)| ≤ Md2 log(n),
(3) if 1 < 2A < 3

2 , then |Xi+1(d) − Xi(d)| ≤ Md2n2A−1,

where M > 0 is some constant. The theorem follows from this statement imme-
diately. Indeed, consider the case 2A < 1. Put ci = Md2 for all i. Then from
Azuma–Hoeffding inequality it follows that

P
(|Tn(d) − ETn(d)| ≥ d2

√
n log n

) ≤ 2 exp
{

−nd4 log2 n

2nM2d4

}
= O

(
n− log n

)
.
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Therefore, for the case 2A < 1 the first statement of the theorem is satisfied.
If d ≤ n

A−δ
4A+2 , then the value nd−1/A is considerably greater than d2 log n

√
n.

From this the second statement of the theorem follows. The cases 2A = 1 and
2A > 1 can be considered similarly. It remains to estimate |Xi+1(d) − Xi(d)|.

Fix 0 ≤ i ≤ n − 1 and some graph Gi
m. Note that

∣∣E (
Tn(d) | Gi+1

m

) − E
(
Tn(d) | Gi

m

)∣∣ ≤ max
G̃i+1

m ⊃Gi
m

{
E

(
Tn(d) | G̃i+1

m

)}

− min
G̃i+1

m ⊃Gi
m

{
E

(
Tn(d) | G̃i+1

m

)}
.

Put Ĝi+1
m = arg max E(Tn(d) | G̃i+1

m ), Ḡi+1
m = arg min E(Tn(d) | G̃i+1

m ). It is
sufficient to estimate the difference E(Tn(d) | Ĝi+1

m ) − E(Tn(d) | Ḡi+1
m ).

For i + 1 ≤ t ≤ n put

δi
t(d) = E(Tt(d) | Ĝi+1

m ) − E(Tt(d) | Ḡi+1
m ).

First, let us note that for n ≤ W ·d2 (the value of constant W will be defined
later) we have δi

n(d) ≤ 2mn
d ·

(
m(m−1)

2 + d m
)

≤ 4m2n ≤ Md2 ≤ Md2 log(n) ≤
Md2n2A−1 (since we have at most 2mn

d vertices of degree d, and each vertex of
degree d has at most m(m−1)

2 triangles when this vertex appears plus at each
step we get a triangle only if we hit both the vertex under consideration and a
neighbor of this vertex, and our vertex degree is equal to d, therefore we get at
most d m triangles) for some constant M which depends only on W and m.

It remains to estimate δi
n(d) for n > Wd2. Consider the case 2A < 1. We want

to prove that δi
n(d) ≤ Md2 for n > Wd2 by induction. Suppose that n = i + 1.

Fix Gi
m. Graphs Ĝi+1

m and Ḡi+1
m are obtained from the graph Gi

m by adding the
vertex i+1 and m edges. These m edges can affect the number of triangles on at
most m previous vertices. For example, they can be drown to at most m vertices
of degree d and decrease Ti(d) by at most m d (d−1)

2 . Such reasonings finally lead
to the estimate δi

i+1(d) ≤ Md2 for some M .
Now let us use the induction. Consider t: i + 1 ≤ t ≤ n − 1, t > W d2 (note

that the smaller values of t were already considered). Using similar reasonings
as in the proof of Theorem 4 we get:

δi
t+1(m) = δi

t(m) (1 − pt(m)) + O

(
1
t

)
,

δi
t+1(d) = δi

t(d) (1 − pt(d)) + δi
t(d − 1) p1t (d − 1)

+ (d − 1) ·
(
E(Nt(d − 1) | Ĝi

m) − E(Nt(d − 1) | Ḡi
m)

)
· D

mt

+ O

(
d · ES(t, d − 1)

t2

)
+ O

(
ETt(d) · d2

t2

)
+ O

(
ENt(d) · d3

t2

)
.
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Note that E(Nt(d) | Ĝi+1
m ) − E(Nt(d) | Ḡi+1

m ) = O (d) (see [19]) and ES(t, d −
1) = O (t). From this recurrent relations it is easy to obtain by induction that
δi
n(d) ≤ Md2 for some M . Indeed,

δit+1(m) ≤ Mm2 (1 − pt(m)) +
C1

t
≤ Mm2

(
1 − Am + B

t
+

C2

t2

)
+

C1

t
≤ Mm2

for sufficiently large M . By Ci, i = 1, 2, . . ., we denote some positive constants.
For d > m we get

δit+1(d) ≤ Md2(1 − pt(d)) + M(d − 1)2p1t (d − 1) + C3
d2

t
+ C4

d4

t2

≤ Md2
(
1 − Ad + B

t
+ C5

d2

t2

)
+ M(d − 1)2

(
A(d − 1) + B

t
+ C6

d2

t2

)
+ C3

d2

t

+ C4
d4

t2
≤ Md2 +

M

t

(
A(−3d2 + 3d − 1) + B(−2d + 1) + C7

d4

t
+ C3

d2

M
+C4

d4

Mt

)

≤ Md2 +
M

t

((
−3A + C7

d2

t
+

C3

M
+ C4

d2

Mt

)
· d2

+ (3A − 2B) · d + (B − A)) ≤ Md2.

for sufficiently large W and M .
In the case 2A = 1 we have ES(t, d−1) = O (t log(t)) and we get the following

inequalities:

δi
t+1(m) ≤ Mm2 log(t) (1 − pt(m)) +

C1 log(t)
t

≤ Mm2 log(t + 1),

δi
t+1(d) ≤ Md2 log(t)(1 − pt(d)) + M(d − 1)2 log(t) p1t (d − 1)

+ C2
d2

t
+ C3

d log(t)
t

+ C4
d4 log(t)

t2
≤ Md2 log(t + 1).

In the case 2A > 1 we have ES(t, d − 1) = O
(
t2A

)
and we get the following

inequalities:

δi
t+1(m) ≤ Mm2t2A−1 (1 − pt(m)) +

C1t
2A−1

t
≤ Mm2(t + 1)2A−1,

δi
t+1(d) ≤ Md2t2A−1(1 − pt(d)) + M(d − 1)2 t2A−1p1t (d − 1)

+ C2
d2

t
+ C3

d · t2A−1

t
+ C4

d4t2A−1

t2
≤ Md2(t + 1)2A−1.

This concludes the proof of Theorem 5.
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5 Conclusion

In this paper, we study the local clustering coefficient C(d) for the vertices
of degree d in the T-subclass of the PA-class of models. Despite the fact that
the T-subclass generalizes many different models, we are able to analyze the
local clustering coefficient for all these models. Namely, we proved that C(d)
asymptotically decreases as 2D

Am · d−1. In particular, this result implies that one
cannot change the exponent −1 by varying the parameters A,D, and m. This
basically means that preferential attachment models in general are not flexible
enough to model C(d) ∼ d−ψ with ψ �= 1.

We would also like to mention the connection between the obtained result
and the notion of weak and strong transitivity introduced in [21]. It was shown
in [22] that percolation properties of a network are defined by the type (weak or
strong) of its connectivity. Interestingly, a model from the T-subclass can belong
to either weak or strong transitivity class: if 2D < Am, then we obtain the weak
transitivity; if 2D > Am, then we obtain the strong transitivity.
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Abstract. We establish the conditions under which several algorithmi-
cally exploitable structural features hold for random intersection graphs,
a natural model for many real-world networks where edges correspond
to shared attributes. Specifically, we fully characterize the degeneracy
of random intersection graphs, and prove that the model asymptoti-
cally almost surely produces graphs with hyperbolicity at least log n.
Further, we prove that when degenerate, the graphs generated by this
model belong to a bounded-expansion graph class with high probability,
a property particularly suitable for the design of linear time algorithms.

1 Introduction

There has been a recent surge of interest in analyzing large graphs, stemming
from the rise in popularity (and scale) of social networks and significant growth
of relational data in science and engineering fields (e.g. gene expressions, cyber-
security logs, and neural connectomes). One significant challenge in the field is
the lack of deep understanding of the underlying structure of various classes of
real-world networks. Here, we focus on two structural characteristics that can
be exploited algorithmically: bounded expansion and hyperbolicity.

A graph class has bounded expansion1 if for every member G, one cannot
form arbitrarily dense graphs by contracting subgraphs of small radius. Intu-
itively, this naturally corresponds to sparse interactions between locally dense
clusters or communities. Formally, the density of every minor of G is bounded by
a function of the depth of that minor (the maximum radius of its branch sets).
Bounded expansion offers a structural generalization of both bounded-degree
and graphs excluding a (topological) minor. Algorithmically, this property is

1 Not related to the notion of expander graphs.
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extremely useful: every first-order-definable problem is decidable in linear fpt-
time in these classes [10]. For example, counting the number of appearances of
a fixed pattern graph as a subgraph can be computed in linear time [9,22]. We
also consider δ-hyperbolicity, which restricts the structure of shortest-path dis-
tances in the graph to be tree-like. Hyperbolicity is closely tied to treelength [7],
but unrelated to measures of structural density such as bounded expansion.
Algorithms for graph classes of bounded hyperbolicity often exploit computable
approximate distance trees [7] or greedy routing [17]. Both of these properties
present challenges for empirical evaluation—bounded expansion is only defined
with respect to graph classes (not for single instances), and hyperbolicity is an
extremal statistic whose O(n4) computation is infeasible for many of today’s
large data sets. As is typical in the study of network structure, we instead ask
how the properties behave with respect to randomized models which are designed
to mimic aspects of network formation and structure.

In this paper, we consider the random intersection graph model introduced by
Karoński, Scheinerman, and Singer-Cohen [16,27] which has recently attracted
significant attention in the literature [4,8,12,14,26]. Random intersection graphs
are based on the premise that network edges often represent underlying shared
interests or attributes. The model first creates a bipartite object-attribute graph
B = (V,A,E) by adding edges uniformly at random with a fixed per-edge prob-
ability p(α), then considers the intersection graph: G := (V,E′) where xy ∈ E′

iff the neighborhoods of the vertices x, y in B have a non-empty intersection.
The parameter α controls both the ratio of attributes to objects and the proba-
bility p: for n objects the number of attributes m is proportional to nα and the
probability p to n−(1+α)/2.

Recently, random intersection graphs have gained popularity in modeling
real-world data. For example, Zhao et al. use random intersection graphs to
model the Eschenauer-Gligor (EG) key predistribution scheme for secure con-
nections in wireless networking [29,31,32]. Given sensor nodes and limitations
on their communication ranges (visibility), the problem is to design a topology
for optimal communication. By modeling sensor link unreliability and transmis-
sion constraints with Erdős-Rényi and random geometric graphs, respectively,
the topology of the final EG scheme can be computed with a random intersec-
tion graph on the sensors. Random intersection graphs have also been used in
modeling cybersecurity [2], the spread of epidemics [1], social networks [24,28],
and clustering [30].

Beyond inherently modeling native structure in many real-world applica-
tions, random intersection graphs also have (1) relative mathematical tractability
yielded by the independence of events in the underlying edge creation process,
and (2) the ability to generate graphs with key structural properties match-
ing real data—namely sparsity, (tunable) clustering and assortativity [3,4,8].
Together, these features allow the design of random graph generators that pro-
duce graphs with specific and well-understood properties such as connectivity
and degree distribution. Extending this mathematical understanding, we exam-
ine more complex structural properties such as expansion and hyperbolicity.
Specifically, in this paper we present the following results on the structure of
random intersection graphs:
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(i) For α ≤ 1, with high probability (w.h.p.), random intersection graphs are
somewhere dense (and thus do not have bounded expansion) and have
unbounded degeneracy.

(ii) For α > 1, w.h.p. random intersection graphs have bounded expansion (and
thus constant degeneracy).

(iii) Under reasonable restrictions on the constants in the model, random inter-
section graphs have hyperbolicity Ω(log n) asymptotically almost surely.

In particular, the second result strengthens the original claim that the model
generates sparse graphs for α > 1, by establishing they are in fact structurally
sparse in a robust sense. We note that random intersection graphs only exhibit
tunable clustering when α = 1 [8], so our results strongly support the following:
Homogeneous random intersection graphs fail at being sparse and having tunable
clustering simultaneously2. Finally, we note that the third result is negative—our
bound implies a log n lower bound on the treelength [7].

2 Preliminaries

We start with a few necessary definitions and lemmas, covering each of the
key ideas in the paper (random intersection graphs, degeneracy, expansion, and
hyperbolicity).

Since this paper is concerned with asymptotic results, we use standard asymp-
totic terminology: for each integer n, let Gn define a distribution on graphs with
n vertices (for example, coming from a random graph model). We say the events
En defined on Gn hold asymptotically almost surely (a.a.s.) if limn→∞ P[En] = 1.
Furthermore, we say an event occurs with high probability (w.h.p.) if for any c ≥ 1
the event occurs with probability at least 1 − O(n−c). As a shorthand, we will
simply say that Gn has some property a.a.s.(or w.h.p.).

2.1 Random Intersection Graphs

A wide variety of random intersection graph models have been defined in the
literature; in this paper, we restrict our attention to the most well-studied of
these, G(n,m, p), which is defined as follows:

Definition 1 (Random Intersection Graph Model). Fix positive constants
α, β and γ. Let B be a random bipartite graph on parts of size n and m = βnα

with each edge present independently with probability p = γn−(1+α)/2. Let V (the
nodes) denote the part of size n and A (the attributes) the part of size m. The
associated random intersection graph G = G(n,m, p) is defined on the nodes V :
two nodes are connected in G if they share (are both adjacent to in B) at least
one attribute in A.
2 It should be noted that constant clustering and bounded expansion are not orthog-

onal [9].
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We note that G(n,m, p) defines a distribution Gn on graphs with n vertices.
The notation G = G(n,m, p) denotes a graph G that is randomly sampled from
the distribution Gn. Throughout the manuscript, given a random intersection
graph G(n,m, p) we will refer to B, the associated bipartite graph on n nodes
and m attributes from which G is formed.

In order to work with graph classes formed by the random intersection graph
model, we will need a technical result that bounds the number of attributes in
the neighborhood of a subset of nodes around its expected value. These lemmas
and their proofs can be found in the full version of this paper [11].

2.2 Degeneracy and Expansion

Although it is widely accepted that complex networks tend to be sparse (in terms
of edge density), this property does not suffice for reducing the algorithmic com-
plexity of NP-hard analysis tasks. In order to take advantage of parameterized
algorithms, we focus on structural sparseness. For instance, it is not enough
for a graph to be sparse on average, we would also like it to have sparse sub-
graphs. This motivates a very general class of structurally sparse graphs—those
of bounded degeneracy : A graph is d-degenerate if every subgraph has a vertex
of degree at most d. It is easy to see that the degeneracy is lower-bounded by the
size of the largest clique. Thus, the degeneracy of intersection graphs is bounded
below by the maximum attribute degree in the associated bipartite graph (since
each attribute contributes a complete subgraph of size equal to its degree to the
intersection graph). For certain parameter values, this lower bound will, w.h.p.,
give the correct order of magnitude of the degeneracy of the graph.

Bounded degeneracy however is often too weak a structural guarantee for
the design fast algorithms. Here we focus on the stronger structural property
of bounded expansion which provides a rich framework of algorithmic tools [19].
In the context of networks, bounded expansion captures the idea that networks
decompose into small dense structures (e.g. communities) connected by a sparse
global structure. More formally, we characterize bounded-expansion classes using
special graph minors and an associated density measure (the grad).

Definition 2 (Shallow topological minor, nails, subdivision vertices).
A graph M is an r-shallow topological minor of G if a (≤2r)-subdivision of
M is isomorphic to a subgraph H ′ of G. We call H ′ a model of M in G. For
simplicity, we assume by default that V (M) ⊆ V (H ′) such that the isomorphism
between M and H ′ is the identity when restricted to V (M). The vertices V (M)
are called nails and the vertices V (H ′) \ V (M) subdivision vertices. The set of
all r-shallow topological minors of a graph G is denoted by G �̃ r.

Definition 3 (Topological grad). For a graph G and integer r ≥ 0, the topo-
logical greatest reduced average density (grad) at depth r is defined as ∇̃r(G) =
maxH∈G �̃ r |E(H)|/|V (H)|. For a graph class G, define ∇̃r(G) = supG∈G ∇̃r(G).

Definition 4 (Bounded expansion). A graph class G has bounded expansion
if there exists a function f such that for all r, we have ∇̃r(G) < f(r).
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When introduced, bounded expansion was originally defined using an equiv-
alent characterization based on the notion of shallow minors (cf. [19]): H is a
r-shallow minor of G if H can be obtained from G by contracting disjoint sub-
graphs of radius at most r. In the context of our paper, however, the topological
shallow minor variant proves more useful, and we restrict our attention to this
setting. Let us point out that bounded expansion implies bounded degeneracy,
with 2f(0) being an upper bound on the degeneracy of the graphs. In particular,
G �̃ 0 is the set of all subgraphs of G.

Finally, in order to characterize when the model is not structurally sparse,
we define another class in the hierarchy – nowhere dense is a generalization
of bounded expansion in which we measure the clique number instead of the
edge density of shallow minors. Let ω(G) denote the size of the largest complete
subgraph of a graph G and let ω(G) = supG∈G ω(G) be the natural extension to
graph classes G.

Definition 5 (Nowhere dense [20,21]). A graph class G is nowhere dense if
there exists a function f such that for all r ∈ N it holds that ω(G �̃ r) < f(r).

A graph class is somewhere dense precisely when it is not nowhere dense.
While in general a graph class with unbounded degeneracy is not necessarily
somewhere dense, the negative proofs presented here show that members of the
graph class contain large cliques w.h.p. This simultaneously implies unbounded
degeneracy and that the class is somewhere dense (as a clique is a 0-subdivision
of itself). Consequently, we prove a clear dichotomy: random intersection graphs
are either structurally sparse or somewhere dense.

2.3 Gromov’s Hyperbolicity

The concept of δ-hyperbolicity was introduced by Gromov in the context of
geometric group theory [13]. It captures how “tree-like” a graph is in terms of
its metric structure, and has received attention in the analysis of networks and
informatics graphs. We refer the reader to [6,15,17,18], and references therein,
for details on the motivating network applications.

There are several ways of characterizing δ-hyperbolic metric spaces, all of
which are equivalent up to constant factors [5,7,13]. Since graphs are naturally
geodesic metric spaces when distance is defined using shortest paths, we will use
the definition based on δ-slim triangles (originally attributed to Rips [5,13]).

Definition 6. A graph G = (V,E) is δ-hyperbolic if for all x, y, z ∈ V , for
every choice of geodesic (shortest) paths between them —denoted P [x, y], P [x, z],
P [y, z] —we have ∀v ∈ P [x, y], ∃w ∈ P [x, z] ∪ P [z, y] : dG(v, w) ≤ δ, where
dG(u, v) is shortest-path distance in G.

That is, if G is δ-hyperbolic, then for each triple of vertices x, y, z, and every
choice of three shortest paths connecting them pairwise, each point on the short-
est path from x to y must be within distance δ of a point on one of the other
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paths. The hyperbolicity of a graph G is the minimum δ ≥ 0 so that G is δ-
hyperbolic. Note that a trivial upper bound on the hyperbolicity is half the
diameter (this is true for any graph).

In this paper we give lower bounds for the hyperbolicity of the graphs in
G(n,m, p). We believe (but do not prove) these bounds are asymptotically the
correct order of magnitude (e.g. also upper bounds). This would require that
the diameter of connected components is also logarithmic in n, which has been
shown for a similar model [25].

3 Structural Sparsity of Random Intersection Graphs

In this section we will characterize a clear break in the sparsity of graphs gen-
erated by G(n,m, p), depending on the relative grown rates of the nodes and
attributes in B). In each case, we analyze (probabilistically) the degeneracy and
expansion of the generated class.

Theorem 1. Fix constants α, β and γ. Let m = βnα and p = γn−(1+α)/2. Let
G = G(n,m, p). Then the following hold w.h.p.

(i) If α < 1, G(n,m, p) is somewhere dense and G has degeneracy Ω(γn(1−α)/2).
(ii) If α = 1, G(n,m, p) is somewhere dense and G has degeneracy Ω( log n

log log n ).
(iii) If α > 1, G(n,m, p) has bounded expansion and thus G has degeneracy O(1).

We prove Theorem 1 separately for each of the three ranges of α. When
α ≤ 1, we prove that w.h.p. the random intersection graph model generates
graph classes with unbounded degeneracy by establishing the existence of a
high-degree attribute in the associated bipartite graph (thus lower-bounding the
clique number). These proofs can be found in the full version of this paper [11].

In the remainder of this section, we focus on the case when α > 1, as this
is the parameter range in which the model generates sparse graphs. Here, we
present the general structure of the proof of Theorem 1 for the case α > 1.
Detailed proofs for all lemmas and theorems can be found in the full version of
this paper [11].

Before beginning, we note that if G(n,m, p) has bounded expansion w.h.p.,
then for any p′ ≤ p and m′ ≤ m it follows that w.h.p. G(n,m′, p′) also has
bounded expansion by a simple coupling argument. Thus we can assume without
loss of generality that both γ and β are greater than one. For the remainder of
this section, we fix the parameters γ, β, α > 1, the resulting number of attributes
m = βnα and the per-edge probability p = γn−(1+α)/2.

3.1 Bounded Attribute-Degrees

As mentioned before, for a random intersection graph to be degenerate, the
attributes of the associated bipartite graph must have bounded degree. We prove
that w.h.p., this necessary condition is satisfied.
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Lemma 2. Let c ≥ 1 be a constant such that 2 α+c
α−1 > βγe. Then the probability

that there exists an attribute in the bipartite graph associated with G(n,m, p) of
degree higher than 2 α+c

α−1 is O(n−c).

This allows us to assume for the remainder of the proof that the maximum
attribute degree is bounded.

3.2 Alternative Characterization of Bounded Expansion

We now state a characterization of bounded expansion which is often helpful in
establishing the property for classes formed by random graph models.

Proposition 1 [22,23]. A class C of graphs has bounded expansion if and only if
there exists real-valued functions f1, f2, f3, f4 : R → R+ such that the following
two conditions hold:

(i) For all positive ε and for all graphs G ∈ C with |V (G)| > f1(ε), it holds that
1

|V (G)| · |{v ∈ V (G) : deg(v) ≥ f2(ε)}| ≤ ε.

(ii) For all r ∈ N and for all H ⊆ G ∈ C with ∇̃r(H) > f3(r), it follows that
|V (H)| ≥ f4(r) · |V (G)|.
Intuitively, this states that any class of graphs with bounded expansion is

characterized by two properties:

(i) all sufficiently large members of the class have a small fraction of vertices of
large degree;

(ii) all subgraphs of G ∈ C whose shallow topological minors are sufficiently
dense must necessarily span a large fraction of the vertices of G.

3.3 Stable r-Subdivisions

In order to disprove the existence of an r-shallow topological minor of a certain
density δ, we introduce a stronger topological structure.

Definition 7 (Stable r-subdivision). Given graphs G,H we say that G con-
tains H as a stable r-subdivision if G contains H as a r

2 -shallow topological
minor with model G′ such that every path in G′ corresponding to an edge in H
has exactly length r + 1 and is an induced path in G.

A stable r-subdivision is by definition a shallow topological minor, thus the
existence of an r-subdivision of density δ implies that ∇̃r

2
(G) ≥ δ. We prove that

the densities are also related in the other direction.

Lemma 3. A graph G with ∇̃r
2
(G) ≥ δ contains a stable i-subdivision of density

at least δ/(r + 1) for some i ∈ {0, . . . , r}.
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To show that a graph has no r-shallow minor of density δ, it now suffices
to prove that no stable i-subdivision of density δ/(2r + 1) exists for any i ∈
{0, . . . , 2r}. We note that the other direction would not work, since the existence
of a stable i-subdivision for some i ∈ {0, . . . , 2r} of density δ/(2r + 1) does not
imply the existence of an r-shallow topological minor of density δ.

We now establish the probability of having this structure in the random inter-
section graph model, noting that the following structural result is surprisingly
useful, and appears to have promising applications beyond this work.

Theorem 4. Let c ≥ 1 be a constant, Δ := 2 α+c
α−1 , and φ = (6eΔβγrδ)5rδ 2

(α−1) .
Assuming that no attribute has degree greater than Δ, the probability that G(n,m,
p) contains a stable r-subdivision with k nails for r ≥ 1 and of density δ > 1 is
at most rδk · (φ/n)

α−1
2 k.

Proof sketch. We argue that a dense subdivision in G implies the existence of a
dense subgraph in the associated bipartite graph. We show this by considering
the existence of a stable r-subdivision where all paths are induced, which is
generated by a minimal number of attributes. Notice that if a model of some
graph H exists, so does a model with these properties. This allows us to only
consider attributes with minimum degree two, since every edge in the path is
generated by a different attribute. This is key to giving an upper bound for the
probability of the existence of such a dense subgraph in the bipartite graph and
prove the theorem.

3.4 Density

Before turning to our main result, we need two more lemmas that establish
the probability of graphs generated using G(n,m, p) have special types of dense
subgraphs.

Lemma 5. Let c ≥ 1 be a constant and let Δ := 2 α+c
α−1 . For u ≤ m, k ≤ n,

the probability that the bipartite graph associated with G(n,m, p) contains u
attributes of degree ≤ Δ that generate at least ρ ≥ u edges between k fixed
vertices is at most (

eΔ+1γΔΔβ

u/k

)u (
k

n

)u

.

We note that it is perhaps surprising that ρ disappears in the upper bound
given above. Since we are assuming that the degree of the attributes is bounded
by Δ, the number of attributes u must be at least ρ/

(
Δ
2

)
. Thus the ρ reappears

upon expansion. Since we can bound the degree of the attributes w.h.p. when
α > 1 this theorem is generally applicable to sparse random intersection graphs.

The following Lemma is a rather straightforward consequence of Lemma 5.

Lemma 6. Let c ≥ 1 be a constant, Δ := 2 α+c
α−1 and δ > eΔ+1γΔΔ3β. Then

the probability that G(n,m, p) contains a subgraph of density δ on k nodes is at
most δk(k/n)δk/Δ2

.
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3.5 Main Result

Theorem 7. Fix positive constants α > 1, β and γ. Then w.h.p. the class of
random intersection graphs G(n,m, p) defined by these constants has bounded
expansion.

Proof sketch. We show the two conditions of Proposition 1 are satisfied in
Lemmas 8 and 9, respectively. The proof of Lemma 8 can be found in the full
version of this paper [11].

Lemma 8. Let c ≥ 1 be a constant, Δ := 2 α+c
α−1 and λ be a constant bigger

than max{2eΔ+2γΔΔβ, c}. For G = G(n,m, p) and for all ε > 0 it holds with
probability O(n−c) that |V (G)|−1 · |{v ∈ V (G) : deg(v) ≥ 2λΔ2

ε }| ≤ ε.

Lemma 9. Let c ≥ 1 be a constant, Δ := 2 α+c
α−1 , Δ2 :=

(
Δ
2

)
, φ be defined as in

Theorem4 and δr > (2r + 1) · max{eΔ+1γΔΔΔ2β, (c + 1)Δ2}. Then for every
r ∈ N+, for every 0 < ε < e−3, and for every H ⊆ G = G(n,m, p) with |H| < εn

it holds with probability O(n−c) that ∇̃r(H) ≥ δr.

Proof. By Lemma 2 we can disregard any graph whose associated bipartite graph
has an attribute of degree greater than Δ. By Lemma 3 if G contains an r-shallow
topological minor of density δr then for some i ∈ {0, . . . , 2r} there exists a stable
i-subdivision of density δr/(2r + 1). We can then bound the probability of a r-
shallow topological minor by bounding the probability of a stable i-subdivision
of density δr/(2r + 1).

From Lemma 6 we know that the probability of a 0-shallow topological minor
on k nails is bounded by (

n

k

)
δrk

(
k

n

) δrk

Δ2

. (1)

By Theorem 4, the probability for an i-subdivision of density δr/(2r + 1) for
i ∈ {1, . . . , 2r} is bounded by rδrk · (φ/n)k(α−1)/2

. Taking the union bound of
these two events gives us a total bound of

(
n

k

)
δrk

(
k

n

) δrk

Δ2

+ (2r + 1)rδrk ·
(

φ

n

)α−1
2 k

(2)

for the probability of a dense subgraph or subdivision on k vertices to appear.
Taking the union bound over all k we obtain for the first summand that

εn∑
k=1

(
n

k

)
δrk

(
k

n

) δrk

Δ2

≤ δr

εn∑
k=1

nkek

kk

k(c+1)k+1

n(c+1)k
. (3)

Since δr is a constant, it suffices that the sum in (3) is in O(n−c). We will show
this is bounded by a geometric sum by considering the ratio of two consecutive
summands:

ek+1(k + 1)c(k+1)+1

nc(k+1)

nck

ekkck+1
= e

(k(1 + 1/k))ck+c+1

nckck+1
≤ e2c+1 kc

nc
≤ e2c+1εc. (4)
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Here we used the fact that (1 + 1/k)ck+c+1 ≤ ec(1 + 1/k)c+1 and that (1 +
1/k)c+1 ≤ ec for k ≥ 2 and c ≥ 1.

Since this is smaller than one when ε < e−2 and c ≥ 1, the summands
decrease geometrically. Hence its largest element (i.e. the summand for k = 1)
dominates the total value of the sum, more precisely, there exists a constant ξ
(depending on α and c) such that

εn∑
k=1

ekkck+1

nck
≤ ξ

e

nc
= O(n−c). (5)

We now turn to the second summand. It is easy to see by the same methods
as before that this sum is also geometric for n > φ(α+1)/2 and as such there
exists a constant ξ′ which multiplied with the first element bounds the sum.
An r-shallow topological minor of density δr has at least 2δr nails, thus we can
assume k ≥ 2δr. Since δr > (c + 1)Δ2 ≥ c/(α − 1), we have:

εn∑
k=2δr

(2r + 1)rδrk ·
(

φ

n

)α−1
2 k

≤ ξ′(2r + 1)φδr

n(α−1)δr
≤ ξ′(2r + 1)φδr

nc
= O(n−c). (6)

Combining (5) and (6), Eq. (2) is bounded by O(n−c), as claimed. �

4 Hyperbolicity

We now turn to the question of whether the structure of the shortest-path dis-
tances in random intersection graphs is tree-like (using Gromov’s δ-hyperbolicity
as defined in Sect. 2.3) where we establish a negative result by giving a logarith-
mic lower bound, for all values of α. The details of the proof can be found in the
full version of the paper [11]. Our approach is based on a special type of path,
which gives natural lower bounds on the hyperbolicity.

Definition 8. Let G = G(n,m, p) be a random intersection graph. The k-path
P = v1, v2, . . . , vk+1 in G is called a k-special path if all the internal vertices of
P have degree two in G and there exists another disjoint path connecting v1 and
vk+1 in G. We allow for the second path to have length 0: this occurs if P is a
k-cycle such that all but one vertex of P has degree two in G.

Lemma 10. Let k be a positive integer and G = G(n,m, p). If G contains a
k-special path, then G has hyperbolicity at least �k

4 �.
Proof. Let P be a k-special path in G. By definition, P is part of some cycle C
of length at least k. Without loss of generality, we can suppose that the length
of C is exactly k. Then, v = v1, satisfies

∀u ∈ PG[v�k/4�, v	k/2
] ∪ PG[v	k/2
, v	3k/4
], |u − v|G ≥ �k/4�. (7)

As v1 ∈ P [v�k/4�, v	3k/4
], this shows the hyperbolicity of G is at least �k/4�. �
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Showing that these structures exist in an intersection graph is non-trivial,
but crucial for our proof of the following theorem.

Theorem 11. Fix constants α, β and γ such that γ2β > 1. There exists a con-
stant ξ > 0 such that a.a.s., the random intersection graph G = G(n,m, p) with
m = βnα and p = γn−(1+α/2) has hyperbolicity

(i) at least ξ log n when α ≥ 1,
(ii) (1 ± o(1))ξ log n otherwise.

Proof sketch. We define a variant of the objects from Definition 8—k-special
bipartite paths—whose existence in the associated bipartite graph implies a lower
bound on hyperbolicity in an intersection graph. We show that for a constant
ξ > 0, when k = ξ log n, a.a.s. there is at least one k-special path in G. In par-
ticular, we let Sk denote the number of k-special bipartite paths, and condition
on the fact that the exposed graph has a giant component of size at least δn.
We prove that E[Sξ log n] = ω(1), and that Sk is tightly concentrated about its
mean, using second moment methods.

5 Conclusion and Open Problems

In this paper we have determined the conditions under which random intersection
graphs exhibit two types of algorithmically useful structure. We proved that
graphs in G(n,m, p) are structurally sparse (have bounded expansion) precisely
when the number of attributes in the associated bipartite graph grows faster
than the number of nodes (α > 1). Moreover, we showed that when the generated
graphs are not structurally sparse, they fail to achieve even much weaker notions
of sparsity (in fact, w.h.p. they contain large cliques). We conclude that the tool
kit stemming from the bounded expansion framework is applicable to sparse real-
world networks whose structure is well-modeled by random intersection graphs
with α > 1.

On the other hand, we showed that the metric structure of random intersec-
tion graphs is not tree-like for all values of α: the hyperbolicity (and treelength)
grows at least logarithmically in n. While we only determine a lower bound for
the hyperbolicity, we believe this to be the correct order of magnitude, as the
diameter (a natural upper bound for the hyperbolicity) of similar model of ran-
dom intersection graphs was shown to be O(log n) [25] for a similar range of
parameter values.

A question that naturally arises from these results is if structural sparsity
should be an expected characteristic of practically relevant random graph mod-
els. Further, are the expansion functions small enough to enable practical fpt
algorithms? Preliminary empirical evaluations (using a related specialized color-
ing number) for random intersection graphs with α > 1 indicate the answer is
affirmative (details in the full version [11]). Furthermore, can the random inter-
section graph model be sensibly modified such that the clustering is tunable
while being structurally sparse?
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23. Nešetřil, J., Ossona de Mendez, P., Wood, D.R.: Characterisations and examples
of graph classes with bounded expansion. Eur. J. Comb. 33(3), 350–373 (2012)

24. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

25. Rybarczyk, K.: Diameter, connectivity, and phase transition of the uniform random
intersection graph. Discrete Math. 311, 1998–2019 (2011)

26. Rybarczyk, K.: The coupling method for inhomogeneous random intersection
graphs. Preprint. arXiv:1301.0466 (2013)

27. Singer-Cohen, K.: Random intersection graphs. Ph.D. thesis, Department of Math-
ematical Sciences, The Johns Hopkins University (1995)

28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

29. Zhao, J.: Minimum node degree and k-connectivity in wireless networks with unre-
liable links. In: 2014 IEEE International Symposium on Information Theory (ISIT),
pp. 246–250. IEEE (2014)

30. Zhao, J., Yagan, O., Gligor, V.: On k-connectivity and minimum vertex degree in
random s-intersection graphs. In: ANALCO (2015)

31. Zhao, J., Yagan, O., Gligor, V.: Connectivity in secure wireless sensor networks
under transmission constraints. In: 2014 52nd Annual Allerton Conference on Com-
munication, Control, and Computing, pp. 1294–1301. IEEE (2014)

32. Zhao, J., Yagan, O., Gligor, V.: On the strengths of connectivity and robustness
in general random intersection graphs. In: 2014 IEEE 53rd Annual Conference on
Decision and Control (CDC), pp. 3661–3668. IEEE (2014)

http://arxiv.org/abs/1301.0466


Degree-Degree Distribution in a Power Law
Random Intersection Graph with Clustering

Mindaugas Bloznelis(B)

Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
mindaugas.bloznelis@mif.vu.lt

Abstract. The bivariate distribution of degrees of adjacent vertices
(degree-degree distribution) is an important network characteristic defin-
ing the statistical dependencies between degrees of adjacent vertices. We
show the asymptotic degree-degree distribution of a sparse inhomoge-
neous random intersection graph and discuss its relation to the clustering
and power law properties of the graph.

Keywords: Degree-degree distribution · Power law · Clustering coeffi-
cient · Random intersection graph · Affiliation network · Assortativity
coefficient

1 Introduction

Correlations between degrees of adjacent vertices influence many network prop-
erties including the component structure, epidemic spreading, random walk per-
formance, network robustness, etc., see [2,8,11,14,15] and references therein.
The correlations are defined by the degree-degree distribution, i.e., the bivariate
distribution of degrees of endpoints of a randomly chosen edge. In this paper
we present an analytic study of the degree-degree distribution in a mathemati-
cally tractable random graph model of an affiliation network possessing tunable
power law degree distribution and clustering coefficient. Our study is motivated
by the interest in tracing the relation between the degree-degree distribution and
clustering properties in a power law network.

Affiliation Network and Random Intersection Graph. An affiliation net-
work defines adjacency relations between actors by using an auxiliary set of
attributes. Let V denote the set of actors (nodes of the network) and W denote
the auxiliary set of attributes. Every actor v ∈ V is prescribed a collection
Sv ⊂ W of attributes and two actors u, v ∈ V are declared adjacent in the
network if they share some common attributes. For example one may interpret
elements of W as weights and declare two actors adjacent whenever the total
weight of shared attributes is above some threshold value. Here we consider the
simplest case, where u, v ∈ V are called adjacent whenever they share at least
one common attribute, i.e., Su ∩Sv �= ∅. Two popular examples of real affiliation
networks are the film actor network, where two actors are declared adjacent if
c© Springer International Publishing Switzerland 2015
D.F. Gleich et al. (Eds.): WAW 2015, LNCS 9479, pp. 42–53, 2015.
DOI: 10.1007/978-3-319-26784-5 4
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they have played in the same movie, and the collaboration network, where two
scientists are declared adjacent if they have coauthored a publication.

A plausible model of a large affiliation network is obtained by prescribing
the collections of attributes to actors at random [12,16]. Furthermore, in order
to model the heterogeneity of human activity, every actor vj ∈ V is prescribed
a random weight yj reflecting its activity. Similarly, a random weight xi is pre-
scribed to each attribute wi ∈ W to model its attractiveness. Now an attribute
wi ∈ W is included in the collection Svj

at random and with probability propor-
tional to the attractiveness xi and activity yj . In this way we obtain a random
graph on the vertex set V sometimes called the inhomogeneous random inter-
section graph, see [5] and references therein.

We argue that the inhomogeneous random intersection graph can be consid-
ered as a realistic model of a power law affiliation network. Indeed, empirical
evidence reported in [13] suggests that (at least in some social networks) the
‘heavy-tailed degree distribution is causally determined by similarly skewed dis-
tribution of human activity’.

Rigorous Model. Let X1, . . . , Xm, Y1, . . . , Yn be independent non-negative ran-
dom variables such that each Xi has the probability distribution P1 and each
Yj has the probability distribution P2. Given realized values X = {Xi}m

i=1 and
Y = {Yj}n

j=1 we define the random bipartite graph HX,Y with the bipartition
V ∪ W , where V = {v1, . . . , vn} and W = {w1, . . . , wm}. Every pair {wi, vj} is
linked in HX,Y with probability

pij = min{1, λij}, where λij =
XiYj√

nm
,

independently of the other pairs {w, v} ∈ W × V . The inhomogeneous random
intersection graph G = G(P1, P2, n,m) defines the adjacency relation on the
vertex set V : vertices u, v ∈ V are declared adjacent (denoted u ∼ v) whenever
u and v have a common neighbor in HX,Y . We call this neighbor a witness of
the adjacency relation u ∼ v.

The random graph G has several features that make it a convenient theo-
retical model of a real complex network. Firstly, the statistical dependence of
neighboring adjacency relations in G mimics that of real affiliation networks. In
particular, G admits a tunable clustering coefficient: For m/n → β ∈ (0,+∞)
as m,n → +∞, we have, see [7],

P(v1 ∼ v2|v1 ∼ v3, v2 ∼ v3) =
κ

κ +
√

β
+ o(1). (1)

Here κ := b1b
−1
2 a3a

−2
2 and ai = EXi

1, bj = EY j
1 .

Another important feature of the model is its ability to produce a rich class
of (asymptotic) degree distributions including power law distributions. The fol-
lowing result of [4] will be used below. d(v) denotes the degree of a vertex v ∈ V
in G.
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Theorem 1. Let m,n → ∞.
(i) Assume that m/n → β for some β ∈ (0,+∞). Suppose that EX2

1 < ∞
and EY1 < ∞. Then d(v1) converges in distribution to the random variable

d∗ =
Λ1∑
j=1

τj , (2)

where τ1, τ2, . . . are independent and identically distributed random variables
independent of the random variable Λ1. They are distributed as follows. For
r = 0, 1, 2, . . . , we have

P(τ1 = r) =
r + 1

EΛ0
P(Λ0 = r + 1) and P(Λi = r) = E e−λi

λr
i

r!
, i = 0, 1.

(3)
Here λ0 = X1b1β

−1/2 and λ1 = Y1a1β
1/2.

(ii) Assume that m/n → +∞. Suppose that EX2
1 < ∞ and EY1 < ∞. Then

d(v1) converges in distribution to a random variable Λ3 having the probability
distribution

P(Λ3 = r) = Ee−λ3
λr
3

r!
, r = 0, 1, . . . . (4)

Here λ3 = Y1a2b1.
(iii) Assume that m/n → 0. Suppose that EX1 < ∞. Then P(d(v1) = 0) =

1 − o(1).

Using the fact that a Poisson random variable is highly concentrated around
its mean one can show that for a power law distribution P(λi > r) ∼ ci r−κi ,
with some ci, κi > 0, we have P(Λi > r) ∼ cir

−κi , for i = 0, 1, 3. Here and below
for real sequences {tr}r≥1 and {sr}r≥1 we denote tr ∼ sr whenever tr/sr → 1
as r → +∞. Furthermore, the tail P(d∗ > r) of a randomly stopped sum d∗ is
as heavy as the heavier one of Y1 and τ1, see, e.g., [1]. Hence, choosing a power
law weights X and Y we obtain a power law asymptotic degree distributions,
namely, the distributions of d∗ and Λ3.

In what follows we will focus on the local probabilities. Given c > 0 and κ >
1, we say that a non-negative random variable Z has the power law property Pc,κ

(denoted Z ∈ Pc,κ) if either Z is integer valued and satisfies P(Z = r) ∼ cr−κ,
or Z is absolute continuous with density fZ satisfying fZ(t) = (c + o(1))t−κ as
t → +∞.

Several examples are considered in Remark 1.

Remark 1. Let c, x > 0. Let m,n → +∞.
(i) Let a > 0 and κ > 3. Assume that EeaY1 < ∞ and X1 ∈ Pc,κ. Then

P(d∗ = r) ∼ cbκ−1
1 β(3−κ)/2r1−κ.

(ii) Let κ > 2. Assume that Y1 ∈ Pc,κ and P(X1 = x) = 1. Then P(d∗ =
r) ∼ c(x2b1)κ−1r−κ.

The proof of (i) makes use of power law properties of the local probabilities of
randomly stopped sums, like d∗, in the case where the summands are heavy tailed
and the number of summands has a light tail (see, e.g., Theorem 4.30 of [9]). Unfor-
tunatelly we are not aware of rigorous results establishing power law properties of
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the local probabilities of randomly stopped sums in the case where the number of
summands is heavy tailed.

Degree-Degree Distribution. We are interested in the bivariate distribution
of degrees of adjacent vertices. Denote d1 = d(v1), d2 = d(v2) and let

p(k1, k2) = P(d1 = k1 + 1, d2 = k2 + 1 | v1 ∼ v2), k1, k2 = 0, 1, . . . , (5)

denote the probabilities defining the conditional bivariate distribution of the
ordered pair (d1, d2), given the event that vertices v1 and v2 are adjacent. Let
(u∗, v∗) be an ordered pair of distinct vertices chosen uniformly at random from
V . We note that

p(k1, k2) = p(k2, k1) = P
(
d(u∗) = k1 + 1, d(v∗) = k2 + 1|u∗ ∼ v∗),

since the probability distribution of graph G is invariant under permutations of
its vertices.

In Theorem 2 we collect several examples of degree-degree distributions admit-
ting explicit asymptotic formulas.

Theorem 2. Let c, x > 0. Let m,n → +∞.
(i) Assume that EX2

1 < ∞. Let κ > 2 and assume that Y1 ∈ Pc,κ. Suppose
that m/n → +∞. Then for k1, k2 → +∞ we have

p(k1, k2) = (1 + o(1))c2a2κ−4
2 b2κ−6

1 (k1k2)1−κ . (6)

(ii) Let a, β > 0 and κ > 3. Assume that EeaY1 < ∞ and X1 ∈ Pc,κ.
Suppose that m/n → β. Let k1, k2 → +∞ so that k1 ≤ k2. Suppose that either
k2 − k1 → +∞ or k2 − k1 = k, for an arbitrary, but fixed integer k ≥ 0. Then

p(k1, k2) = (1 + o(1))
β

b41a2
c∗
1f(k1, k2), (7)

where

f(k1, k2) = c∗
2k

2−κ

1 (k2 − k1)1−κ , for k2 − k1 → +∞,

f(k1, k2) = c∗
3,kk2−κ

1 , for k2 − k1 = k.

Here c∗
1 = c(b1β−1/2)κ−1, c∗

2 = cbκ−2
1 b2β

(3−κ)/2, and c∗
3,k =

∑
i≥0 qiqk+i. Fur-

thermore, we have qr ∼ c∗
2r

1−κ. We note that qj are defined in (9).
(iii) Let κ > 2 and β > 0. Assume that Y1 ∈ Pc,κ and P(X1 = x) = 1.

Suppose that m/n → β. For k1, k2 → +∞ we have

p(k1, k2) = (1 + o(1))c2x4κ−8b2κ−6
1 (k1k2)1−κ . (8)

The assumption m/n → +∞ of example (i) of Theorem 2 implies that the
adjacency relations in G are asymptotically independent as m,n → +∞. In
this case the clustering coefficient vanishes and the asymptoptic degree-degree
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distribution is the product of size biased asymptotic degree distributions, see
Theorem 3 and Remark 2 below.

The assumption m/n → β < ∞ of examples (ii) and (iii) of Theorem2 implies
that the adjacency relations remain statistically dependent as m,n → +∞.
In this case G admits a non-vanishing clustering and assortativity coefficients
(degrees of adjacent vertices are positively correlated), [6]. A combination of
heavy tailed weights X and light weights Y of example (ii) produces quite a
complex pattern of the collection of bivariate probabilities p(k1, k2). It seems a
bit surprising to us that a combination of light weights X and heavy tailed Y
of example (iii) of Theorem 2 create bivariate probabilities with asymptotically
independent marginals for k1, k2 → +∞.

Theorem 2 is a corollary of a general result stated in Theorem3 below. Before
formulation of Theorem3 we introduce some notation.

We remark that d∗ defined by (2) depends on Y1. By conditioning on the
event {Y1 = y} we obtain another random variable, denoted d∗

y, which has the
compound Poisson distribution

P(d∗
y = r) = P(d∗ = r|Y1 = y) = P

( N∑
j=1

τj = r
)
, r = 0, 1, . . . .

Here N = Ny denotes a Poisson random variable which is independent of the
iid sequence {τj}j≥1 and has mean ENy = ya1β

1/2, y ≥ 0. Given integers
k1, k2, r ≥ 0, denote

qr = E
(
Y1P(d∗

Y1
= r|Y1)

)
= E

(
Y1P(d∗ = r|Y1)

)
, (9)

pβ(k1, k2) =
β

b41a2

k1∧k2∑
r=0

(r + 1)(r + 2)P(Λ0 = r + 2)qk1−rqk2−r,

p̃(r) = rP(Λ3 = r)
(
EΛ3

)−1
, p∞(k1, k2) = p̃(k1 + 1)p̃(k2 + 1).

Our main result is the following theorem.

Theorem 3. Let m,n → ∞. Suppose that EX2
1 < ∞ and EY1 < ∞.

(i) Assume that m/n → β for some β ∈ (0,+∞). Then for every k1, k2 ≥ 0
we have

p(k1, k2) = pβ(k1, k2) + o(1), (10)

(ii) Assume that m/n → +∞. Then for every k1, k2 ≥ 0 we have

p(k1, k2) = p∞(k1, k2) + o(1). (11)

We note that the moment conditions EX2
1 < ∞ and EY1 < ∞ of Theorem 3

are the minimal ones as a2 = EX2
1 and b1 = EY1 enter the expressions defining

the quantities on the right side of (10) and (11).

Remark 2. In the case where m/n → +∞, the size biased probability distri-
bution {p̃(r)}r≥1 is the limiting distribution of d(v1) conditioned on the event
v1 ∼ v2, i.e.,

P(d(v1) = r|v1 ∼ v2) = p̃(r) + o(1), r = 1, 2, . . . . (12)
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Our final remark is about the case where m/n → 0. By Theorem 1, in this
case the edges of a sparse inhomogeneous random intersection graph span a
subgraph on o(n) randomly selected vertices leaving the remaining (1 − o(1))n
vertices isolated. Consequently, the subgraph is relatively dense and we do not
expect stochastically bounded degrees of endpoints of adjacent vertices.

Related Work. The influence of degree-degree correlations on the network
properties have been studied by many authors, see, e.g., [8,11,14,15] and refer-
ences therein. The asymptotic degree-degree distribution in a preferential attach-
ment random graph with tunable power law degree distribution was shown
in [10]. Our model and approach are much different compared to [10]. To our best
knowledge the present paper is the first attempt to trace the relation between
the degree-degree distribution and the clustering property in a power law net-
work. Connections between Newman’s assortativity coefficient and the clustering
coefficient in a related random graph model has been discussed in [6].

2 Proofs

The section is organized as follows. Before the proofs we present auxiliary
Lemma 1. Then we prove Remark 1, Theorem 2 and sketch the Proof of The-
orem 3. The complete Proof of Theorem 3 is given in [3]. At the end of the
section we prove Remark 2.

Lemma 1. Let c, κ, h > 0. Let Z,ΛZ be non-negative random variables such
that P(ΛZ = r) = E

(
e−ZZr/r!

)
, r = 0, 1, . . . .

(i) The relation P(Z > t) = (c + o(1))t−κ as t → +∞ implies

P(ΛZ > t) = (c + o(1))t−κ as t → +∞. (13)

(ii) Assume that Z ∈ Pc,κ. Then P(ΛZ = r) ∼ cr−κ.
(iii) If hZ is integer valued and satisfies P(hZ = r) ∼ c(h/r)κ then P(ΛZ =

r) ∼ chr−κ.

The Proof of Lemma 1 is technical. It is given in [3].

Proof of Remark 1. Let us prove (i). Lemma 1 implies

P(Λ0 = r) ∼ c∗
1r

−κ, where c∗
1 = c(b1β−1/2)κ−1. (14)

Consequently,
P(τ1 = r) ∼ ca−1

1 (b1β−1/2)κ−2r1−κ . (15)

From the latter relation we conclude that the sequence of probabilities {P(τ1 =
r)}r≥0 is longtailed and subexponential, that is, it satisfies conditions of Theorem
4.30 of [9]. This theorem implies P(

∑
1≤i≤Λ1

τi = r) ∼ P(τ1 = r)EΛ1, thus
completing the proof.

Let us prove (ii). We observe that τ1 has Poisson distribution with mean λ0 =
xb1β

−1/2. Hence, given Λ1, the random variable d∗ has Poisson distribution with
mean λ0Λ1. Now statement (iii) of Lemma 1 implies that P(Λ1 = r) ∼ c∗r−κ,
where c∗ = c(a1β

1/2)κ−1. Next, we apply statement (iii) of Lemma 1 once again
and obtain P(d∗ = r) ∼ c∗λκ−1

0 r−κ.
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Proof of Theorem 2. Statement (i) follows from the relation P(Λ3 = r) ∼ c(a2

b1)κ−1r−κ, see Lemma 1.
In the proof of (ii) and (iii) we assume that k1 ≤ k2 and use the notation

SA =
∑
r∈A

(r + 1)(r + 2)P(Λ0 = r + 2)qk1−rqk2−r, A ∈ [0, k1].

Let us prove (ii). We observe that E(eaY1) < ∞ implies that EY1e
a′Λ1 <

∞ for some a′ > 0. Using this observation and the fact that the sequence of
probabilities {P(τ1 = r)}r≥0 is longtailed and subexponential (see (15) and [9])
we show that

E
(
Y1P(d∗

Y1
= r|Y1)

)∼ (
E(Y1Λ1)

)
P(τ1 = r). (16)

The proof of (16) is much the same as that of Theorem 4.30 in [9]. Now, we
invoke in (16) the identity E(Y1Λ1) = E(Y1λ1) = a1b2β

1/2 and (15), and obtain

E
(
Y1P(d∗

Y1
= r|Y1)

)∼ c∗
2r

1−κ , where c∗
2 = cbκ−2

1 b2β
(3−κ)/2.

Hence we have qr ∼ c∗
2r

1−κ and P(Λ0 = r) ∼ c∗
1r

−κ , see (14).
Now we are ready to prove (7). Let ε = ln(k1 ∧ (k2 − k1)) for k2 − k1 → +∞,

and ε = ln k1 otherwise. Split S[0,k1] = SA1 + SA2 + SA3 , where

A1 = [0, k1/2], A2 = (k1/2, k1 − ε], A3 = (k1 − ε, k1].

In the remaining part of the proof we shall show that SA1 , SA2 are negligibly
small compared to SA3 and determine the first order asymptotics of SA3 as
k1, k2 → +∞. We have for some c̄ > 0 (independent of k1, k2)

SA1 ≤ c̄
∑
i∈A1

1
(k1 − i)κ−1

1
(k2 − i)κ−1

1
(1 + i)κ−2

= O
(
k4−2κ

1 k1−κ

2 (1 + Δ)
)
.

Here Δ = ln n for κ = 3 and Δ = 0 otherwise. Furthermore, for k2 −k1 bounded
we have

SA2 ≤ c̄

kκ−2
1

∑
i∈A2

1
(k1 − i)2κ−2

= O
(
ε3−2κk2−κ

1

)
= o(k2−κ

1 ).

For k2 − k1 → +∞ we have

SA2 ≤ c̄

kκ−2
1

∑
i∈A2

1
(k1 − i)κ−1

1
(k2 − i)κ−1

≤ c̄

kκ−2
1 (k2 − k1)κ−1

∑
i∈A2

1
(k1 − i)κ−1

.

Since
∑

i∈A2

1
(k1−i)κ−1 = O(ε2−κ) = o(1) we obtain SA2 = o

(
k2−κ

1 (k2−k1)1−κ

)
.

Finally, using the approximation (i + 1)(i + 2)P(Λ0 = i + 2) ∼ c∗
1k

2−κ

1

uniformly in i ∈ A3 we obtain for k2 − k1 → +∞

SA3 =
c∗
1(1 + o(1))

kκ−2
1

∑
i∈A3

qk1−iqk2−i ∼ c∗
1

kκ−2
1

c∗
2

(k2 − k1)κ−1

∑
i∈A3

qk1−i

∼ c∗
1c

∗
2

kκ−2
1 (k2 − k1)κ−1

.
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Similarly, in the case where k2 − k1 = k for some fixed k we have

SA3 =
c∗
1(1 + o(1))

kκ−2
1

∑
i∈A3

qk1−iqk2−i ∼ c∗
1c

∗
3,k

kκ−2
1

, where c∗
3,k =

∑
i≥0

qiqk+i.

Let us prove (iii). We observe that Λ0 has the Poisson distribution with (non-
random) mean λ0. Using the identity (r+1)(r+2)P(Λ0 = r+2) = λ2

0P(Λ0 = r)
we write

S[0,k1] = λ2
0

k1∑
r=0

P(Λ0 = r)qk1−rqk2−r = λ2
0E

(
qk1−Λ0qk2−Λ0

)
= λ2

0(J1 + J2),

J1 = E
(
qk1−Λ0qk2−Λ0

)
I{Λ0<

√
k1}, J2 = E

(
qk1−Λ0qk2−Λ0

)
I{√

k1≤Λ0≤k1}.

Next, combining the fast decay of Poisson tail probability P(Λ0 > t) as t → +∞
with the relation, which is shown below,

qr ∼ c0r
1−κ , c0 = c(x2b1)κ−2, (17)

we estimate J1 = (1 + o(1))c20(k1k2)
1−κ and J2 = o((k1k2)1−κ . We obtain that

S[0,1] = (1 + o(1))λ2
0J1. Now the identity pβ(k1, k2) = βb−4

1 x−2S[0,k1] completes
the proof of (8).

Now, we prove (17). Since τ1 has Poisson distribution with mean λ0 =
xb1β

−1/2, we obtain

P(d∗
y = k) = E

(
e−λ0Λ1

(λ0Λ1)k

k!

∣∣∣Y1 = y
)

=
∑
i≥0

e−λ0i (λ0i)k

k!
e−By (By)i

i!
.

Here we denote B = xβ1/2. After we write the product yP(d∗
y = k) in the form

∑
i≥0

e−λ0i (λ0i)k

k!
e−By (By)i+1

(i + 1)!
i + 1
B

= E
(

e−λ0(Λ1−1) (λ0(Λ1 − 1))k

k!
Λ1

B
I{Λ1≥1}

∣∣∣Y1 = y

)
,

we obtain the following expression for the expectation qk = E
(
Y1P(d∗

Y1
=

k|Y1)
)
:

qk =
P(Λ1 ≥ 1)

B
(I1,k + I2,k), I1,k = E

(
e−λ0Z (λ0Z)k

k!

)
, (18)

I2,k = E
(
Ze−λ0Z (λ0Z)k

k!

)
.

Here Z denotes a random variable with the distribution

P(Z = r) = P(Λ1 = r + 1)/P(Λ1 ≥ 1), r = 0, 1, . . . .
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We note that

P(Z = r) ∼ c′r−κ, where c′ = cBκ−1/P(Λ1 ≥ 1). (19)

Indeed, (19) follows from the relation P(Λ1 = r) ∼ cBκ−1r−κ, which is a simply
consequence of the property Pc,κ of the distribution of Y1, see Lemma 1. Next,
we show that

I1,k ∼ c′λκ−1
0 k−κ, I2,k ∼ c′λκ−2

0 k1−κ . (20)

The first relation follows from (19), by Lemma 1. The second relation follows from
the first one via the simple identity I2,k = (k + 1)λ−1

0 I1,k+1. Finally invoking
(20) in (18) we obtain (17).

Proof of Theorem 3. Before the proof we collect some notation.
Given two real sequences {an}n≥1 and {bn}n≥1 we write an ≈ bn to denote

the fact that (an − bn)mn = o(1). By IA we denote the indicator function of an
event A. ĪA = 1 − IA = IĀ denotes the indicator of the complement event Ā.

The number of common neighbors of vi, vj ∈ V is denoted dij . For a vertex
v ∈ V and attribute w ∈ W we denote by {w → v} the event that v and w are
linked in H. Introduce the events Ai = {wi → v1, wi → v2}, 1 ≤ i ≤ m. We
write for short

Iij = I{wi→vj}, Īij = 1 − Iij , Iij = I{λij≤1}, Īij = 1 − Iij .

Let L = (L0, L1, L2) denote the random vector with marginal random variables

L0 = u1, L1 =
∑

2≤i≤m

Ii1ui, L2 =
∑

2≤i≤m

Ii2ui, ui =
∑

3≤j≤n

Iij , 1 ≤ i ≤ m.

Let Λ0, Λ1, Λ2, Λ3, Λ4 denote random variables having mixed Poisson distribu-
tions

P(Λi = r) = E(e−λiλr
i /r!), r = 0, 1, 2, . . . , i = 0, 1, 2, 3, 4. (21)

Here

λ0 = X1b1β
−1/2, λ1 = Y1a1β

1/2, λ2 = Y2a1β
1/2, λ3 = Y1a2b1, λ4 = Y2a2b1.

We assume that conditionally, given Y1, Y2,X1, the random variables Λi, 0 ≤ i ≤
4 are independent. Define random variables d∗

Y1
=

∑Λ1
i=1 τi and d∗

Y2
=

∑Λ2
i=1 τ ′

i .
Here τi, τ

′
i , i ≥ 1 are independent and identically distributed random variables,

which are independent of Y1, Y2,X1 and have distribution (3). Define the events

Uk1,k2 = {d1 = k1 + 1, d2 = k2 + 1}, U∗
r,r1,r2

= {L = (r, r1, r2)},

U∗∗
r,r1,r2

= {Λ0 = r, d∗
Y1

= r1, d
∗
Y2

= r2}, U∗∗∗
r1,r2

= {Λ3 = r1, Λ4 = r2}.

Proof of (i). The intuition behind formula (10) is that the adjacency relation
v1 ∼ v2 as well as the common neighbors of v1 and v2 are witnessed, with a high
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probability, by a single attribute (all attributes having equal chances). Further-
more, conditionally on the event that this attribute is w1, and given Y1, Y2,X1,
we have that the random variables d12, d1 − 1 − d12 =: d′

1, d2 − 1 − d12 =: d′
2

are asymptotically independent. We note that d′
1 and d′

2 count individual (not
shared) neighbors of v1 and v2. The asymptotic independence comes from the
fact that (conditionally given Y1, Y2,X1) these random variables are mainly
related via average characteristics m−1

∑
2≤i≤m Xj

i and n−1
∑

3≤i≤n Y j
i , which

are asymptotically constant, by the law of large numbers. Now, using Theo-
rem 1 we identify limiting distributions of d′

1, d
′
2. The limiting distribution of d12

(conditioned on the event A1) is that of Λ0.
We briefly outline the proof. Firstly, combining the identity {v1 ∼ v2} =

∪m
i=1Ai with approximations

P(∪iAi) =
∑

i

P(Ai) + o(n−1) and P(Ai) ≈ a2b
2
1/(mn)

we show that P(v1 ∼ v2) = a2b
2
1n

−1 + o(n−1) and

p(k1, k2) =
P(Uk1,k2 ∩ {v1 ∼ v2})

P(v1 ∼ v2)
=

P(Uk1,k2 ∩ (∪iAi))
P(∪iAi))

=
nm

a2b21
P(Uk1,k2 ∩ A1) + o(1). (22)

Then using the total probability formula we split

P(Uk1,k2 ∩ A1) =
k1∧k2∑
r=0

P(Uk1,k2 ∩ {d12 = r} ∩ A1). (23)

Secondly, we approximate random variables d12, d
′
1, d

′
2 by L0, L1, L2, and show

that for every r = 0, 1, . . . , k1 ∧ k1

P(Uk1,k2 ∩ {d12 = r} ∩ A1) ≈ P(U∗
r,k1−r,k2−r ∩ A1). (24)

Finally, using the Poisson approximation we approximate the sums of random
indicators L0, L1, L2 by independent random variables Λ0, d

∗
Y1

, d∗
Y2

. In this way
we obtain the approximations, for r, r1, r2 = 0, 1, 2 . . . ,

P(U∗
r,r1,r2

∩ A1) ≈ E
(
λ11λ12P(U∗∗

r,r1,r2

∣∣X1, Y1, Y2)
)
. (25)

Now the simple identity

nmE
(
λ11λ12P(U∗∗

r,r1,r2

∣∣X1, Y1, Y2)
)

=
β

b21
(r + 1)(r + 2)P(Λ0 = r + 2)qr1qr2

completes the proof of (10).

Proof of (ii). The proof (11) is similar to that of (10). It makes use the observa-
tion that the typical adjacency relation is witnessed by a single attribute. One
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difference is that now the size of the collection of attributes, prescribed to the
typical vertex, tends to infinity as n,m → +∞. Since our intersection graph
is sparse, this implies that the number of vertices linked (in H) to any given
single attribute is most likely 0. This number is 1 with a small probability, but
it is almost never larger than 1. As a consequence we obtain that d12 = oP (1).
Another consequence is that the number of neighbors of a given vertex is dis-
tributed as Poisson mixture P(λ), where random variable λ accounts for the size
of the collection of attributes prescribed to the vertex.

The first several steps of the proof are the same as that of (10). Namely,
relations (22), (23), (24) hold true as their proof remains valid for m/n → +∞.
Further steps of the proof are a bit different. We show that

P(U∗
r,k1−r,k2−r ∩ A1) ≈ 0, for r = 1, 2, . . . , (26)

and
P(U∗

0,k1,k2
∩ A1) ≈ P({L1 = k1, L2 = k2} ∩ A1). (27)

Finally, using the Poisson approximation we approximate the sums of indicators
L1, L2 by Poisson mixtures Λ3, Λ4. In this way we obtain the approximation

P({L1 = k1, L2 = k2} ∩ A1) ≈ E
(
λ11λ12P(U∗∗∗

k1,k2

∣∣Y1, Y2)
)
. (28)

Now the simple identity

a−1
2 b−2

1 nmE
(
λ11λ12P(U∗∗∗

k1,k2

∣∣Y1, Y2)
)

= p̃(k1 + 1)p̃(k2 + 1)

completes the proof of (11).

Proof of Remark 2. Let us prove (12). The proof is standard and simple. We
present it here for reader’s convenience. Let (v′

1, v
′
2) denote an ordered pair of

distinct vertices drawn uniformly at random and let P′ and E′ denote the con-
ditional probability and expectation given all the random variables considered,
but (v′

1, v
′
2). We have

P(d(v1) = r|v1 ∼ v2) =
P(d(v1) = r, v1 ∼ v2)

P(v1 ∼ v2)
=

P(d(v′
1) = r, v′

1 ∼ v′
2)

P(v1 ∼ v2)
. (29)

The denominator is evaluated in the Proof of Theorem3: We have

P({v1 ∼ v2}) = n−1a2b
2
1 + o(n−1) = n−1EΛ3 + o(n−1).

In the last step we used the simple identities EΛ3 = Eλ3 = a2b
2
1. In order to

evaluate the numerator we combine identities

P′(d(v′
1) = r, v′

1 ∼ v′
2) = P′(v′

1 ∼ v′
2|d(v′

1) = r)P′(d(v′
1) = r)

=
r

n − 1
P′(d(v′

1) = r),

P(d(v′
1) = r, v′

1 ∼ v′
2) = E

(
P′(d(v′

1) = r, v′
1 ∼ v′

2)
)
.

We obtain P(d(v′
1) = r, v′

1 ∼ v′
2) = (r/(n − 1))P(d(v1) = r). Hence, by (29),

P(d(v1) = r|v1 ∼ v2) = rP(d(v1) = r)(EΛ3)−1 + o(1).

Now, the statement (ii) of Theorem 1 completes the proof of (12).
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Abstract. Models for generating simple graphs are important in the
study of real-world complex networks. A well established example of such
a model is the erased configuration model, where each node receives a
number of half-edges that are connected to half-edges of other nodes at
random, and then self-loops are removed and multiple edges are con-
catenated to make the graph simple. Although asymptotic results for
many properties of this model, such as the limiting degree distribution,
are known, the exact speed of convergence in terms of the graph sizes
remains an open question. We provide a first answer by analyzing the size
dependence of the average number of removed edges in the erased con-
figuration model. By combining known upper bounds with a Tauberian
Theorem we obtain upper bounds for the number of removed edges, in
terms of the size of the graph. Remarkably, when the degree distribution
follows a power-law, we observe three scaling regimes, depending on the
power law exponent. Our results provide a strong theoretical basis for
evaluating finite-size effects in networks.

1 Introduction

The use of complex networks to model large systems has proven to be a powerful
tool in recent years. Mathematical and empirical analysis of structural properties
of such networks, such as graph distances, centralities, and degree-degree corre-
lations, have received vast attention in recent literature. A common approach for
understanding these properties on real-world networks, is to compare them to
those of other networks which have the same basic characteristics as the network
under consideration, for instance the distribution of the degrees. Such test net-
works are usually created using random graph models. An important property
of real-world networks is that they are usually simple, i.e. there is at most one
edge between any two nodes and there are no self-loops. Hence, random graph
models that produce simple graphs are of primary interest from the application
point of view.

One well established model for generating a graph with given degree distri-
bution is the configuration model [5,19,21], which has been studied extensively
in the literature [6,12,15,16]. In this model, each node first receives a certain
number of half-edges, or stubs, and then the stubs are connected to each other
c© Springer International Publishing Switzerland 2015
D.F. Gleich et al. (Eds.): WAW 2015, LNCS 9479, pp. 54–65, 2015.
DOI: 10.1007/978-3-319-26784-5 5
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at random. Obviously, multiple edges and self-loops may appear during the ran-
dom wiring process. It is well-known that when the degree distribution has finite
variance, the graph will be simple with positive probability, so a simple graph
can be obtained by repeatedly applying the model until the resulting graph is
simple. However, when the variance of the degrees is infinite the resulting graph
will, with high probability, not be simple. To remedy this, one can remove self-
loops and concatenate the multiple edges to make the graph simple. This version
is know as the erased configuration model. Although removal of edges impacts
the degree distribution, it has been shown that asymptotically the degree dis-
tribution is unchanged. For a thorough systematic treatment of these results we
refer the reader to [12].

An important feature of the configuration model is that, conditioned on the
graph being simple, it samples a graph uniformly from among all simple graphs
with the specified degree distribution. This, in combination with the neutral
wiring in the configuration model, makes it a crucial model for studying the
effects of degree distributions on the structural properties of the networks, such
as, for instance, graph distances [10,13,14,20] and epidemic spread [1,11,17].

We note that there are several different methods for generating simple graphs,
sampled uniformly from the set of all simple graphs with a given degree sequence.
A large class of such models use Markov-Chain Monte Carlo methods for sam-
pling graphs uniformly from among all graphs with a given set of constraints,
such as the degree sequence. These algorithms use so-called edge swap or switch-
ing steps, [2,18,23], each time a pair of edges is sampled and swapped, if this is
allowed. The main problem with this method are the limited theoretical results
on the mixing times, in [7] mixing times are analyzed, but only for regular
graphs. Other methods are, for instance, the sequential algorithms proposed in
[4,8] which have complexity O(EN2) and O(EN), respectively, where N is the
size of the graph and E denotes the number of edges. The erased configura-
tion model however,is well studied, with strong theoretical results and is easy to
implement.

In a recent study [22], authors compare several methods, including the above
mentioned Markov-Chain Monte Carlo methods, for creating test graphs for the
analysis of structural properties of networks. The authors found that the number
of removed edges did not impact the degree sequence in any significant way.
However, several other measures on the graph, for instance average neighbor
degree, did seem to be altered by the removal of self-loops and double-edges.
This emphasizes the fact that asymptotic results alone are not sufficient. The
analysis of networks requires a more detailed understanding of finite-size effects
in simple random graphs. In particular, it is important to obtain a more precise
characterization for dependence of the number of erased edges on the graph size,
and their impact on other characteristics of the graph.

In our recent work [16] we analyzed the average number of removed edges
in order to evaluate the degree-degree correlations in the directed version of
the erased configuration model. We used insights obtained from several limit
theorems to derive the scaling in terms of the graph size. Here we make these
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rigorous by proving three upper bounds for the average number of removed
edges in the undirected erased configuration model with regularly varying degree
distribution. We start in Sect. 2 with the formal description of the model. Our
main result is stated in Sect. 3 and the proofs are provided in Sect. 4.

2 Erased Configuration Model

The Erased Configuration Model (ECM) is an alteration of the Configuration
Model (CM), which is a random graph model for generating graphs of size n with
either prescribed degree sequence or degree distribution. Given a degree sequence
Dn such that

∑n
i=1 Di is even, the degrees of each node are represented as stubs

and the graph is constructed by randomly pairing stubs to form edges. This will
create a graph with the given degree sequence.

In another version of the model, degrees are sampled independently from a
given distribution, an additional stub is added to the last node if the sum of
degrees is odd, and the stubs are connected as in the case with given degrees.
The empirical degree distribution of the resulting graph will then converge to
the distribution from which the degrees were sampled as the graph size goes to
infinity, see for instance [12].

When the degree distribution has finite variance, the probability of creating
a simple graph with the CM is bounded away from zero. Hence, by repeating the
model, one will obtain a simple graph after a finite number of attempts. This
construction is called the Repeated Configuration Model (RCM). It has been
shown that the RCM samples graphs uniformly from among all simple graphs
with the given degree distribution, see Proposition 7.13 in [12].

When the degrees have infinite variance, the probability of generating a sim-
ple graph with the CM converges to zero as the graph size increases. In this case
the ECM can be used, where after all stubs are paired, multiple edges are merged
and self-loops are removed. This model is computationally far less expensive than
the RCM since the pairing only needs to be done once while in the other case the
number of attempts increases as the variance of the degree distribution grows.
The trade-off is that the ECM removes edges, altering the degree sequence and
hence the empirical degree distribution. Nevertheless it was proven, see [12], that
the empirical degree distribution for the ECM still converges to the original one
as n → ∞.

For our analysis we shall consider graphs of size n generated by the ECM,
where the degrees are sampled at random from a regularly varying distribution.
We recall that X is said to have a regularly varying distribution with finite mean if

P (X > k) = L(k)k−γ with γ > 1, (1)

where L is a slowly varying function, i.e. limx→∞ L(tx)/L(x) = 1 for all t > 0.
The parameter γ is called the exponent of the distribution.

For n ∈ N we consider the degree sequence Dn as a sequence of i.i.d. samples
from distribution (1), let μ = E[D] and denote by Ln =

∑n
i=1 Di the sum of the

degrees. Formally we need Ln to be even in order to have a graphical sequence,
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in which case Ln/2 is the number of edges. This can be achieved by increasing
the degree of the last node, Dn, by one if the sum is odd. This alteration adds a
term uniformly bounded by one which does not influence the analysis. Therefore
we can omit this and treat the degree sequence Dn as an i.i.d. sequence.

For the analysis we denote by Eij the number of edges between two nodes, 1 ≤
i, j ≤ n, created by the CM and by Ec

ij the number of edges between the two nodes
that where removed by the ECM. Furthermore, we let Pn and En be, respectively,
the probability and expectation conditioned on the degree sequence Dn.

3 Main Result

The main result of this paper is concerned with the scaling of the average number
of erased edges in the ECM. It was proven in [15] that

1
Ln

∑
i,j

En [Ec
ij ]

P→ 0 as n → ∞, (2)

where P→ denotes convergence in probability. This result states that the average
number of removed edges converges to zero as the graph size grows, which is in
agreement with the convergence in probability of the empirical degree distribu-
tion to the original one. However, until now there have not been any results on
the speed of convergence in (2). In this section we will state our result, which
establishes upper bounds on the scaling of the average number of erased edges.

To make our statement rigorous we first need to define what we mean by
scaling for a random variable.

Definition 1. Let (Xn)n∈N be sequences of random variables and let ρ ∈ R.
Then we define

Xn = OP (nρ) ⇐⇒ for all ε > 0 n−ρ−εXn
P→ 0, as n → ∞.

We are now ready to state the main result on the scaling of the average
number of erased edges in the ECM.

Theorem 1. Let Gn be a graph generated by the ECM with degree distribu-
tion (1), let Ln be the sum of the degrees and denote by Ec

ij the number of
removed edges from i to j. Then

1
Ln

n∑
i,j=1

En [Ec
ij ] =

⎧⎪⎪⎨
⎪⎪⎩

OP

(
n

1
γ −1

)
if 1 < γ ≤ 3

2 ,

OP

(
n

4
γ −3

)
if 3

2 < γ ≤ 2,

OP

(
n−1

)
if γ > 2.

(3)

The proof of Theorem 1 is given in the next section. The strategy of the proof
is to establish two upper bounds for

∑n
i,j=1 En [Ec

ij ]/Ln for the case 1 < γ ≤ 2,
each of which scales as one of the first two terms from (3). Then it remains to
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Fig. 1. The scaling exponent of the average number of erased edges, as a function of γ.

observe that the term n1/γ−1 dominates n4/γ−3 when 1 < γ ≤ 3/2 while the
latter one dominates when 3/2 < γ < 2. In addition, we prove the n−1 scaling
for γ > 2.

Theorem 1 gives several insights into the behavior of the ECM. First, consider
the case when the degrees have finite variance (γ > 2). Equation (3) tells us that
in that case the ECM will erase only a finite, in n, number of edges. For large n,
this alters the degree sequence in a negligible way. We then gain the advantage
that we need to perform the random wiring only once. In contrast, the RCM
requires multiple attempts before a simple graph is produced. This will be a
problem, especially as γ approaches 2.

An even more interesting phenomenon established by Theorem 1 is the
remarkable change in the scaling at γ = 3/2. Figure 1 shows the exponent in
the scaling term in (3), as a function of γ. Notice that for small values of γ,
the fraction of erased edges decreases quite slowly with n. For example, when
γ = 1.1 and n = 106 then n1/γ ≈ 284803. Hence, a significant fraction of edges
will be removed, so we can expect notable finite size effects even in large net-
works. However, when γ ≥ 3/2 the finite size effects are already very small and
decrease more rapidly with γ.

It will be seen from the proofs in the next section that the upper bounds for
γ > 3/2 in Theorem 1 follow readily from the literature. Our main contribution
is in the upper bound for 1 < γ < 3/2, which corresponds to many real-world
networks. The proof uses a Central Limit Theorem and a Tauberian Theorem
for regularly varying random variables. Note that when 1 < γ < 3/2 the upper
bound n4/γ−3 is not at all tight and even increasing in n for γ < 4/3.

4 Upper Bounds for Erased Edges

Throughout this section we will use the Central Limit Theorem for regularly
varying random variables also called the Stable Law CLT, see [24] Theorem
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4.5.1. We summarize it below, letting d→ denote convergence in distribution, in
the setting of non-negative regularly varying random variables.

Theorem 2 (Stable Law CLT [24]). Let {Xi : i ≥ 1} be an i.i.d. sequence of
non-negative random variables with distribution (1) and 0 < γ < 2. Then there
exists a slowly varying function L0, different from L, such that

∑n
i=1 Di − mn

L0(n)n
1
γ

d→ Sγ ,

where Sγ is a stable random variable and

mn =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 < γ < 1

n2
E

[
sin

(
X

L0(n)n

)]
if γ = 1

nE[X] if 1 < γ < 2.

From Theorem 2 we can infer several scaling results using the following obser-
vation: By Slutsky’s Theorem it follows that

∑n
i=1 Xi − mn

L0(n)n
1
γ

d→ Sγ as n → ∞

implies that for any ε > 0,

n−ε

∑n
i=1 Xi − mn

L0(n)n
1
γ

P→ 0 as n → ∞.

Hence |∑n
i=1 Xi − mn| = OP

(
L0(n)n1/γ

)
and therefore, by Potter’s Theo-

rem, it follows that |∑n
i=1 Xi − mn| = OP

(
n1/γ

)
. Finally, we remark that if D

has distribution (1) with 1 < γ ≤ 2, then D2 has distribution (1) with exponent
1/2 < γ/2 ≤ 1. Summarizing, we have the following.

Corollary 1. Let Gn be a graph generated by the ECM with degree distribution (1)
and 1 < γ ≤ 2, then

Ln = OP (n) ,

∣∣∣∣∣
n∑

i=1

Di − μn

∣∣∣∣∣ = OP

(
n

1
γ

)
and

n∑
i=1

D2
i = OP

(
n

2
γ

)

The third equation also holds for γ = 2 since

n∑
i=1

D2
i =

(
n∑

i=1

D2
i − L0(n)n2

E

[
sin

(
D

nL0(n)

)])
+ L0(n)n2

E

[
sin

(
D

n1L0(n)

)]

≤
(

n∑
i=1

D2
i − n2L0(n)E

[
sin

(
D

n1L0(n)

)])
+ nμ

= OP (L0(n)n) + nμ = OP (n) .
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4.1 The Upper Bounds OP

(
n

4
γ −3

)
and OP

(
n−1

)
For the proof of the upper bounds we will use the following proposition.

Proposition 1 (Proposition 7.10 [12]). Let Gn be a graph generated by the
CM and denote by Sn and Mn, respectively, the number of self-loops and multiple
edges. Then

En [Sn] ≤
n∑

i=1

D2
i

Ln
and En [Mn] ≤ 2

(
n∑

i=1

D2
i

Ln

)2

.

Lemma 1. Let Gn be a graph generated by the ECM with degree distribution (1),
then

1
Ln

n∑
i,j=1

En [Ec
ij ] =

{
OP

(
n

4
γ −3

)
if 1 < γ ≤ 2,

OP

(
n−1

)
if γ > 2.

(4)

Proof. We start by observing that
n∑

i,j=1

Ec
ij = Sn + Mn,

and hence it follows from Proposition 1 that

n∑
i,j=1

En [Ec
ij ] ≤

n∑
i=1

D2
i

Ln
+ 2

(
n∑

i=1

D2
i

Ln

)2

.

First suppose that 1 < γ ≤ 2. Then, by Corollary 1 and the continuous
mapping theorem it follows that

1
Ln

n∑
i,j=1

En [Ec
ij ] ≤ 1

L2
n

n∑
i=1

D2
i + 2

1
L3

n

(
n∑

i=1

D2
i

)2

= OP

(
n

4
γ −3

)
.

Now suppose that γ > 2. Then D2
i has finite mean, say ν, and therefore, by

Theorem 2,

1
L2

n

n∑
i=1

D2
i ≤ 1

L2
n

∣∣∣∣∣
n∑

i=1

D2
i − nν

∣∣∣∣∣ +
nν

L2
n

= OP

(
n

2
γ −2 + n−1

)
= OP

(
n−1

)
,

where the last step follows since 2/γ − 2 < −1 when γ > 2. Since this is the
main term the result follows. �

Lemma 1 provides the last two upper bounds from Theorem 1. However, as
we mentioned before, the bound OP

(
n4/γ−3

)
is not tight over the whole range

1 < γ ≤ 2 since for 1 < γ < 4/3 we have 4/γ − 3 > 0, and hence the upper
bound diverges as n → ∞ which is in disagreement with (2). Therefore, there
must exist another upper bound on the average erased number of edges, which
goes to zero as n → ∞ for all γ > 1. This new bound does not follow readily from
the literature. Below we establish such upper bound and explain the essential
new ingredients needed for its proof.
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4.2 The Upper Bound OP

(
n

1
γ −1

)

We first observe that the number of erased edges between nodes i and j equals
the total number of edges between the nodes minus one, if there is more than
one edge. This gives,

1
Ln

n∑
i,j=1

En [Ec
ij ] =

1
Ln

n∑
i,j=1

En [Eij − 1{Eij>0}]

=
1

Ln

n∑
i,j=1

En [Eij ] − 1
Ln

n∑
i,j=1

En [1 − 1{Eij=0}]

= 1 − n2

Ln
+

1
Ln

n∑
i,j=1

Pn (Eij = 0). (5)

We can get an upper bound for Pn (Eij = 0) from the analysis performed
in [13], Sect. 4. Since the probability of no edges between i and j equals the
probability that none of the Di stubs connects to one of the Dj stubs, it follows
from Eq. (4.9) in [13] that

Pn (Eij = 0) ≤
Di−1∏
k=0

(
1 − Dj

Ln − 2Di − 1

)
+

D2
i Dj

(Ln − 2Di)2
. (6)

The product term in (6) can be upper bounded by exp{−DiDj/En}. For the
second term we use that

1
Ln

n∑
i,j=1

D2
i Dj

(Ln − 2Di)2
=

1
L2

n

n∑
i=1

D2
i

(
1

1 − 2Di

Ln

)2
⎛
⎝ 1

Ln

n∑
j=1

Dj

⎞
⎠

≤ 1
L2

n

n∑
i=1

D2
i = OP

(
n

2
γ −2

)
.

Putting everything together we obtain

1
Ln

n∑
i,j=1

Pn (Eij = 0) ≤
n∑

i,j=1

exp

{
−D+

i D−
j

Ln

}
+ OP

(
n

2
γ −2

)
. (7)

We will use (7) to upper bound (5). In order to obtain the desired result
we will employ a Tauberian Theorem for regularly varying random variables,
which we summarize first. We write a ∼ b to denote that a/b goes to one in a
corresponding limit.

Theorem 3 (Tauberian Theorem, [3]). Let X be a non-negative random
variable with only finite mean. Then, for 1 < γ < 2, the following are equivalent,

(i) P (X > t) ∼ L(t)t−γ as t → ∞,
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(ii)
E[X]

t
− 1 + exp

{
−X

t

}
∼ L

(
1
t

)
t−γ as t → ∞.

We will first explain the idea behind the proof of the OP

(
n1/γ−1

)
bound. If

we insert (7) into (5) we get

1
Ln

n∑
i,j=1

En [Ec
ij ] ≤ 1 − n2

Ln
+

1
Ln

n∑
i,j=1

exp

{
−D+

i D−
j

Ln

}
+ OP

(
n

2
γ −2

)
. (8)

The terms on the right side can be rewritten to obtian an expression that
resembles an empirical version of the left hand side of part (ii) from Theorem 3,
with t = Ln and X = D1D2. Thus, the scaling of the average number of erased
edges will be determined by the scaling that follows from the Tauberian Theorem
and the Stable Law CLT.

Proposition 2. Let Gn be a graph generated by the ECM with degree distribu-
tion (1) and 1 < γ < 2. Then

1
Ln

n∑
i,j=1

En [Ec
ij ] = OP

(
n

1
γ −1

)
. (9)

Proof. We start with Eq. (8). Since the correction term here is of lower order, by
extracting a factor n2/Ln from the other terms and using that Ln =

∑n
i=1 Di,

it suffices to show that

n2

Ln

⎛
⎝ 1

n2

n∑
i,j=1

DiDj

Ln
− 1 +

1
n2

n∑
i,j=1

exp
{

−DiDj

Ln

}⎞
⎠ = OP

(
n

1
γ −1

)
. (10)

We first consider the term inside the brackets in the left hand side of (10).
∣∣∣∣∣∣

1
n2

n∑
i,j=1

DiDj

Ln
− 1 +

1
n2

n∑
i,j=1

exp
{

−DiDj

Ln

}∣∣∣∣∣∣
≤ 1

n2

∣∣∣∣ 1
Ln

− 1
μn

∣∣∣∣
n∑

i,j=1

DiDj (11)

+
1
n2

n∑
i,j=1

∣∣∣∣exp
{

−DiDj

Ln

}
− exp

{
−DiDj

μn

}∣∣∣∣ (12)

+

∣∣∣∣∣∣
1
n2

n∑
i,j=1

(
DiDj

μn
− 1 + exp

{
−DiDj

μn

})∣∣∣∣∣∣ (13)

Since

1
n2

n∑
i,j=1

∣∣∣∣exp
{

−DiDj

Ln

}
− exp

{
−DiDj

μn

}∣∣∣∣ ≤ 1
n2

∣∣∣∣ 1
Ln

− 1
μn

∣∣∣∣
n∑

i,j=1

DiDj ,
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it follows from Corollary 1 that both (11) and (12) are OP

(
n

1
γ −2

)
. Next, observe

that the function e−x − 1 + x is positive which implies, by Markov’s inequality,
that (13) scales as its average

E [D1D2]
μn

− 1 + E

[
exp

{
−D1D2

μn

}]
. (14)

where D1 and D2 are two independent random variables with distribution (1)
and 1 < γ < 2, so that the product D1D2 again has distribution (1) with the
same exponent, see for instance the Corollary after Theorem 3 in [9]. Now we
use Theorem 3 to find that (14), and hence (13) are OP (n−γ). Finally, the term
outside of the brackets in (10) is OP (n) and since 1 − γ < 1

γ − 1 for all γ > 1,
the result follows. �

5 Discussion

The configuration model is one of the most important random graph models
developed so far for constructing test graphs, used in the study of structural
properties of, and processes on, real-world networks. The model is of course
most true to reality when it produces a simple graph. Because this will happen
with vanishing probability for most networks, since these have infinite degree
variance, the ECM can be seen as the primary model for a neutrally wired
simple graph with scale-free degrees. The fact that the fraction of erased edges is
vanishing, suffices for obtaining asymptotic structural properties and asymptotic
behavior of network processes in the ECM. However, real-world networks are
finite, albeit very large. Therefore, it is important to understand and quantify
how the properties and processes in a finite network are affected by the fact that
the graph is simple.

This paper presents the first step in this direction by providing probabilistic
upper bounds for the number of the erased edges in the undirected ECM. This
second order analysis shows that the average number of erased edges by the ECM
decays as n−1 when the variance of the degrees is finite. Since the ECM is com-
putationally less expensive then the RCM and other sequential algorithms, this
is a strong argument for using the ECM as a standard model for generating test
graphs with given degree distribution. Especially since, in contrast to Markov-
Chain Monte Carlo methods using edge swap mechanics, it is theoretically well
analyzed. We also uncover a new transition in the scaling of the average number
of erased edges for regularly varying degree distributions with only finite mean,
in terms of the exponent of the degree distribution.

Based on the empirical results found by us in [16], we conjecture that the
bounds we obtained are tight, up to some slowly varying functions. Therefore,
as a next step one could try to prove Central Limit Theorems for the number
of erased edges, using the bounds from Theorem 1 as the correct scaling factors.
These tools would make it possible to perform statistical analysis of properties
on networks, using the ECM as a model for generating test graphs.
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6. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with
prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)

7. Cooper, C., Dyer, M., Greenhill, C.: Sampling regular graphs and a peer-to-peer
network. Comb. Probab. Comput. 16(04), 557–593 (2007)

8. Del Genio, C.I., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling
of simple graphs with given arbitrary degree sequence. PloS One 5(4), e10012
(2010)

9. Embrechts, P., Goldie, C.M.: On closure and factorization properties of subexpo-
nential and related distributions. J. Aust. Math. Soc. (Series A) 29(02), 243–256
(1980)

10. van den Esker, H., van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Dis-
tances in random graphs with infinite mean degrees. Extremes 8(3), 111–141 (2005)

11. Ferreira, S.C., Castellano, C., Pastor-Satorras, R.: Epidemic thresholds of the
susceptible-infected-susceptible model on networks: a comparison of numerical and
theoretical results. Phys. Rev. E 86(4), 041125 (2012)

12. van der Hofstad, R.: Random graphs and complex networks. Unpublished manu-
script (2007). http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

13. van der Hofstad, R., Hooghiemstra, G., Van Mieghem, P.: Distances in random
graphs with finite variance degrees. Random Struct. Algorithms 27(1), 76–123
(2005)

14. van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Distances in random graphs
with finite mean and infinite variance degrees. Eurandom (2005)

15. van der Hoorn, P., Litvak, N.: Convergence of rank based degree-degree correlations
in random directed networks. Moscow J. Comb. Number Theor. 4(4), 45–83 (2014).
http://mjcnt.phystech.edu/en/article.php?id=92

16. van der Hoorn, P., Litvak, N.: Phase transitions for scaling of structural correlations
in directed networks (2015). arXiv preprint arXiv:1504.01535

17. Lee, H.K., Shim, P.S., Noh, J.D.: Epidemic threshold of the susceptible-infected-
susceptible model on complex networks. Phys. Rev. E 87(6), 062812 (2013)

18. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Science 296(5569), 910–913 (2002)

19. Molloy, M., Reed, B.: A critical point for random graphs with a
given degree sequence. Random Struct. Algorithms 6(2–3), 161–180 (1995).
http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240060204/full

20. Molloy, M., Reed, B.: The size of the giant component of a random graph with a
given degree sequence. Comb. Probab. Comput. 7(03), 295–305 (1998)

http://www.sciencedirect.com/science/article/pii/S0195669880800308
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
http://mjcnt.phystech.edu/en/article.php?id=92
http://arxiv.org/abs/1504.01535
http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240060204/full


Upper Bounds for Number of Removed Edges 65

21. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001).
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.026118
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Abstract. The goal of this work is to study how increased variability
in the degree distribution impacts the global connectivity properties of
a large network. We approach this question by modeling the network
as a uniform random graph with a given degree sequence. We analyze
the effect of the degree variability on the approximate size of the largest
connected component using stochastic ordering techniques. A counterex-
ample shows that a higher degree variability may lead to a larger con-
nected component, contrary to basic intuition about branching processes.
When certain extremal cases are ruled out, the higher degree variability is
shown to decrease the limiting approximate size of the largest connected
component.

Keywords: Configuration model · Size-biased distribution · Length-
biased distribution · Weighted distribution · Convex stochastic order ·
Stochastic comparisons

1 Introduction

Digital communication networks and online social media have dramatically
increased the spread of information in our society. As a result, the global connec-
tivity structure of communication between people appears to be better modeled
as a dimension-free unstructured graph instead of a geometrical graph based on
a two-dimensional grid, and the spread of messages over an online network can
be modeled as an epidemic on a large random graph. When the nodes of the
network spread the epidemic independently of each other, the final outcome of
the epidemic, or the ultimate set of nodes that receive a message, corresponds
to the connected component of the initial root node in a randomly thinned ver-
sion of the original communication graph called the epidemic generated graph
[1]. This is why the sizes of connected components are important in studying
information dynamics in unstructured networks.

A characterizing statistical feature of many communication networks is the
high variability among node degrees, which is manifested by observed approxi-
mate power-law shapes in empirical measurements. The simplest mathematical
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model that allows to capture the degree variability is the so-called configura-
tion model which is defined as follows. Fix a set of nodes labeled using [n] =
{1, 2, . . . , n} and a sequence of nonnegative integers dn = {dn(1), . . . , dn(n)} such
that �n =

∑n
i=1 dn(i) is even. Each node i gets assigned dn(i) half-links, or stubs,

and then we select a uniform random matching among the set of all half-links.
A matched pair of half-links will form a link, and we denote by Xi,j the number
of links with one half-link assigned to i and the other half-link assigned to j. The
resulting random matrix (Xi,j) constitutes a random undirected multigraph on
the node set [n]. This multigraph is called the configuration model generated by
the degree sequence dn. The multigraph is called simple if it contains no loops
(Xi,i = 0 for all i) and no parallel links (Xi,j ≤ 1 for all i, j). The distribution
of the multigraph conditional on being simple is the same as the distribution of
the uniform random graph in the space of graphs on [n] with degree sequence
dn [4, Proposition 7.13].

A tractable mathematical way to analyze large random graphs is to let the
size of the graph grow to infinity and approximate the empirical degree distrib-
ution of the random graph

pn(k) =
1
n

n∑
i=1

1(dn(i) = k)

using a limiting probability distribution p on the infinite set of nonnegative inte-
gers Z+. One of the key results in the theory of random graphs is the following,
first derived by Molloy and Reed [7,8] and strengthened by Janson and �Luczak
[5]. Assume that the collection of degree sequences (dn) is such that the corre-
sponding empirical degree distributions satisfy

pn(k) → p(k) for all k ≥ 0,

sup
n

m2(pn) < ∞, (1)

and that p(2) < 1 and 0 < m1(p) < ∞, where mi(p) =
∑

k kip(k) denotes the ith
moment p. Then [5, Theorem 2.3, Remark 2.7] the size of the largest connected
component |Cmax| in the configuration model multigraph (and in the associated
uniform random graph) converges according to

n−1|Cmax| → ζCM(p) (in probability), (2)

where the constant ζCM(p) ∈ [0, 1] is uniquely characterized by p and satisfies
ζCM(p) > 0 if and only if m2(p) > 2m1(p). The above fundamental result is
important because it has been extended to models of wide generality (e.g. [2]).

Most earlier mathematical studies (and extensions) have focused on estab-
lishing the phase transition (showing that there is a critical phenomenon related
to whether or not ζCM(p) > 0), and studying the behavior of the model near the
critical regime. On the other hand, for practical applications it may crucial to be
able to predict the size of ζCM(p) based on estimates of the degree distribution
p. This paper aims to obtain qualitative insight into this question by studying
properties of the functional p �→ ζCM(p) in detail analyzing its sensitivity to the
variability of p.
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2 The Branching Functional of the Configuration Model

2.1 Size Biasing and Downshifting

The configuration model, like many real-world networks, exhibits a size-bias
phenomenon in degrees, in that “your friends are likely to have more friends
than you do”. The size biasing of a probability distribution μ on the nonnegative
real line R+ (or a subset thereof) with mean m1(μ) =

∫
xμ(dx) ∈ (0,∞), is the

probability distribution μ∗ defined by

μ∗(B) =

∫
B

xμ(dx)
m1(μ)

, B ⊂ R+.

If X and X∗ are random numbers with distributions μ and μ∗, respectively, then

Eφ(X∗) =
Eφ(X)X

EX
(3)

for any real function φ such that the above expectations exist. The size biasing
of a probability distribution p on the nonnegative integers Z+ is given by

p∗(k) =
kp(k)
m1(p)

, k ∈ Z+.

Furthermore, the downshifted size biasing of p is the probability distribution p◦

defined by
p◦(k) = p∗(k + 1), k ∈ Z+. (4)

If X∗ and X◦ are random integers distributed according to p∗ and p◦, respec-
tively, then X◦ and X∗ − 1 are equal in distribution.

Example 1. The size biasing of the Dirac point mass at x is given by δ∗
x = δx.

Example 2. The size biasing of the Pareto distribution Par(α, c) on R+ with
shape α > 1 and scale c > 0 (with density function f(t) = αcαt−α−11(t > c)) is
given by Par(α, c)∗ = Par(α − 1, c).

Example 3. Denote by MPoi(μ) the μ-mixed Poisson distribution on Z+ with
probability mass function

p(k) =
∫
R+

e−λk λk

k!
μ(dλ), k ∈ Z+,

where μ is a probability distribution on R+ with a finite nonzero mean. In this
case the downshifted size biasing is given by MPoi(μ)◦ = MPoi(μ∗). Especially,
by Example 1, Poi(x)◦ = MPoi(δx)◦ = Poi(x) for a standard Poisson distribution
with mean x, and by Example 2, MPoi(Par(α, c))◦ = MPoi(Par(α − 1, c)) for a
Pareto-mixed Poisson distribution with shape α > 1 and scale c > 0.
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2.2 Branching Functional of the Configuration Model

Given a probability distribution p on Z+, we denote by

η(p) = inf{s ≥ 0 : Gp(s) = s}

the smallest fixed point of the generating function Gp(s) =
∑

k≥0 skp(k) in the
interval [0, 1]. Classical branching process theory (e.g. [3,4]) tells that η(p) ∈ [0, 1]
is well defined and equal to the extinction probability of a Galton–Watson
process with offspring distribution p. We denote the corresponding survival prob-
ability by

ζ(p) = 1 − η(p). (5)

As a consequence of [5, Theorem 2.3], the limiting maximum component size
of a configuration model with limiting degree distribution p corresponds to the
survival probability of a two-stage branching process where the root node has
offspring distribution p and all other nodes have offspring distribution p◦ defined
by (4). Therefore, the branching functional p �→ ζCM(p) appearing in (2) can be
written as

ζCM(p) = 1 − Gp(η(p◦)). (6)

A simple closed-form expression for ζCM(p) is not readily available due to
the implicit definition of η(p◦). To get a qualitative insight into the behavior of
ζCM(p) as a functional of p, analytical upper and lower bounds will be valuable
tools. The following result provides a first crude upper bound. Similar bounds
for standard branching processes have been derived in [10,12].

Proposition 1. For any probability distribution p on Z+ with a finite nonzero
mean m1(p),

ζCM(p) ≤ 1 − p(0) − p(1)2

m1(p)
. (7)

Proof. Let p◦ be the downshifted size biasing of p defined by (4). Because a
branching process with offspring distribution p◦ goes extinct at the first step
with probability p◦(0), it follows that

η(p◦) ≥ p◦(0) =
p(1)

m1(p)
.

Together with Gp(s) ≥ p(0) + p(1)s, this shows that

Gp(η(p◦)) ≥ p(0) +
p(1)2

m1(p)
.

The above inequality substituted into (6) implies (7).
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3 Ordering of Branching Processes

3.1 Strong and Convex Stochastic Orders

The upper bound of ζCM(p) obtained in Proposition 1 is rough as it disregards
information about the tail characteristics of p. To obtain better estimates, we
will develop in this section techniques based on the theory of stochastic orders
(see [9] or [11] for comprehensive surveys).

Integral stochastic orderings between probability distributions on R (or a
subset thereof) are defined by requiring∫

φ(x)μ(dx) ≤
∫

φ(x)ν(dx) (8)

to hold for all functions φ : R → R in a certain class of functions such that
both integrals above exist. The strong stochastic order is defined by denoting
μ ≤st ν if (8) holds for all increasing functions φ. The convex stochastic order
(resp. concave, increasing convex, increasing concave) order is defined by denot-
ing μ ≤cx ν (resp. μ ≤cv ν, μ ≤icx ν μ ≤icv ν) if (8) holds for all convex (resp.
concave, increasing convex, increasing concave) functions φ. For random num-
bers X and Y distributed according to μ and ν, we denote X ≤st Y if μ ≤st ν,
and similarly for other integral stochastic orders.

When X ≤st Y we say that X is smaller than Y in the strong order because
then P(X > t) ≤ P(Y > t) for all t. When X ≤cx Y we say that X is less variable
than Y in the convex order, because then EX = EY and Var(X) ≤ Var(Y )
whenever the second moments exist. Note that X ≤cv Y if and only if X ≥cx Y ,
that is, X is less concentrated than Y . The order X ≤icv Y can be interpreted
by saying that X is smaller and less concentrated than Y .

3.2 Stochastic Ordering and Branching Processes

To obtain sharp results for branching processes, it is useful to introduce one
more integral stochastic order. For probability distributions μ and ν on R+ (or
a subset thereof), the Laplace transform order is defined by denoting μ ≤Lt ν if
(8) holds for all functions φ of the form φ(x) = −e−tx with t ≥ 0. Observe that
μ ≤Lt ν is equivalent to requiring Lμ(t) ≥ Lν(t) for all t ≥ 0, where we denote
the Laplace transform of μ by Lμ(t) =

∫
e−txμ(dx). For probability distributions

p and q on Z+, observe that p ≤Lt q if and only if their generating functions are
ordered by Gp(s) ≥ Gq(s) for all s ∈ [0, 1]. Because for any t ≥ 0, the function
x �→ −e−tx is increasing and concave, it follows that

μ ≤st ν =⇒ μ ≤icv ν =⇒ μ ≤Lt ν.

Due to the above implications we may interpret X ≤Lt Y as X being smaller
and less concentrated than Y (in a weaker sense than X ≤icv Y ).

The following elementary result confirms an intuitive fact that a branching
population with a smaller and more variable offspring distribution is less likely
to survive in the long run. The proof can be obtained as a special case of a
slightly more general result below (Lemma 2).
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Proposition 2. When p ≤Lt q, the survival probabilities defined by (5) are
ordered according to ζ(p) ≤ ζ(q). Especially,

p ≤st q or p ≤cv q =⇒ p ≤icv q =⇒ p ≤Lt q =⇒ ζ(p) ≤ ζ(q).

4 Stochastic Ordering of the Configuration Model

Basic intuition about standard branching processes, as confirmed by Proposi-
tion 2, suggests that a large configuration model with a smaller and more variable
degree distribution should have a smaller giant component. The next subsection
displays a counterexample where this intuitive reasoning fails.

4.1 A Counterexample

Consider degree distributions p and q defined by

p =
1
8
δ1 +

6
8
δ2 +

1
8
δ3,

q =
1
16

δ0 +
1
8
δ1 +

5
8
δ2 +

1
8
δ3 +

1
16

δ4,

where δk represents the Dirac point mass at point k. Their downshifted size
biasings, computed using (4), are given by

p◦ =
1
16

δ0 +
12
16

δ1 +
3
16

δ2,

q◦ =
1
16

δ0 +
10
16

δ1 +
3
16

δ2 +
2
16

δ3.

By comparing integrals of cumulative distributions functions [11, Theo-
rem3.A.1] or by constructing a martingale coupling [6], it is not hard to verify
that in this case p ≤cx q. Numerically computed values for the associated means,
variances, and extinction probabilities are listed in Table 1. By evaluating the
associated generating functions at η(p◦) = 0.333 and η(q◦) = 0.186, we find
using (6) that ζCM(p) = 0.870 and ζCM(q) = 0.892.

This example shows that a standard branching process with a less vari-
able offspring distribution (p ≤cx q) is less likely to go extinct (η(p) < η(q)),
but the same is not true for the downshifted size-biased offspring distributions

Table 1. Statistical indices associated to p and q and their downshifted size biasings.

p q p◦ q◦

Mean 2.000 2.000 1.125 1.375

Variance 0.250 0.750 0.234 0.609

Extinction probability η 0.000 0.076 0.333 0.186
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(η(p◦) > η(q◦)). As a consequence, the giant component of a large random
graph corresponding to a configuration model with limiting degree distribution
p is with high probability smaller than the giant component in a similar model
with limiting degree distribution q, even though p is less variable than q. The
reason for this is that, even though higher variability has an unfavorable effect
on standard branching (the immediate neighborhood of the root note), higher
variability also causes the neighbors of a neighbor to have bigger degrees on
average.

4.2 A Monotonicity Result When One Extinction Probability
is Small

The following result shows that increasing the variability of a degree distribution
p does decrease the limiting relative size of a giant component, under the extra
conditions that p(0) = q(0) and that the extinction probability related to q◦ is
less than e−2 ≈ 0.135. Note that in the analysis of configuration models it is
often natural to assume that p(0) = q(0) because nodes without any half-links
have no effect on large components.

Theorem 1. Assume that p ≤icv q, p(0) = q(0), and η(q◦) ≤ e−2. Then
ζCM(p) ≤ ζCM(q).

Remark 1. Assume that q(1) > 0 and that ζCM(q) ≥ 1 − q(0) − q(1)e−2. If this
holds, then the inequality Gq(s) ≥ q(0)+ q(1)s applied to s = η(q◦) implies that

q(0) + q(1)e−2 ≥ 1 − ζCM(q) = Gq(η(q◦)) ≥ q(0) + q(1)η(q◦),

so that η(q◦) ≤ e−2.

The proof of Theorem 1 is based on the following two lemmas.

Lemma 1. If p ≤icv q and p(0) = q(0), then the generating functions of the
downshifted size biasings of p and q are ordered by

Gp◦(s) ≥ Gq◦(s) for all s ∈ [0, e−2].

Proof. Fix s ∈ (0, e−2], define a function φ : R+ → R+ by

φ(x) = xsx,

and observe that

Gp∗(s) =
EXsX

EX
=

Eφ(X)
EX

, (9)

where X is a random integer distributed according to p. Denote t = − log s, so
that t ∈ [2,∞). Because φ′(x) = (1− tx)e−tx and φ′′(x) = (tx− 2)te−tx, we find
that φ is decreasing on [ 1t ,∞) and convex on [2t ,∞). Because t ≥ 2, it follows
that φ is decreasing and convex on [1,∞).
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Now fix a decreasing convex function ψ : R+ → R+ such that ψ(x) = φ(x)
for all x ≥ 1. Such a function can be constructed by letting ψ be linear on [0, 1]
and choosing the intercept and slope so that ψ(1) = φ(1) and ψ′(1) = φ′(1) (see
Fig. 1). Let X∗ and Y ∗ be some random integers distributed according to p∗ and
q∗, respectively. Because φ(0) = 0, we see with the help of (9) that

Gp∗(s) =
Eφ(X)1(X ≥ 1)

EX
=

Eψ(X)1(X ≥ 1)
EX

=
−ψ(0)p(0) + Eψ(X)

EX
.

Observe now that p ≤icv q implies that EX ≤ EY and Eψ(X) ≥ Eψ(Y ). Because
p(0) = q(0), it follows that

Gp∗(s) =
−ψ(0)p(0) + Eψ(X)

EX
≥ −ψ(0)q(0) + Eψ(Y )

EY
= Gq∗(s).

Because Gp◦(s) = s−1Gp∗(s) for s ∈ (0, 1), we find that Gp◦(s) ≥ Gq◦(s) for all
s ∈ (0, e−2]. The claim is true also for s = 0, by the continuity of Gp◦ and Gq◦ .

Fig. 1. Function φ (blue) and the its convex modification ψ (red) for t = 3 (Color
figure online).

Lemma 2. If Gp(s) ≥ Gq(s) for all s ∈ [0, η(q)], then η(p) ≥ η(q).

Proof. The claim is trivial for η(q) = 0, so let us assume that η(q) > 0. Then
Gq(0) > 0, and the continuity of s �→ Gq(s) − s implies that Gq(s) > s for all
s ∈ [0, η(q)). Hence also

Gp(s) ≥ Gq(s) > s

for all s ∈ [0, η(q)). This shows that Gp has no fixed points in [0, η(q)) and
therefore η(p), the smallest fixed point of Gp in [0, 1], must be greater than or
equal to η(q).

Proof (of Theorem 1). By applying Lemma 1 we see that

Gp◦(s) ≥ Gq◦(s) (10)

for all s ∈ [0, e−2]. The assumption η(q◦) ≤ e−2 further guarantees that (10)
is true for all s ∈ [0, η(q◦)]. Lemma 2 then shows that η(p◦) ≥ η(q◦). Finally,
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p ≤icv q implies p ≤Lt q, so that Gp(s) ≥ Gq(s) for all s ∈ [0, 1]. Therefore, the
monotonicity of Gp implies that

Gp(η(p◦)) ≥ Gp(η(q◦)) ≥ Gq(η(q◦)).

By substituting the above inequality into (6), we obtain Theorem 1.

4.3 Application to Social Network Modeling

Consider a large online social network of mean degree λ0 where users forward
copies of messages to their neighbors independently of each other with proba-
bility r0. Without any a priori information about the higher order statistics of
the degree distribution, one might choose to model the network using a config-
uration model with some degree distribution which is similar to one observed in
some known social network. Because several well-studied social networks data
exhibit a power-law tail in their degree data, a natural first choice is to model
the unknown network using a configuration model with a Pareto-mixed Poisson
limiting degree distribution (see Example 3)

p0 = MPoi(Par(α, λ0(1 − 1/α))) (11)

with shape α > 1 and mean λ0.
Because the above choice of degree distribution was made without regard

to network data, it is important to try to analyze how big impact can a wrong
choice make to key network characteristics. When interested in global effects on
information spreading, it is natural to consider the epidemic generated graph
obtained by deleting stubs of the initial configuration model independently with
probability 1 − r0. The outcome corresponds to another configuration model
where the limiting degree p is the r0-thinning of p0, that is, the distribution of
the random integer X =

∑X0
i=1 θi with X0, θ1, θ2, . . . being independent random

integers such that X0 is distributed according to p0, and θi has the Bernoulli
distribution with success probability r0. Using generating functions one may
verify that the r-thinning of a μ-mixed Poisson distribution MPoi(μ) equals
MPoi(rμ), where rμ denotes the distribution of a μ-distributed random number
multiplied by r ∈ [0, 1]. Because r Par(α, c) = Par(α, rc), it follows that the
r0-thinning of p0 in (11) equals

p = MPoi(Par(α, λ(1 − 1/α))) (12)

with λ = λ0r0.
Now the key quantity describing the information spreading dynamics of the

social network model is given by ζCM(p) defined in (6). To study how sensitive
this functional is to the variability of p, we have numerically evaluated ζCM(p)
for different values of α and λ, see Fig. 2. An extreme case is obtained by letting
α → ∞ which leads to the standard Poisson distribution with mean λ. The
dots on the right of Fig. 2 display the values of ζCM(Poi(λ)). Again, perhaps a
bit surprisingly, we see that for small values of λ, a Pareto-mixed Poisson as
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Fig. 2. Configuration model branching functional ζCM(pα) for Pareto-mixed Poisson
degree distribution with mean λ as a function of the tail exponent α > 1.

a limiting degree distribution may produce an asymptotically larger maximally
connected component in a configuration model than a one with a less variable
unmixed Poisson distribution with the same mean. On the other hand, for larger
values of λ, this phenomenon appears not to take place.

Proving the monotonicity of ζCM(p) for Pareto-mixed Poisson distributions
of the form (12) is not directly possible using Theorem 1 because p(0) is not
constant with respect to the shape parameter α. However, the following result
can be applied here. Let us define a constant

λcr = inf{λ ≥ 0 : λζ(Poi(λ)) = 2}.

Because λ �→ λζ(Poi(λ)) is increasing and continuous and grows from zero to
infinity as λ ranges from zero to infinity, it follows that λcr ∈ (2,∞) is well
defined. Numerical computations indicate that λcr ≈ 2.3. The following result
establishes a monotonicity result for the configuration model with a Pareto-
mixed Poisson limiting distribution pα = MPoi(μα) with μα = Par(α, cα), where
the scale cα = λ(1− 1/α) is chosen so that the mean of pα equals λ for all α > 0
(see Example 2).

Theorem 2. For any λ > λcr there exists a constant αcr > 1 such that

ζCM(pα) ≤ ζCM(pβ) ≤ ζCM(Poi(λ))

for all αcr ≤ α ≤ β.
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Remark 2. Note that ζCM(Poi(λ)) = ζ(Poi(λ)) due to the fact that the Poisson
distribution is invariant to downshifted size biasing (cf. Example 3).

Proof. Fix λ > λcr and denote η∞ = η(Poi(λ)). Because λ > λcr, it follows that
λ(1 − η∞) > 2, and therefore

λ(1 − η∞) ≥ 2
1 − 1/α0

+ λε (13)

for some large enough α0 > 1 and small enough ε > 0. Next, Lemma 4 below
shows that μ∗

α = Par(α − 1, cα) → δλ and hence also p◦
α = MPoi(μ∗

α) → Poi(λ)
in distribution as α → ∞. The continuity of the standard branching functional
implies that η(p◦

α) → η∞, and we may choose a constant αcr ≥ α0 such that
η(p◦

α) ≤ η∞ + ε for all α ≥ αcr.
Assume now that αcr ≤ α ≤ β. Then by [11, Theorem 3.A.5], one can

check that
μα ≤cv μβ ≤cv δλ. (14)

Furthermore, cα0 ≤ cα ≤ cβ implies that the supports of μα, μβ , and δλ are
contained in [cα0 ,∞). Lemma 3 below implies that Gp◦

α
(s) ≥ Gp◦

β
(s) ≥ GPoi(λ)

for all s ∈ [0, s0] where s0 = 1 − 2/cα0 . Now (13) shows that

s0 = 1 − λ−1

(
2

1 − 1/α0

)
≥ 1 − λ−1 (λ(1 − η∞) − λε) = η∞ + ε,

and hence the interval [0, s0] contains both [0, η∞] and [0, η(p◦
β)]. By applying

Lemma 2 twice, it follows that η(p◦
α) ≥ η(p◦

β) ≥ η(Poi(λ)) = η∞.
On the other hand, inequality (14) together with [11, Theorem 8.A.14] implies

that MPoi(μα) ≤icv MPoi(μβ) ≤icv Poi(λ). Especially, pα ≤Lt pβ ≤Lt Poi(λ), so
that Gpα

≥ Gpβ
≥ GPoi(λ) pointwise on [0, 1]. This together with the monotonic-

ity of the generating functions shows that

Gpα
(η(p◦

α)) ≥ Gpβ
(η(p◦

β)) ≥ GPoi(λ)(η(Poi(λ))),

and the claim follows by substituting the above inequalities into (6).

Lemma 3. Let p = MPoi(μ) and q = MPoi(ν) where μ ≤icv ν. Assume that the
supports of μ and ν are contained in an interval [c,∞) for some c ≥ 2. Then
Gp◦(s) ≥ Gq◦(s) for all s ∈ [0, 1 − 2/c].

Proof. Note first that for GMPoi(μ)(s) = Lμ(1 − s) and recall from Example 3
that MPoi(μ)◦ = MPoi(μ∗). Hence Gp◦(s) = Lμ∗(1 − s). Fix s ∈ [0, 1 − 2/c] and
note that Gp◦(s) = m1(μ)−1

∫
φs(x)μ(dx), where φs(x) = xe−(1−s)x. Because

φ′
s(x) = (1−(1−s)x)e−(1−s)x and φ′′

s (x) = (1−s)((1−s)x−2)e−(1−s)x, it follows
that the function φs is decreasing on [ 1

1−s ,∞) and convex on [ 2
1−s ,∞). Because

s ∈ [0, 1 − 2/c], it follows that φs is decreasing and convex on the support of μi

for both i = 1, 2. Therefore μ ≤icv ν implies
∫

φsdμ ≥ ∫
φsdν. Because μ ≤icv ν

also implies that the first moments are ordered according to m1(μ) ≤ m1(ν), we
conclude that

Gp◦(s) = m1(μ)−1

∫
φs dμ ≥ m1(ν)−1

∫
φs dν = Gq◦(s).
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Lemma 4. If cα → λ ≥ 0 as α → ∞, then Par(α, cα) → δλ.

Proof. Let U be a uniformly distributed random number in (0, 1). Then Xα =
cα(1 − U)−1/α has Par(α, cα) distribution for all α. Because cα → λ and (1 −
U)−1/α → 1, it follows that Xα → λ almost surely, and hence also in distribution.

5 Conclusions

In this paper we studied the effect of degree variability to the global connectivity
properties of large network models. The analysis was restricted to the configura-
tion model and the associated uniform random graph with a given limiting degree
distribution. Counterexamples were discovered both for a bounded support and
power-law case that described that due to size biasing effects, increased degree
variability may sometimes have a favorable effect on the size of the giant com-
ponent, in sharp contrast to standard branching processes. We also proved using
rigorous mathematical arguments that for some instances of strongly supercrit-
ical networks the increased degree variability has a negative effect on the global
connectivity. To investigate whether or not this finding can be generalized outside
the class of Pareto-mixed Poisson distributions is an interesting open problem
for future research.
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6. Leskelä, L., Vihola, M.: Conditional convex orders and measurable martingale cou-
plings (2014). arXiv:1404.0999

7. Molloy, M., Reed, B.: A critical point for random graphs with a
given degree sequence. Random Struct. Algor. 6(2–3), 161–180 (1995).
http://dx.doi.org/10.1002/rsa.3240060204

8. Molloy, M., Reed, B.: The size of the giant component of a random graph
with a given degree sequence. Comb. Probab. Comput. 7(3), 295–305 (1998).
http://dx.doi.org/10.1017/S0963548398003526

9. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, New York (2002)

10. Sawaya, S., Klaere, S.: Extinction in a branching process: why some of the fittest
strategies cannot guarantee survival. J. Stat. Distrib. Appl. 1(10) (2014)

11. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)
12. Valdés, J.E., Yera, Y.G., Zuaznabar, L.: Bounds for the expected time

to extinction and the probability of extinction in the Galton-Watson
process. Commun. Stat. - Theory Methods 43(8), 1698–1707 (2014).
http://dx.doi.org/10.1080/03610926.2012.673851

http://dx.doi.org/10.1214/13-AAP942
http://dx.doi.org/10.1002/rsa.20322
http://www.win.tue.nl/~rhofstad/NotesRGCN.html
http://dx.doi.org/10.1002/rsa.20231
http://arxiv.org/abs/1404.0999
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1017/S0963548398003526
http://dx.doi.org/10.1080/03610926.2012.673851


Navigability is a Robust Property

Dimitris Achlioptas1 and Paris Siminelakis2(B)

1 Department of Computer Science, University of California, Santa Cruz, USA
optas@cs.ucsc.edu

2 Department of Electrical Engineering, Stanford University, Stanford, USA
psimin@stanford.edu

Abstract. The Small World phenomenon has inspired researchers across
a number of fields. A breakthrough in its understanding was made by
Kleinberg who introduced Rank Based Augmentation (RBA): add to
each vertex independently an arc to a random destination, selected from
a carefully crafted probability distribution. Kleinberg proved that RBA
makes many networks navigable, i.e., it allows greedy routing to suc-
cessfully deliver messages between any two vertices in a polylogarithmic
number of steps. Our goal in this work is to prove that navigability is an
inherent, robust property of many random networks, requiring no aug-
mentation, coordination, or even independence assumptions. Our frame-
work assigns a cost to each edge and considers the uniform measure over
all graphs on n vertices that satisfy a total budget constraint. We show
that when the cost function is sufficiently correlated with the underlying
geometry of the vertices and for a wide range of budgets, the overwhelm-
ing majority of all feasible graphs with the given budget are navigable.
We provide a new set of geometric conditions that generalize Kleinberg’s
set systems as well as a unified analysis of navigability.

1 Introduction

The Small World phenomenon, popularly known as Six Degrees of Separa-
tion [21], refers to the fact that there exist short chains of acquaintances between
most pairs of people in the world. Milgram’s famous 1967 experiment [18] showed
that not only such chains exist, but they can also be found in a decentralized
manner. Specifically, each participant in the experiment was handed a letter
addressed to a certain person and was told of some general characteristics of the
person, including their occupation and location. They were then asked to for-
ward the letter to the individual they knew on a first-name basis who was most
likely to know the recipient. Based on the premise that similar individuals have
higher chance of knowing each other (homophily), the participants typically for-
warded the message to their contact most similar to the target, a strategy that
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yielded remarkably short paths for most letters that reached their target (many
did not).

In groundbreaking work [13,14], Kleinberg formulated mathematically the
property of finding short-paths in a decentralized manner as navigability. Since
then, the concept of navigability has also found applications in the design of
P2P networks [6,23], data-structures [4,20] and search algorithms [17,22]. Key
to decentralization is shared knowledge in the form of geometry, i.e., shared
knowledge of a (distance) function on pairs of vertices (not necessarily satisfying
the triangle inequality).

Geometry. A geometry (V, d) consists of a set of vertices V and a distance
function d : V × V → IR+, where d(x, y) ≥ 0, d(x, y) = 0 iff x = y, and
d(x, y) = d(y, x), i.e., the function d is a semi-metric.

Given a graph1 G(V,E) on a geometry (V, d), a decentralized search algorithm
is any algorithm2 that given a target vertex t and current vertex v selects the
next edge {v, u} ∈ E to cross by only considering the distance of each neighbor
u of v to the target t, i.e., d(u, t). The allowance of paths of polylogarithmic
length in the definition of navigability, below, is motivated by the fact that in
any graph on n vertices with constant degree the diameter is Ω(log n), reflecting
an allowance for polynomial loss due to the lack of global information.

Navigability. A graph G(V,E) on geometry (V, d) is d-navigable if there exists
a decentralized search algorithm which given any two vertices s, t ∈ V will find a
path from s to t of length O (poly(log n)).

In his original work on navigability [13], Kleinberg showed that if G is the
2-dimensional grid then adding a single random edge independently to each
v ∈ V results in a navigable graph (with d being the L1 distance on the grid).
The distribution for selecting the other endpoint u of each added edge is crucial.
Indeed, if it can only depend on d(v, u) and distinct vertices are augmented
independently, Kleinberg showed that there is a unique suitable distribution, the
one in which the probability is proportional to d(v, u)−2 (and, more generally,
d(v, u)−r for r-dimensional lattices). The underlying principle behind Kleinberg’s
augmentation scheme has by now become known as Rank Based Augmentation
(RBA) [14,16].

Rank Based Augmentation. Given a geometry (V, d), a vertex v ∈ V , and
� ≥ 0, let Nv(�) be the number of vertices within distance � from u. In RBA, the
probability of augmenting v with an edge to any u ∈ V is

P (v, u) ∝ 1
Nu (d(v, u))

. (1)

The intuition behind RBA is that navigability is attained because the added
edges provide connectivity across all distance scales. Concretely, observe that for
1 We use this notation instead of G = (V,E) to avoid confusion between graphs and

geometry.
2 Here we are concerned mostly about the geometric-probabilistic requirements of Nav-

igability and less on the performance and trade-offs between different decentralized
algorithms. Thus, we will only analyze greedy routing.
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any partition of the range of the distance function d into intervals, the probability
that the augmenting edge is to a vertex at distance in a given interval is the
same for every interval. Therefore, by partitioning the range of d into O(log n)
intervals we see that, under RBA, whatever the current vertex v is there is always
Ω((log n)−1) probability that its long-range edge is to a vertex at the same
“distance-scale” as the target. Of course, that alone is not enough. In order to
shrink the distance to the target by a constant factor, we also need the long-range
edge to have reasonable probability to go “in the right direction”, something
which is effortlessly true in regular lattices for any finite dimension. In subsequent
work [14], aiming to provide rigorous results for graphs beyond lattices, Kleinberg
showed that the geometric conditions needed for RBA to achieve navigability are
satisfied by the geometries induced by set-systems satisfying certain conditions
when the distance between two vertices is defined as the size of the smallest set
(homophily) containing both.

Another canonical setting [7,9,15] for achieving navigability by RBA is when
the distance function d is the shortest-path metric of a connected graph G0(V,E0)
with large diameter Θ(poly(n)), also known as graph augmentation. In that set-
ting, if Ed is the random set of edges added through RBA, the question is
whether the (random) graph G(V,E0 ∪Ed) is d-navigable. Works of Slivkins [20]
and Fraigniaud et al. [11] have shown the existence of a threshold, below which
navigability is attainable and above which (in the worst case) it is not attainable,
in terms of the doubling dimension of the shortest path metric of G0. Roughly
speaking, the doubling dimension corresponds to the logarithm of the possi-
ble directions that one might need to search, and the threshold occurs when it
crosses Θ(log log n). Thus, we see that even when d is a (shortest path) metric,
significant additional constraints on d need to be imposed.

The remarkable success of RBA in conferring navigability rests crucially on its
perfect adaptation to the underlying geometry. This adaptation, though, requires
not only all vertices to behave identically and independently, but also a very
specific, indeed unique, functional form for the probability distribution of edge
formation. This exact fine tuning renders RBA unnatural, severely undermining
its plausibility. Our goal in this paper is to demonstrate that navigability is
in fact a robust property of networks that does not require coordination or
independence assumptions. We present arguments that point to the inevitable
emergence of Navigability and of Rank Based Augmentation under the right
geometric and “economical” conditions.

1.1 Related Work

The Small World phenomenon and Navigability are by now well studied top-
ics. The review by Kleinberg [12] provides an excellent introduction and covers
almost all of the earlier results up to 2006. Here, we would like to highlight two
major questions that were left open and the work that has been made towards
their resolution the past years.



Navigability is a Robust Property 81

Searchability of Networks. Duchon et al. [7] raised the question whether any
graph G(V,E0) could become navigable after being augmented randomly with
long range edges and proved that this is indeed possible for any graph of bounded
growth. In the same direction, other authors have been looking at other general
sufficient conditions on the underlying graph that enable navigability through
augmentation. Fraigniaud [8] showed that this is possible for bounded-treewidth
graphs, and Abraham et al. [1] showed it, further, for minor-free graphs. The
work of Slivkins proved that augmentation always works if the doubling dimen-
sion of the graph is O(log log n) and Fraigniaud et al. [11] proved that this
is actually best possible. Since [11] research in this topic has turned to prov-
ing upper bounds for the performance of decentralized routing algorithms for
arbitrary graphs. In that direction, Peleg first proved an O(

√
n) upper bound

which was consequently improved to O(n1/3) (up to poly-logarithmic factors) by
Fraigniaud [9]. The best upper bound to date is O(2(log n)1/2+o(1)

) due to the work
of Fraigniaud and Giakkoupis [10] almost matching a lower bound of Ω(2

√
log n)

for “monotone” decentralized algorithm by Fraigniaud et al. [11].

Evolution of Navigbability. Kleinberg’s work identified a specific graph augmen-
tation mechanism (RBA) that renders networks navigable, thus reducing the
question of the evolution of Navigability to the evolution of Rank Based Aug-
mentation. Fraigniaud et al. [5] and Sandberg [19] provided mechanisms based on
random walks that aimed at providing an explanation of the latter. Specifically,
Fraigniaud et al. [5] suggest that each vertex selects its long-range contact by
performing a random walk with a restart probability harmonic with the number
of steps performed. They show that the stationary distribution of this random
walk is approximately the one given by RBA. On the other hand, Sandberg [19]
considers the following evolutionary process, where source-destination pairs are
continuously sampled and messages are forwarded through greedy routing. Each
time a message fails to reach the destination within T times steps an edge is
rewired between the source and destination pair. The author proves that the
stationary distribution of the network exists and presents experimental evidence
that suggest that the link distribution is similar to RBA.

2 Our Contribution

As mentioned, at the foundation of navigability lies shared knowledge in the
form of geometry. At the same time, geometry imposes global constraints on
the set of feasible networks. Most obviously, in a physical network where edges
(wire, roads) correspond to a resource (copper, concrete) there is typically an
upper bound on how much can be invested to create the network. More generally,
cost may represent a number of different notions (e.g., class membership) that
distinguish between edges.

We will formalize the above intuition by (i) allowing edges to have costs
given by an arbitrary function c on the edges, and (ii) taking as input an upper
bound on the total cost of feasible graphs, i.e., a budget B. For instance, the
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cost of each edge may express the propensity (low cost) or reluctance (high cost)
of two individuals interacting. In that case, an upper bound on the total cost
expresses that feasible social interaction graphs are selected to not cause too
much discomfort to the participating individuals.

Geometry, either of physical or of “concept” space, is an extremely natural
backdrop for network formation that brings along both notions of cost and bud-
get. In general, we expect that cost will correlate with geometry and that the
budget, for any given cost function, will be such that the average degree of the
network will be small (a property of nearly all real networks). Within these
highly generic considerations, given a geometry, a cost function, and a budget
we would like to study the set of all graphs satisfying the budget constraint, i.e.,
the set of all feasible graphs, and answer the following question: is it the case
that the overwhelming majority is navigable?

This viewpoint departs from previous work where the aim was to provide a
network creation mechanism that would lead to navigable graphs. Our viewpoint
is motivated by the fact that, in reality, navigability is almost never an explicit
goal of the network formation process yet, at the same time, navigability appears
to be prevalent in a wide variety of settings. Roughly speaking, we isolate three
ingredients that suffice for navigability on a geometry (V, d):

– Some degree of coherence of the distance function d (similar to Kleinberg’s
set systems).

– A substrate of connections between nearby points in V , making it impossible
to get stuck.

– Sufficient, and sufficiently uniform, edge density across all distance scales.

The first two ingredients are generalizations of existing work and, as we will see,
fully compatible with RBA. The third ingredient is also motivated by the RBA
viewpoint, but we will prove that it can be achieved in far more-light handed,
and thus natural, manner than RBA. Moreover, in the course of doing so, we will
give RBA a very natural economic interpretation, as the distribution on edges
arising when the cost of each edge is the cost of indexing among neighbours at
the same distance scale.

Notation. Throughout the paper the set of vertices V is considered to be fixed
and large, i.e., n := |V | is finite but large. Any asymptotic notation, e.g. f(|V |) =
O(g(|V |)) should be interpreted as comparing two functions of |V | (eq. n) and
only means that there are some constants independent of |V | such that the
corresponding inequalities hold, e.g. f(|V |) ≤ Cg(|V |). Lastly, to make the pre-
sentation more readable we will often say that a property A holds with high
probability (w.h.p) to indicate that P(A) ≥ 1 − o(1).

2.1 Geometric Requirements and a Unifying Framework for RBA

We start by introducing the geometric requirements for navigability through the
notion of coherence, that comes with an associated scale factor γ > 1. Specifically,
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given a geometry (V, d) we will refer to the vertices whose distance from a given
vertex v ∈ V lie in the interval (γk−1, γk] as the vertices in the k-th (distance)
γ-scale from v and denote their number as Pk(v). Additionally for any two
vertices v 	= t ∈ V we will use kvt to denote the integer k such that d(v, t) ∈
(γk−1, γk]. For a fixed λ < 1 and any target vertex t 	= v, we will say that a
vertex u is t-helpful to v if d(v, u) ≤ γkvt (u is within the same γ-scale as t from
v), and d(u, t) < λd(v, t) (reduces the distance to t by a constant). We denote
the set of t-helpful nodes of v by Dλ(v, t).

Definition 1. Fix γ > 1 and let K = 
logγ |V |�. A geometry (V, d) is
γ-coherent if:
(H1) Bounded Growth: ∃A > 1, α ∈ (0, 1) such that

Pk(v) ∈ γk[α,A], for all v ∈ V and k ∈ [K].

(H2) Isotropy: ∃φ > 0, 1 > λ > 0 such that

|Dλ(v, t)| ≥ φγkvt , for all v 	= t ∈ V.

The two conditions above endow the, otherwise arbitrary, semi-metric d with
sufficient regularity and consistency to guide the search. Although our definition
of coherence is far more general, in order to convey intuition about the two
conditions, think for a moment of V as a set of points in Euclidean space. The
first condition guarantees that there are no “holes”, as the variance in the density
of points is bounded in every distance scale. The second condition guarantees
that around any vertex v the density of points does not change much depending
on the direction (target vertex t) and distance scale. Besides those two conditions,
we make no further assumptions on d and, in particular, we do not assume the
triangle inequality.

Coherent geometries allow us to provide a unified treatment of navigability
since they encompass finite-dimensional lattices, hierarchical models, any vertex
transitive graph with bounded doubling dimension and more generally as we
show Kleinberg’s set systems.

Theorem 1. Every set system satisfying the conditions of [14] is a γ-coherent
geometry for some γ > 1.

Our second requirement is to assume the existence of a substrate, that implies
that greedy routing will not get trivially stuck, i.e., that we can always move
towards the target even incrementally.

Substrate. A set of edges E0 forms a substrate for a geometry (V, d), if for every
(s, t) ∈ V × V with s 	= t, there is at least one vertex v such that {s, v} ∈ E0

and d(v, t) ≤ d(s, t) − 1. If there are multiple such vertices, we distinguish one
arbitrarily and call it the local t-connection of s. A path starting from s and
ending to t using only local t-connections is called a local (s, t)-path.

In the graph augmentation setting this was given by the fact that the initial
set of edges formed a known connected graph, while in Kleinberg’s work on set



84 D. Achlioptas and P. Siminelakis

systems it was circumvented by making the vertex degrees Θ(log2 n), so that
the probability of ever being stuck at a vertex is polynomially small. We chose
to use the notion of a substrate to encompass the graph augmentation setting
but also generalize it since the semi-metric d is only locally consistent with the
substrate. We show that those two requirements are sufficient for RBA to create
a navigable graph.

Theorem 2. Let (V, d) be any γ-coherent geometry and let E0 be any substrate
for it. If Ed is the (random) set of edges obtained by applying RBA to (V, d),
then the graph G(V,E0 ∪ Ed) is d-navigable w.h.p.

Theorem 2 subsumes and unifies a number of previous positive results on
RBA-induced navigability. Due to space limitations, the proofs of Theorems 1
and 2 are deferred to the full version of the paper. Our main contribution,
though, lies in showing that given a substrate and coherence, navigability can
emerge without any coordination or independence, merely from the alignment
of cost and geometry.

2.2 Navigability from Organic Growth

As mentioned earlier, the success of RBA stems from the fact that the edge-
creation mechanism is perfectly adapted to the underlying geometry so as to
induce navigability. In contrast, we will not specify any edge-creation mecha-
nism, but rather consider the set of all graphs feasible with a given budget. Our
requirement is merely that the cost function is informed by the geometry, in the
following sense.

γ-consistency. Given a γ-coherent geometry (V, d), a cost function c : V ×V →
R is γ-consistent if c takes the same value ck for every edge {u, v} such that
d(u, v) ∈ (γk−1, γk].

In other words, γ-consistency means that the partition of edges according
to cost is a coarsening of the partition of the edges by γ-scale. Note that
beyond γ-consistence we do not impose any constraint on the values {ck},
not even a rudimentary one such as being increasing in k. In fact, even the
γ-consistency requirement can be weakened significantly, as long as some cor-
relation between the two partitions remains, but it is technically much simpler
to assume γ-consistency as it greatly simplifies the exposition. One can think
of consistency as limited sensitivity with respect to distance. As an example, it
means that making friends with the people next door might be more likely than
making friends with other people on the same floor, and that making friends
with people on the same floor is more likely than making friends with people in
a different floor, but it does not really matter which floor.

Cost-Geometries. We say that Γ = Γ (V, d, c) is a coherent cost-geometry if
there exists γ > 1 such that (V, d) is a γ-coherent geometry and c is γ-consistent
cost function.

We are now in a position to state the set of feasible graphs that we consider.
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Random Graphs of Bounded Cost. Given a coherent cost-geometry Γ (V, d, c)
and a real number B ≥ 0, let GΓ (B) = {E ⊆ V × V : 1

n

∑
e∈E c(e) ≤ B}, i.e.,

GΓ (B) is the set of all graphs (edge sets) on V with total cost at most Bn. A
uniformly random element of GΓ (B) will be denoted as EΓ = EΓ (B).

Obtaining bounds on the probability that a uniformly random element out
of GΓ (B) is navigable, is an intuitive and technically enabling way to obtain
bounds on the fraction of feasible graphs that are navigable. Our main result is
the following general theorem.

Theorem 3. For every coherent cost-geometry Γ (V, d, c) with substrate E0,
there exist numbers B± such that if EΓ is a uniformly random element of GΓ (B)
then:

– For all B ≤ B+, w.h.p. |EΓ | = O(n · poly(log n)). (Sparsity)
– For all B ≥ B−, w.h.p. the graph G(V,E0 ∪EΓ ) is d-navigable. (Navigability)

Note that Theorem 3 shows that navigability arises eventually, i.e., for all
B ≥ B−, without any further assumptions on the cost function or geometry.
The caveat, if we think of B as increasing from 0, is that by the time there are
enough edges across all distance scales, i.e., B ≥ B−, the total number of edges
may be much greater than linear. This is because for an arbitrary cost structure
{ck}, by the time the “slowest growing” distance scale has the required number
of edges, the other scales may be replete with edges, possibly many more than the
required Ω(n/poly log n). This is reflected in the ordering between B− and B+

that determines whether the sparsity and navigability regimes are overlapping.
In particular, we would like B− ≤ B+ and, ideally, the ratio R = B+/B− > 0
to be large. Whether this is the case or not depends precisely on the degree of
adaptation of the cost-structure to the geometry, as we discuss next.

2.3 Navigability as a Reflection of the Cost of Indexing

Recall that for every vertex v in a γ-coherent geometry and for every distance
scale k ∈ [K], the number of vertices whose distance from v is in the k-th
γ-distance scale is Pk(v) = Θ(γk). Let pk := 1

2|V |
∑

v∈V Pk(v) be the average
number of vertices at distance scale k from a random vertex. A coherent-cost
geometry is parametrized by the numbers {pk} and the values of the cost func-
tion {ck}.

We will now exhibit a class of cost functions that (i) have an intuitive inter-
pretation as the average cost of indexing, (ii) achieve a ratio R = B+/B− > 0
that grows with n, i.e., a very wide range of budgets for which we have both
navigability and sparsity, and (iii) recover RBA as a special case corresponding
to a particular budget choice. To motivate the cost of indexing consider a vertex
v that needs to forward a message to a neighbor u at the k-th distance scale.
To do so, v needs to distinguish u among all other Pk(v) vertices in the k-th
distance scale, i.e., v needs to be able to index into that scale. Storing the unique
ID of u among the other members of its equivalence class (in the eyes of v) has
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a cost of Θ(log2 Pk(v)) = Θ(log pk) = Θ(k) bits. Motivated by this we consider
cost functions where for some β > 0,

c∗
k =

1
β

log pk. (2)

Theorem 4. For any coherent cost-geometry Γ (V, d, c∗), there exist B± such
that:

(a) B+/B− = ω(poly log n).
(b) For all B ∈ [B−, B+], w.h.p. |EΓ (B)| = O(n poly log n)) and the graph

G (V,E0 ∪ EΓ (B)) is d-navigable.
(c) There exists Bβ ∈ [B−, B+] such that Rank Based Augmentation is approx-

imately recovered.

This concludes the presentation of our results. In the next two sections we
outline the arguments that allow us to the prove our theorems.

3 Navigability via Reducibility and Uniform Richness

In this section we present structural results about navigability on coherent
geometries that allow us to reduce navigability to a “richness” property of the
probability measure on the non-substrate edges. We first define a sufficient deter-
ministic property for navigability.

Reducibility. If G(V,E) is a graph on a coherent geometry (V, d) with substrate
E0 ⊆ E, we will say that (s, t) ∈ V × V is p-reducible if there is C > 0 such that
among the first C(log |V |)p vertices of the local (s, t)-path there is at least one
vertex u such that (u, v) ∈ E and d(v, t) ≤ λd(s, t). If every pair (s, t) ∈ V × V
is p-reducible, we will say that G is p-reducible.

Reducibility expresses that as we move along the local path we never have to
wait too long in order to encounter an edge that reduces the remaining distance
by a constant factor. The motivation for introducing reducibility is that it allows
us to separate the construction of the random graph from the analysis of the
algorithm. Reducibility implies navigability in a straightforward manner.

Proposition 1. If G is p-reducible, then greedy routing on G takes O(log1+p n)
steps.

Reducibility is easiest to establish for random graphs whose edges are included
independently, for concreteness we provide the following definition.

Product Measure. Given a set of vertices V with |V | = n, let Gn denote the
set of all 2(n

2) possible graphs (edge-sets) on n vertices. A product measure on
Gn is specified succinctly by a symmetric matrix Q ∈ [0, 1]n×n of probabilities
where Qii = 0 for i ∈ [n]. We denote by G(n,Q) the distribution over Gn in
which possible edge {i, j} is included independently with probability Qij = Qji.

We next introduce the probabilistic requirement that suffices for reducibility.
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Uniform Richness. Let (V, d) be a γ-coherent geometry with parameter α ∈
(0, 1) (see H1). For θ ≥ 1, a product measure G(n,Q) is θ-uniformly rich for
(V, d) if there is a constant M > 0 such that for every k ≥ kθ, for every pair
(i, j) with d(i, j) ∈ (γk−1, γk] we have:

Qij ≥ 1
M logθ n

1
γk

where kθ := θ log log n−log α
log γ .

The number kθ simply denotes the distance scale that would take O(logθ n)
“slow” steps to cross, and is used to impose density requirements only for non-
trivial distance scales as opposed to all scales. As we show next, uniform richness
is a sufficient condition for reducibility on coherent geometries.

Lemma 1. If (V, d) is a γ-coherent geometry with substrate E0 and Eq is sam-
pled from a θ-uniformly rich product measure G(n,Q), then G(V,E0 ∪ Eq) is
(θ + 1)-reducible with probability at least 1 − n−5.

Deriving navigability from uniform richness may strike the reader as odd,
given that a central goal of our work is to show that independence assumptions
are not needed for navigability. There is no cause for alarm: we will never assume
uniform richness. Instead, we will prove that under certain conditions, the (ran-
dom) set of edges of a typical element of the set of all graphs feasible within
a certain budget dominates a θ-uniformly rich product measure. Our capacity
to do so is enabled by a very recent general theorem we developed in [2] which
asserts that if a family of graphs S ⊆ Gn is sufficiently symmetric, then the
uniform measure on S can be well-approximated by a product measure on the(
n
2

)
edges. We discuss this next.

4 Analyzing the Set of All Feasible Graphs

A classic result of random graph theory is that to study monotone properties of
graphs with n vertices and m edges it suffices to study G(n, p) random graphs,
i.e., graphs generated by including each edge independently of all other with
probability p = p(m) = m/

(
n
2

)
. The reason for this is that the uniform mea-

sure on graphs with exactly m edges is sandwiched by the G(n, p(m)) product
measure, in the following sense.

Sandwichability. The uniform measure U(S) on an arbitrary set of graphs
S ⊆ Gn is (ε, δ)-sandwichable if there exists a n × n symmetric matrix Q such
that the two distributions G± ∼ G(n, (1 ± ε)Q), and the distribution G ∼ U(S)
can be coupled so that G− ⊆ G ⊆ G+ with probability at least 1 − δ.

When S is the set of all graphs with exactly m edges we have Qij = p(m)
for all non-diagonal entries. To make a sandwich, i.e., simultaneously generate
G−, G,G+, one generates

(
n
2

)
i.i.d. uniformly distributed real numbers in [0, 1],

one for each potential edge. The graph G− contains all edges whose r.v. is less
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than (1 − ε)p, the graph G contains the edges corresponding to the m smallest
r.v.’s, while G+ contains all edges whose r.v. is less than (1+ ε)p. As long as the
m-th smallest r.v. is in (1 − ε, 1 + ε)p we have G− ⊆ G ⊆ G+.

The set of all graphs with m edges is highly symmetric: its characteristic
function is invariant under every permutation of the input x ∈ {0, 1}(n

2); it only
cares about |x|. When considering graphs with bounded total cost, symmetry
comes from the fact that edges with the same cost are interchangeable. Thus,
if the number of distinct cost-classes is not too big we can hope for a product
measure approximation (indeed, the set of all graphs with m edges can be seen
as the case where there is only one cost class, unit cost, and the total budget
is m). As discussed earlier, navigability requires some degree of structure in the
underlying geometry in the form of coherence. Our requirement that the cost
function is consistent with the (coherent) geometry, giving rise to a coherent
cost-geometry, is what will give us enough symmetry to apply the main theorem
of [2] and derive the following approximation.

In all of the following, Γ (V, d, c) is an arbitrary coherent cost-geometry and
K = 
logγ |V |�. As before, we denote by ck the cost of an edge of scale k and by
pk the average number of neighbors at distance scale k from a random vertex in
V . For a given budget B ≥ 0, let λ(B) = g−1(B) ≥ 0, where

g(λ) :=
K∑

k=1

ck
pk

1 + exp(λck)
.

Intuitively, λ(B) will control the drop in likelihood of costlier edges as a function
of the budget B (mathematically, λ(B) is a Lagrange multiplier, physically, it
is an inverse temperature). The invertibility of g is as well as the proof of the
following theorem will appear in the full version of the paper.

Theorem 5. For every coherent cost-geometry Γ , there exists a constant
B0(Γ ) > 0 such that for every B ≥ B0(Γ ) the uniform measure on GΓ (B)
is (δ, ε)-sandwichable by the product measure G(n,Q∗(B)) in which each edge of
cost ck has probability

Q∗
ij(B) =

1
1 + exp(λΓ (B)ck)

, (3)

where (δ, ε) =
(√

24
log n , 2n−5K

)
.

Armed with Theorem 5 we can readily show that for a range of values of B,
the product measure defined through (3) is θ-uniformly rich for some θ > 0.

Proposition 2. Let λθ({pk}, {ck}) := minkθ≤k≤K

[
log pk

ck

(
1 + θ log log n

log pk

)]
. Let

B−
θ := max{B0(Γ ), g(λθ)}. For all B ≥ B−

θ , the product measure G(n,Q∗(B))
is θ-uniformly rich.
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Proof. This follows easily by the definition of λθ and the monotonicity of λ(B) =
g−1(B) with respect to B. In particular, for any pair (i, j) of distance scale k ≥ kθ

we have

Q∗
ij(B) = [1 + exp (ckλ(B))]−1 ≥

[
pk logθ(n)

]−1

≥ 1
A logθ(n)γk

,

where the last inequality follows from (H1). �

Proposition 3. Let Λθ({pk}, {ck}) := maxkθ≤k≤K

[
log pk

ck

(
1 − θ log log n

log pk

)]
and

B+
θ := g(Λθ). For all B ≤ B+

θ , the product measure G(n,Q∗(B)) has
O(n logθ+1 n) edges with probability at least 1 − n−5.

Proof. For all B ≤ B+
θ , by definition of Λθ we have that for all k ≥ kθ:

Q∗
ij(B) = [1 + exp (ckλ(B))]−1 ≤

[
pk log−θ(n)

]−1

.

Thus, the expected number of edges n · ∑K
k=1 pk[1 + exp(λ(B)ck)]−1 is upper

bounded by

n ·
[
Akθpkθ

+ (K − kθ) max
k≥kθ

pk
logθ n

pk

]
= n ·O

(
log log(n) logθ n + log(n) logθ n

)
,

since kθ = O(log log n), pkθ
= O(logθ n) by (H1), and K = O(log n). Expressing

the number of edges as a sum of independent Bernoulli random variables and
applying standard Chernoff bounds [3] we get the required conclusion. �

Proof of Theorem 3. For any B ≥ B0(Γ ), consider two random elements gen-
erated according to E± ∼ G(n, (1 ± ε)Q∗(B)) and let W be the event that
E− ⊆ EΓ ⊆ E+. Theorem 5 implies that for ε =

√
24/ log(n) the probability

of W is at least 1 − n−5K . Further, for any constant p > 0 and for an arbi-
trary set of edges E let Np(E) denote the event that the graph G(V,E0 ∪ E))
is not p-reducible and let Nd(E) be the event that the same graph is not d-
navigable. Since p-reducibility is a monotone increasing property with respect
to edge inclusion and since Nd ⊆ Np by Proposition 1, we get

P(Nd(EΓ )) = P(Nd(EΓ ) ∩ W ) + P(Nd(EΓ ) ∩ W ) (4)
≤ P(Np(EΓ )|W ) + P(W ) (5)
≤ PQ∗(Np(E−)) + 2n−5K (6)
≤ n−5 + 2n−5K , (7)

where we used the law of total probability in the first equality, Bayes Theorem in
the second inequality, Theorem 5 and monotonicity of reducibility in the third.
The last inequality follows from Lemma1 and Proposition 2. This proves part (a)
of the theorem. To prove part (b) we follow the same method but for the event
{|EΓ | = ω(npolylogn)} and exploit that, conditional on W occurring, EΓ ⊆ E+.
Using Proposition 3 and Theorem 5 we get the required conclusion. �



90 D. Achlioptas and P. Siminelakis

Proof Sketch of Theorem 4. Due to space constraints we only briefly mention
that the proof of Theorem 4 follows by using the explicit form of the cost function
in (2), the expressions for λθ and Λθ in Propositions 2 and 3 to prove parts (a)
and (b), and finally the expression for Q∗

ij in (3) and property (H1) to prove
part (c). �
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Abstract. Suppose in a graph G vertices can be either red or blue. Let k
be odd. At each time step, each vertex v in G polls k random neighbours
and takes the majority colour. If it doesn’t have k neighbours, it simply
polls all of them, or all less one if the degree of v is even. We study this
protocol on the preferential attachment model of Albert and Barabási
[3], which gives rise to a degree distribution that has roughly power-law
P (x) ∼ 1

x3 , as well as generalisations which give exponents larger than 3.
The setting is as follows: Initially each vertex of G is red independently
with probability α < 1

2
, and is otherwise blue. We show that if α is

sufficiently biased away from 1
2
, then with high probability, consensus is

reached on the initial global majority within O(logd logd t) steps. Here
t is the number of vertices and d ≥ 5 is the minimum of k and m (or
m−1 if m is even), m being the number of edges each new vertex adds in
the preferential attachment generative process. Additionally, our analysis
reduces the required bias of α for graphs of a given degree sequence
studied in [1] (which includes, e.g., random regular graphs).

Keywords: Local majority dynamics · Preferential attachment · Power-
law graphs · Voting · Consensus

1 Introduction

Let G = (V,E) be a graph where each vertex maintains an opinion, which
we speak of in terms of two colours - red and blue. We make no assumptions
about the properties of the colours/opinions except that vertices can distinguish
between them. We are interested in distributed protocols on G that can bring
about consensus to a single opinion.

One of the simplest and most widely studied distributed consensus algorithms
is the voter model (see, e.g., [4, Chap. 14]). In the discrete time setting, at each
time step τ , each vertex chooses a single neighbour uniformly at random (uar)
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and assumes its opinion. The number of different opinions in the system is clearly
non-increasing, and consensus is reached almost surely in finite, non-bipartite,
connected graphs. Using an elegant martingale argument, [13] determined the
probability of consensus to a particular colour. In our context this would be the
sum of the degrees of vertices which started with that colour, as a fraction of
the sum of degrees over all vertices. Thus, on regular graphs, for example, if the
initial proportion of reds is a constant α, the probability of a red consensus is α.
This probability is increased on non-regular graphs if the minority is “privileged”
by sitting on high degree vertices (as in say, for example, the small proportion
of high degree vertices in a graph with power-law distribution). This motivates
an alternative where the majority is certain, or highly likely, to win.

The local majority protocol in a synchronous discrete time setting does the
following: At each time step, each vertex v polls all its neighbours and assumes
the majority colour in the next time step. This can be motivated by both a
prescriptive and a descriptive view. In the former, as a consensus protocol, it
can be seen as a distributed co-ordination mechanism for networked systems. In
the latter, it can be seen as a natural process occurring, for example in social
networks where it may represent the spread of influence.

Let k be odd. Suppose at time step τ = 0 each vertex of a graph G = (V,E)
is either red or blue. In this paper we study the following generalisation of the
local majority protocol (also in a synchronous, discrete time setting):

Definition 1 (k-choice Local Majority Protocol MPk). For each vertex
v ∈ V , for each time step τ = 1, 2, . . . do the following: choose a set of k
neighbours of v uniformly at random. The colour of v at time step τ is the
majority colour of this set at time step τ − 1. If v does not have k neighbours,
then choose a random set of largest possible odd cardinality.

Clearly, we can retrieve the local majority protocol by setting k to be the
maximum degree, for example.

In addition to which colour dominates, one is also interested in how long
it takes to reach consensus. In the voter model, there is a duality between the
voting process and multiple random walks on the graph. The time it takes for
a single opinion to emerge is the same as the time it takes for n independent
random walks - one starting at each vertex - to coalesce into a single walk, where
two or more random walks coalesce if they are on the same vertex at the same
time. Thus, consensus time can be determined by studying this multiple walk
process. However, the analyses of local-majority-type protocols have not been
readily amenable to the established techniques for the voter model, namely,
martingales and coalescing random walks. Martingales have proved elusive and
the random walks duality does not readily transfer, nor is there an obvious way of
altering the walks appropriately. Thus, ad-hoc techniques and approaches have
been developed.

We say a sequence of events (Et)t occurs with high probability (whp) if
Pr(Et) → 1 as t → ∞. In this paper, the underlying parameter t which goes to
infinity will be the number of vertices in the sequence of graphs PAt(m, δ) we
consider.
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The main result in this paper will be to show that when each vertex of a
preferential attachment graph PAt(m, δ) (introduced in the next section) is red
independently with probability α < 1/2, where α is sufficiently biased away from
1/2, then the system will converge to the majority colour with high probability,
and we give an upper bound for the number of steps this takes.

2 Preferential Attachment Graphs

The preferential attachment models have their origins in the work of Yule [17],
where a growing model is proposed in the context of the evolution of species.
A similar model was proposed by Simon [16] in the statistics of language. The
principle of these models was used by Albert and Barabási [3] to describe a
random graph model where vertices arrive one by one and each of them throws
a number of half-edges to the existing graph. Each half-edge is connected to
a vertex with probability that is proportional to the degree of the latter. This
model was defined rigorously by Bollobás, Riordan, Spencer and Tusnády [6]
(see also [5]). We will describe the most general form of the model which is
essentially due to Dorogovtsev et al. [11] and Drinea et al. [12]. Our description
and notation below follows that from the book of van der Hofstad [14].

The random graph PAt(m, δ) = (V,E) where V = [t] is parameterised by
two constants: m ∈ N, and δ ∈ R, δ > −m. It gives rise to a random graph
sequence (i.e., a sequence in which each member is a random graph), denoted
by (PAt(m, δ))∞

t=1. The tth term of the sequence, PAt(m, δ) is a graph with t
vertices and mt edges. Further, PAt(m, δ) is a subgraph of PAt+1(m, δ). We
define PAt(1, δ) first, then use it to define the general model PAt(m, δ) (the
Barabási-Albert model corresponds to the case δ = 0).

The random graph PA1(1, δ) consists of a single vertex with one self-loop. We
denote the vertices of PAt(1, δ) by {v

(1)
1 , v

(1)
2 , . . . , v

(1)
t }. We denote the degree of

vertex v
(1)
i in PAt(1, δ) by Di(t). Then, conditionally on PAt(1, δ), the growth

rule to obtain PAt+1(1, δ) is as follows: We add a single vertex v
(1)
t+1 having

a single edge. The other end of the edge connects to v
(1)
t+1 itself with proba-

bility 1+δ
t(2+δ)+(1+δ) , and connects to a vertex v

(1)
i ∈ PAt(1, δ) with probability

Di(t)+δ
t(2+δ)+(1+δ) – we write v

(1)
t+1 → v

(1)
i . For any t ∈ N, let [t] = {1, . . . , t}. Thus,

Pr
(
v
(1)
t+1 → v

(1)
i | PAt(1, δ)

)
=

{
1+δ

t(2+δ)+(1+δ) for i = t + 1,
Di(t)+δ

t(2+δ)+(1+δ) for i ∈ [t]

The model PAt(m, δ), m > 1, with vertices {1, . . . , t} is derived from PAmt(1,

δ/m) with vertices {v
(1)
1 , v

(1)
2 , . . . , v

(1)
mt} as follows: For each i = 1, 2, . . . , t, we con-

tract the vertices {v
(1)
(i−1)+1, v

(1)
(i−1)+2, . . . , v

(1)
(i−1)+m} into one super-vertex, and

identify this super-vertex as i in PAt(m, δ). When a contraction takes place,
all loops and multiple edges are retained. Edges shared between a set of con-
tracted vertices become loops in the contracted super-vertex. Thus, PAt(m, δ)
is a graph on [t].
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The above process gives a graph whose degree distribution follows a power
law with exponent 3+δ/m. This was suggested by the analyses in [11,12]. It was
proved rigorously for integral δ by Buckley and Osthus [7]. For a full proof for
real δ see [14]. In particular, when −m < δ < 0, the exponent is between 2 and
3. Experimental evidence has shown that this is the case for several networks
that emerge in applications (cf. [3]). Furthermore, when m ≥ 2, then PAt(m, δ) is
whp connected, but when m = 1 this is not the case, giving rise to a logarithmic
number of components (see [14]).

3 Results and Related Work

Our main result is the following.

Theorem 1. Let k ≥ 5 be odd and let d = min{m, k} if m is odd and d = (m−
1) ∧ k if m is even. Let α∗ be the smallest positive solution for x in the equation
Pr

(
Bin(d − 1, x) ≥ d−1

2

)
= x. If δ ≥ 0 and each vertex in PAt(m, δ) is red

independently with probability α < α∗, then for any constant ε > 0, whp under
MPk every vertex in PAt(m, δ) is blue at all time steps τ ≥ 1+ε

logd( d−1
2 ) logd logd t.

Note that δ = 0 gives the model proposed in the seminal work of Albert and
Barabási [3], giving power law exponent 3, and that δ > 0 gives exponents larger
than 3. We refer the reader to [14] for further details.

Note, for d = 5, 7, 9, 11 we have α∗ = 0.232, 0.347, 0.396, 0.421 to 3 significant
figures (s.f.), respectively. Of course, α∗ → 1

2 as d → ∞.
The most closely related work is [1]. Here, the same protocol was studied

on random graphs of a given degree sequence (which includes random regular
graphs) and Erdős–Rényi random graphs slightly above the connectivity thresh-
old. Results similar to Theorem 1 were obtained, and in the case of the former
model, an almost matching lower bound was shown. It should be noted that
the thresholds for α obtained in this work apply equally to the models in [1],
and improve the thresholds for α. To contrast, in that paper, the thresholds for
d = 5, 7, 9, 11 were 0.092, 0.182, 0.234, 0.268 to 3 s.f., respectively.

In [15], (full) local majority dynamics on d-regular λ-expanders on n vertices
is studied. In our notation, they show that when α ≤ 1/2 − 2λn

d , there is con-
vergence to the initial majority, so long as λ

d ≤ 3
16 . Since λ ≥ (1 − o(1))

√
d for

a d-regular graph, this condition implies d ≥ 29. In contrast, our results apply
for d ≥ 5.

In [10] a variant of local majority is studied where a vertex contacts m oth-
ers and if d of them have the same colour, the vertex subsequently assumes this
colour. They demonstrate convergence time of O(log n) and error probability –
the probability of converging on the initial minority – decaying exponentially
with n. However, the analysis is done only for the complete graph; our analysis
of sparse graphs is a crucial difference, because the techniques employed for com-
plete graphs do not carry through to sparse graphs, nor are they easily adapted.
The error probability we give is not as strong but still strong, nevertheless.
Furthermore, the convergence time we give is much smaller.
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In [8] the authors study the following protocol on random regular graphs and
regular expanders: Each vertex picks two neighbours at random, and takes the
majority of these with itself. They show convergence to the initial majority in
O(log n) steps with high probability, subject to sufficiently large initial bias and
high enough vertex degree. However, in their setting, the placement of colours
can be made adversarially.

In summary, our contribution is demonstrating convergence and time of con-
vergence to initial majority for a generalisation of local majority dynamics for
preferential attachment graphs with power-law exponent 3 and above. As far
as we know this is the only such result for power-law graphs (by preferential
attachment or otherwise). Furthermore, we have improved the bias thresholds
for graphs of a given degree sequence studied by the first author in [1], which,
to the best of our knowledge, were already the best or only known results for
small degree graphs in this class (which includes, e.g., random regular graphs).

4 Structural Results

Throughout this paper we let γ = γ(m, δ) = 1
2+δ/m . Observe the condition

δ > −m (which must be imposed), implies 0 < γ < 1.
Furthermore, for two non-negative functions f(t), g(t) on N we write f(t) �

g(t) to denote that f(t) = O(g(t)). The underlying asymptotic variable will
always be t, the number of vertices in PAt(m, δ).

Let A be a large constant and let

ω = A log log t.

Let
κ = (log t)7ω

and define as the inner core the vertices [κ], and refer to them as heavy vertices.
We also refer to vertices outside the inner core as light vertices.

Let
κo = (log t)999ω

and define as the outer core the vertices [κo].
Call a path short if it has length at most ω. Call a cycle short if it has at most

2ω + 1 vertices. Here “cycle” includes a pair of vertices connected by parallel
edges and a vertex with a self-loop.

Below, we repeatedly apply the following, which is proved in [2] (and for the
case k = 1 was given in [14]):

Proposition 1. Suppose i1, j1, i2, j2, . . . , ik, jk are vertices in PAt(m, δ) where
is < js for s = 1, 2, . . . , k. Then

Pr(j1 → i2 ∩ j2 → i2, . . . , jk → ik) ≤ Mk 1
iγ1j1−γ

1

1
iγ2j1−γ

2

. . .
1

iγkj1−γ
k

where M = M(m, δ) is a constant that depends only on m and δ.
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Below, we also use the fact that 1
iγj1−γ ≤ 1

(ij)
1
2

when δ ≥ 0 and i ≤ j. A

similar counting approach was used in [9].
For a vertex v define B(v, r) to be the r ball of v in PAt(m, δ), the subgraph

within distance r.

Lemma 1. With high probability, every vertex v > κ has the following property:
B(v, ω) contains at most one cycle consisting entirely of light vertices.

Proof. Define a cycle-path-cycle (CPC) structure as a pair of cycles connected
by a path. We consider CPC structures where the cycles and paths are short,
that is, cycles have sizes 1 ≤ r, s ≤ 2ω + 1, and the path has length 0 ≤ 
 ≤ ω.
Note r = 1 denotes a self-loop and r = 2 denotes a pair of parallel edges between
two vertices.

We denote by a1, . . . , ar and b1, . . . , bs the vertices of the cycles, and c0, . . . , c�

the vertices of the path. Without loss of generality, we may assume a1 = c0 and
b1 = c�. Thus, the structure has r + s + 
 edges and r + s + 
 − 1 vertices.

Applying Proposition 1, the expected number of such structures lying entirely
in [t] \ [κ] is bounded by

2ω+1∑
r=1

ω−1∑
�=0

2ω+1∑
s=1

∑
κ<a1,...,ar

∑
κ<b1,...,bs

∑
κ<c1,...,c�−1

Mr+s+�

(a1b1)3/2

r∏
i=2

1
ai

s∏
j=2

1
bj

�−1∏
k=1

1
ck

�
(∫ t

κ

x−3/2 dx

)2 2ω+1∑
r=1

ω−1∑
�=0

2ω+1∑
s=1

(M log t)r+s+�

� (log t)6ω

κ
= o(1).

The rest of the proof is of a similar nature and is given in the full version of
the paper. �

Lemma 2. With high probability, the following hold for all v > κ0:

(i) v has at most 2 edges on short paths into [κ].
(ii) If v is on a short light cycle, then v has no edge that is on a short (light)

path into [κ] but that is not part of the cycle.
(iii) If v is connected to a short light cycle C by a short light path P , then v has

at most one edge e such that e is on a short path into [κ] but e /∈ P .

Proof. (i) Suppose v has three edges e1, e2, e3 (possibly parallel) on short paths
to [κ] to vertices i1, i2, i3 ∈ [κ] (not necessarily distinct). Then there is a minimal
structure S which contains v, e1, e2, e3, i1, i2, i3, and a short path from v to [κ] via
each edge e1, e2, e3. Since S is minimal, there are 0 ≤ r ≤ 3(ω − 1) light vertices
a1, . . . , ar in S which form the short paths from v to [κ] via e1, e2, e3. Also,
since S is minimal, it contains at most 3ω edges. To consider two extremes, for
example, S might be three non-intersecting paths, or a single path with e1, e2, e3
being parallel and all other vertices connected by non-parallel edges.
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Observe that each vertex ai has at least two edges, meaning in the application
of Proposition 1 it incurs a fraction 1

ai
or less. Applying Proposition 1, the

expected number of structures S is asymptotically bounded from above by

κ3M3ω
3ω∑

r=0

∑
κ<a1,...,ar

1
v3/2

r∏
i=1

1
ai

� 3ωκ3(M log t)3ω

v3/2
.

Hence, taken over all v > κo, this is O
(

3ωκ3(M log t)3ω

κ
1/2
o

)
= o(1).

The rest of the proof is of a similar nature and is left for the journal version
of the paper. �

We define the truncated r-ball around v, denoted by B̃(v, r), as follows:

1. Delete from B(v, r) all edges incident to vertices in [κ], denote by B−(v, r)
the resulting graph.

2. Let Cv(B−(v, r)) be the connected component in B−(v, r) that contains v.
Add to Cv(B−(v, r)) all edges (u, v) deleted in the previous step such that
u ∈ [κ] and v ∈ Cv(B−(v, r)). The resulting graph is B̃(v, r).

The following is a corollary of the above.

Corollary 1. With high probability, for every vertex v > κo, B̃(v, ω) belongs to
one of the following categories:

(i) B̃(v, ω) is a tree and all vertices are light.
(ii) B̃(v, ω) has no cycles and one or two heavy vertices.
(iii) In B̃(v, ω), v is part of a short cycle of light vertices, and any heavy vertex

in B̃(v, ω) only connects to v via edges that are part of that cycle.
(iv) In B̃(v, ω), there is a short cycle of light vertices which v is not part of,

which connects to v through a short path P , and there is at most one edge
e on a path from from v to a heavy vertex in B̃(v, ω) such that e is not
part of P .

Degree of Outer-Core Vertices. For i ∈ [t] consider the vertex i and the
core [i]. Immediately after the vertex i is added, the graph under construction
at that point, PAi(m, δ), has total degree 2mi, and Di(i) is a random variable
taking integral value between m and 2m. We may ask, given Di(i) = a, what is
the probability that Di(t) = a + d? The question can be framed as one about
a Polya urn process in which the urn initially contains a red balls and 2mi − a
black balls, and the selection process has weighting functions WR(k) = k+δ and
WB(k) = k − (i − 1)δ for red and black balls respectively (see, e.g., [14]).

Notation: Si(t) is the sum of degrees of vertices in [i] in PAt(m, δ). The
following was shown in [2]:
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Lemma 3. There is a constant C(m, δ) that depends only on m and δ, such
that for 1 ≤ d ≤ n ≤ m(t − i),

Pr (Di(t) = a + d | Si(t) − 2mi = n, Di(i) = a) ≤ C(m, δ)
1

d

(
Id

I + n − d

)a+δ

e− dI
I+n

and

Pr(Di(t) = a | Si(t) − 2mi = n,Di(i) = a) ≤
(

I

I + n

)a+δ

,

where I = I(i,m, δ) = i(2m + δ) − 1.

Furthermore, the following was also given in [2]:
Lemma 4. Suppose δ ≥ 0 and for a vertex i ∈ [t], i = i(t) → ∞. There exists
a constant K0 > 0 that depends only on m and δ, such that the following holds
for any constant K > K0 and h which is smaller than a constant that depends
only on m, δ,

Pr
(

Si(t) <
1
K

E[Si(t)]
)

≤ e−hi.

We use these lemmas to prove the following:

Lemma 5. With high probability, for every i ∈ [κo], Di(t) ≥
(

t
κo

)γ
1

κ2
o
.

Proof. Letting h = log κo

κo
in Lemma 4, we see that for some constant K, Sκo

(t) ≥
Ktγκ1−γ

o . Let z = z(t) → ∞ as t → ∞ to be determined later. Letting n =
Ktγκ1−γ

o − 2mκo and applying Lemma 3,

Pr
(

Dκo
(t) ≤ n

κoz
| Sκo

(t) − 2mκo ≥ n,Dκo
(κo) = a

)

�
(

I

I + n

)a+δ

+
n/(κoz)∑

d=1

(
I

I + n − d

)a+δ

da+δ−1e− dI
I+n

≤
(

I

I + n

)a+δ

+
Ia+δ

(I + n − n/(κoz))a+δ

n/(κoz)∑
d=0

da+δ−1.

Since κo → ∞ and z → ∞ as t → ∞, we have n/(κoz) = o(n), so
1

(I+n−n/(κoz))a+δ � 1
(I+n)a+δ .

Furthermore,
n/(κoz)∑

d=0

da+δ−1 �
∫ n/(κoz)

0

xa+δ−1 dx ≤ 1
a + δ

(
n

κoz

)a+δ

.

Hence,

Pr
(

Dκo
(t) ≤ n

κoz
| Sκo

(t) − 2mκo ≥ n,Dκo
(κo) = a

)

�
(

I

I + n

)a+δ

+
(

I

I + n

)a+δ (
n

κoz

)a+δ

�
(

I

I + n

)a+δ

+
1

za+δ
.
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Now, we choose z(t) = κ2
o. Then,

(
I

I + n

)a+δ

=

(
κo(2m + δ − 1)

κo(2m + δ − 1) + Ktγκ1−γ
o − 2mκo

)a+δ

�
(κo

t

)γ(a+δ)

= o

(
1

za+δ

)

since a ≥ m ≥ 5 and δ ≥ 0.
Thus,

Pr
(

Dκo
(t) ≤ n

κoz
| Sκo

(t) − 2mκo ≥ n,Dκo
(κo) = a

)
� 1

κ
2(m+δ)
o

.

A simple coupling argument shows that Dκo
(t) is stochastically dominated

by Di(t) for any i ∈ [κo]. Therefore, taking the union bound over [κo] we get
κo

κ
2(m+δ)
o

= o(1) since a ≥ m ≥ 5 and δ ≥ 0. �

5 Convergence of the Majority Dynamics

In this section we show that the system converges to the initial majority opinion
and bound the time it takes. Informally, Lemma 6 shows convergence for a tree
when the bias away from 1/2 is large enough, Lemma 7 demonstrates for vertices
outside the outer core, it only takes a constant number of steps for the probability
of being red to get below the bias threshold that Lemma 6 requires. It also uses
the fact that vertices in this range are almost tree-like. The conclusion is that
there is a certain contiguous set of steps when all the vertices outside the outer
core are blue. Finally, Lemma 8 shows that when this happens, the vertices in
the outer core are all blue. Since there is a time step in which all vertices are
blue, the graph remains blue thereafter.

For real p and integer n > 3 define

f(n, p) =
[(

1 +
1√

n − 1

)
2
] 2

n−3

4p(1 − p). (1)

The following lemma was essentially first proved by the first author in [1].
Due to space restrictions, we give only an informal overview here.

Lemma 6. Let Tu(h, d+) be a depth-h tree rooted at u where all non-leaf ver-
tices have degree at least d+ ≥ 5 odd. Let p ∈ (0, 1

2 ), k ≥ 5 and d = k ∧ d+.
Suppose at time τ = 0 each vertex of Tu(h, d+) is assigned red with probability
p. Under MPk the probability that the root u is red at time step h is at most
1
4 (f(d, p))(

d−1
2 )h

.

Proof (Overview). Suppose instead of MPk we had a modified version MMPk

on the tree in which each vertex other than the root u assumes its parent is red.
Under the same sequence of random choices of which neighbours to poll, MMPk

can only make it more likely that u ends up being red at time step τ = h. It also
has the advantage of breaking dependencies between vertices at the same depth
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in the tree. Denoting pτ (v) the probability of vertex v being red at time step τ ,
we show that under MMPk, we get p = p0(vh) > p1(vh−1) > . . . > ph−1(v1) >
ph(v0) where vi is a child of vi−1 in the tree and v0 = u. In fact, the sequence of

probabilities decays very rapidly, and we find that ph(v0) < 1
4 (f(d, p))(

d−1
2 )h

. �

Lemma 7. Let k ≥ 5 be odd and let d = m ∧ k if m is odd and d = min{m −
1, k} if m is even. Let ε be any positive constant, let τ∗ = B logd logd t where
B = B(d, ε) = 1+ε

logd( d−1
2 ) and let α∗ be the smallest positive solution for x in

the equation Pr
(
Bin(d − 1, x) ≥ d−1

2

)
= x. If each vertex in PAt(m, δ) is red

independently with probability α < α∗, then whp under MPk every vertex v ∈
[t] \ [κo] is blue at time steps τ = τ∗ + 1, τ∗ + 2.

Proof. Let integer n ≥ 2, f(x) = Pr (Bin(2n, x) ≥ n) and g(x) = f(x) −
x. Observe g(0) = 0 and g(1/2) > 0. Furthermore, g′(x) =

(
2n
n

)
nxn−1(1 −

x)n − 1, whence g′(0) = −1. Therefore g(x) has a root x∗ in (0, 1/2). Now
g

′′
(x) =

(
2n
n

)
nxn−2(1 − x)n−1 [(n − 1) − x(2n − 1)] which is strictly positive on

0 < x < 1
2 − 1

2(2n−1) and non-positive on 1
2 − 1

2(2n−1) ≤ x < 1. We can there-
fore deduce that x∗ is the unique root of g(x) in (0, 1/2), and that for the
interval [c1, c2] where 0 < c1 < c2 < x∗, g attains a maximum at c1 or c2.
Hence, for a given x ∈ [c1, c2], we have 0 < f(x) < x and x − f(x) = −g(x) >
−max{g(c1), g(c2)} > 0. Therefore, we need only a constant number of iterations
of f until f(f(. . . f(x)) . . .) < c1. When 2n = d − 1, we write α∗ = x∗.

Now consider a rooted tree of depth h where non-leave vertices have 2n =
d − 1 children, and suppose that each vertex is coloured red independently with
probability α < α∗ at time τ = 0. By the same argument as in the proof of
Lemma 6, at time τ = 1 the depth h − 1 vertices are red independently with
probability f(α) < α − c2. Continuing in this way, the probability the root is
red is at most c1 if h > c3 where c3 is a large enough finite constant.

Let τ ′ = τ∗ − c3 and suppose that B(v, ω) is a tree. Since ω = A log log t with
A arbitrarily large, then we may assume ω = a logd logd t where a is a constant
such that ω ≥ τ∗ + 3. This means B(w, τ∗) is a tree if w is a neighbour of v or
v itself. By the above, we may therefore assume that at time t = c3, the depth
τ∗ − c3 = τ ′ vertices are red independently with probability at most c1.

Then by Lemma 6 the probability v is red at time step τ∗ is at most 1
4f(d,

c1)(
d−1
2 )τ′

. For large enough t, τ ′ ≥ 1+ε/2

logd( d−1
2 ) logd logd t, therefore

(
d − 1

2

)τ ′

≥
(

d − 1
2

) 1+ε/2

logd( d−1
2 )

logd logd t

= d(1+ε/2) logd logd t = (logd t)1+ε/2.

Thus,

f(d, c1)(
d−1
2 )τ′

≤ d
− logd

(
1

f(d,c1)

)
(logd t)1+ε/2

= t
− logd

(
1

f(d,c1)

)
(logd t)ε/2

.

If f(d, c1) < β < 1 where β is a constant then the above is at most t−(logd t)ε/4

when t is large enough. By the same logic, and since each of the children of v
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are also trees out to distance τ∗, the same probability bound applies to them.
Thus, taking the union bound, we see that all vertices v such that B(v, ω) is a
tree are blue at times τ∗, τ∗ + 1, τ∗ + 2.

We extend the above to other vertices outside [κo]. From Corollary 1, we
see that v always has at most two “bad” edges that it can assume are always
red. Since m ≥ 5, this leaves m − 2 ≥ 3 “good” edges which, if they are blue,
will out-vote the bad edges, regardless of what their actual colours are. Thus,
suppose e1 = (v, w1), . . . , em−2 = (v, wm−2) are good edges. As per the proof of
Lemma 6, the random variables Yτ (wi) for i ∈ {1, . . . , m − 2} depend only on
vertices in the subtree of B̃(v, ω) for which wi is a root. This is a depth–(ω − 1)
tree where each vertex not a leaf nor root has at least m − 1 children. Since
we may assume that ω ≥ τ∗ + 2, it follows by the above that whp, all such wi

are blue at time steps τ∗, τ∗ + 1, τ∗ + 2. This forces v to be blue at time steps
τ∗ + 1, τ∗ + 2, τ∗ + 3. Thus, we have proved that whp, all vertices v ∈ [t] \ [κo]
are blue at time steps τ∗ + 1, τ∗ + 2. �

It remains to consider the vertices in [κo]:

Lemma 8. If every vertex in v ∈ [t] \ [κo] is blue at time step τ∗ + 1, then whp
every v ∈ [κo] is blue at time step τ∗ + 2.

Proof. Consider a vertex v ∈ [κo]. We partition v’s set of incident edges Ev

in PAt(m, δ) into two sets Ev1 = {(v, w) : w ∈ [κo]} and Ev2 = Ev \ Ev1.

Clearly, |Ev1| ≤ mκo, so by Lemma 5, we may assume that |Ev2| ≥
(

t
κo

)γ
1

κ2
o

−
mκo for every v ∈ [κ0]. Consequently, the probability that at time step τ∗ + 1
the majority of edges picked by v are in Ev1 is zero if d ≥ 2|Ev1| + 1 and
O

(
Pr

(
Bin(d,

κ4
o

t ) > d
2

))
= O

(
κ4

o/t
)

if d ≤ 2|Ev1|. Taken over all vertices in
[κo] this is o(1). �
Corollary 2. With high probability, PAt(m, δ) is entirely blue at all time steps
τ ≥ τ∗ + 2.

6 Conclusion and Open Problems

We have seen that with high probability, local majority dynamics on preferential
attachment graphs with power law exponent at least 3 very rapidly converges
to the initial majority when the initial distribution of red vs. blue opinions is
sufficiently biased away from equality. The speed of convergence is affected both
by the number of neighbours polled at each step as well structural parameters
of the graph, specifically, how many edges are added when a new vertex joins in
the construction process of the graph.

A natural next step would be to analyse the process for −m < δ < 0, which
generates graphs with power-law exponents between 2 and 3. These appear to
better reflect “real world” networks, but our experience suggests that structural
differences make the techniques of this paper ineffective in this regime.

Another direction would be to explore how adversarial placements of opinions
affects outcome, as studied in [8] for random regular graphs.
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Rumours Spread Slowly in a Small World
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Abstract. Rumour spreading is a protocol that models the spread of
information through a network via user-to-user interaction. The spread
time of a graph is the number of rounds needed to spread the rumour
to the entire graph. The Spatial Preferred Attachment (SPA) model is a
random graph model that models complex networks: vertices are placed
in a metric space, and the link probability depends on the metric distance
between vertices, and on their degree. We show that the SPA model typ-
ically produces graphs that have small effective diameter, i.e. O(log3 n),
while rumour spreading is relatively slow, namely polynomial in n.

1 Introduction

There is increasing consensus in the scientific community that complex networks
(e.g. on-line social networks or citation graphs) can be accurately modelled by
spatial random graph models. Spatial random graph models are models where
the vertices are located in a metric space, and links are more likely to occur
between vertices that are close together in this space. The space can be inter-
preted as a feature space, which models the underlying characteristics of the
entities represented by the vertices. Specifically, entities with similar character-
istics (for example, users in a social network that share similar interests) will be
placed close together in the feature space. Thus the distance between vertices is
a measure of affinity, and thus affects the likelihood of the occurrence of a link
between these vertices.

An important reason to model real-life networks is to be able, through simu-
lation or theoretical analysis, to study the dynamics of information flow through
the network. Several ways to model flow of information through a network have
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been proposed recently, based on metaphors such as the spread of infection or
of fire, or the range of a random walk through the graph [5,7,21,23]. Here we
focus on a protocol called rumour spreading. It differs from the models based on
fire or infection in that in each round, the rumour spreads to only one neighbour
of each informed vertex. On the other hand, the difference with a random walk
approach is that each informed vertex spreads the rumour, and thus we have
more of a growing tree of random walks.

In this paper we study the behaviour of the rumour spreading protocol on
graphs produced by the Spatial Preferential Attachment (SPA) model. The SPA
model is a spatial model that produces sparse power law graphs. We show that,
on the one hand, the graph distance between vertices in such a graph tends to be
small (polylogarithmic in n, the number of vertices), while on the other hand, it
takes a long time (polynomial in n) to spread the rumour to most of the vertices.

1.1 The SPA Model

The SPA model is a growing graph model, where one new vertex is added to
the graph in each time step. The vertices are chosen from a metric space. Each
vertex has a sphere of influence, whose size grows with the degree of the vertex.
A new vertex can only link to an existing vertex if it falls inside its sphere of
influence. Therefore, links between vertices depend on their (spatial) distance,
and on the in-degree of the older vertex.

The SPA model was introduced in [2], where it was shown that asymptoti-
cally, graphs produced by the SPA model have a power law degree distribution
with exponent in [2,∞) depending on the parameters. The model was further
studied in [8,18,19]. The model can be seen as a special case of the spatial model
introduced by Jacob and Mörters in [17] and further studied in [16]. The SPA
model has similarities with the spatial models presented in [4,6,12,25].

Let S be the unit hypercube in R
m, equipped with the torus metric derived

from the Euclidean norm. The SPA model stochastically generates a graph
sequence {Gt}t≥0; for each t ≥ 0, Gt = (Vt, Et), where Et is an edge set, and
Vt ⊆ S is a vertex set. The index t is an indication of time. The in-degree,
out-degree and total degree of a vertex v at time t is denoted by deg−(v, t),
deg+(v, t) and deg(v, t), respectively.

We now define the sphere of influence S(v, t) of vertex v at time t. Let

A(v, t) =
A1 deg−(v, t) + A2

t
,

where A1, A2 > 0 are given parameters. If A(v, t) ≤ 1, then S(v, t) is defined as
the ball, centred at v, with total volume A(v, t). If A(v, t) > 1 then S(v, t) =
S, and so |S(v, t)| = 1. To keep the second option from happening often, we
impose the additional restriction that A1 < 1; this ensures that in the long run,
S(v, t) � 1 for all v.

The generation of a SPA model graph begins at time t = 0 with G0 being
the null graph. At each time step t ≥ 1, a node vt is chosen from S according



Rumours Spread Slowly in a Small World Spatial Network 109

to the uniform distribution, and added to Vt−1 to form Vt. Next, independently
for each vertex u ∈ Vt−1 such that vt ∈ S(u, t), a directed link (vt, u) is created
with probability p.

Because the volume of the sphere of influence of a vertex is proportional
to its in-degree, so is the probability of the vertex receiving a new link at a
given time. Thus link formation is governed by a preferential attachment, or
“rich get richer”, principle, which leads to a power law degree distribution of the
in-degrees, and thus also of sizes of the spheres of influence.

Another important feature of the model is that all spheres of influence tend to
shrink over time. This means that the length of an edge (the distance between
its endpoints) depends on the time when it was formed: edges formed in the
beginning of the process tend to be much longer than those formed later (see
[18] for more on the distribution of edge lengths). As we will see, the old, long
links significantly decrease the graph distance between vertices. This is a feature
unique to the SPA model; “static” variations of the SPA model such as that
presented in [3], tend to limit the maximum length of an edge, which leads to a
larger diameter.

Note that the SPA model generates directed graphs. However, the rumour
spreading protocols we study here completely ignore the edge orientations; we
imagine that they work on the corresponding undirected underlying graph. Sim-
ilarly, in estimating the graph distances, we ignore the edge orientations.

1.2 Rumour Spreading

Rumour spreading is a model for the spread of one piece of information, the
rumour, which starts at one vertex, and in each time step, spreads along the
edges of the graph according to one of the following protocols.

The push protocol is a round-robin rumour spreading protocol defined as
follows: initially one vertex of a simple undirected graph knows a rumour and
wants to spread it to all other vertices. In each round, every informed vertex
sends the rumour to a random neighbour.

The push&pull protocol is another round-robin rumour spreading protocol
defined as follows: initially one vertex of a simple undirected graph knows a
rumour and wants to spread it to all other vertices. In each round, every informed
vertex sends the rumour to a random neighbour, while every uninformed vertex
contacts a random neighbour and gets the rumour from her if she knows it.

In both protocols defined above, all vertices work in parallel. These are syn-
chronized protocols, so if a vertex receives the rumour at round t, it starts passing
it on from round t + 1. Also, vertices do not have memory, so a vertex might
contact the same neighbour in consecutive rounds.

We are interested in the spread time, the number of rounds needed for all
vertices to get informed. Since the SPA model does not generally produce con-
nected graphs, we here limit this requirement to vertices in the same component
as the starting vertex. It is clear that the push&pull protocol is generally quicker.

The push protocol was defined in [14] for the complete graph, and was studied
in [11] for general graphs. The push&pull protocol was defined in [9], where
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experimental results were presented, and the first analytical results appeared
in [20]. For a summary of results on the push&pull protocol, see [1, Table 1].

1.3 Main Results

Clearly, the diameter of a graph is a lower bound on the spread time, at least
for appropriate choices of starting vertex. An easy well known upper bound
for spread time is O(Δ(diameter + log n)) [11, Theorem 2.2], where Δ denotes
the maximum degree, so in graphs of bounded degree, spreading time is largely
determined by the diameter. Another important factor in spreading time is the
degree distribution of the graph. Vertices of high degree tend to slow down the
spread, since only one neighbour of a vertex is contacted in each round. SPA
model graphs have a power law degree distribution, and the maximum degree is
typically Ω(nA1) (see [2]).

In this paper we prove two main results. First, we show that for most pairs of
vertices, the graph distance is polylogarithmic in the number of vertices. Thus,
SPA model graphs are so-called small worlds. SPA model graphs are generally
not connected, and the size and threshold of the giant component are not exactly
known. Therefore we state our result in terms of the effective diameter, introduced
in [22]. A graph G has effective diameter at most d if, for at least 90 % of all pairs
of vertices of G that are connected, their graph distance is at most d. We say an
event happens asymptotically almost surely (a.a.s.) if its probability approaches
1 as n goes to infinity. All logarithms are in the natural base in this paper.

Recall that the SPA model has four parameters: m ∈ Z+ is the dimension,
A1, A2 > 0 control the volumes of vertices’ spheres of influence, and p ∈ (0, 1] is
the probability of link formation.

Theorem 1. For each choice of A1 ∈ [0, 1), and for large enough choice of A2,
a.a.s. a graph produced by the SPA model with parameters A1, A2, p = 1 and
m = 2 has effective diameter O(log3 n).

Remark 1. The constant 90 % in the definition of effective diameter is somewhat
arbitrary. Our arguments yield similar bounds if this is changed to any other
constant strictly smaller than 100 %.

As noted before, this result refers to the undirected diameter. In [8], it was
shown that a.a.s. any shortest directed path has length O(log n). This result
does not apply to our situation, since pairs connected by a directed path are a
small minority.

Our second result illustrates that, in spite of the small world property, a.a.s.
rumour spreading with the push protocol is slow, that is, takes polynomial time
in n (a polynomial lower bound for the push&pull protocol is also given in
Corollary 1).

Theorem 2. Let G be a graph produced by the SPA model with parameters
A1, A2 > 0,m = 2, and assume pA1 < 1. Let α > 0 be so that

α < min{pA1/24, (1 − pA1)/12} ∈ (0, 1).
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If a rumour starts in G from a uniformly random vertex, then a.a.s. after nα

rounds of the push protocol, the number of informed vertices is o(n).

Remark 2. The main objective of this theorem (and Corollary 1) is to give some
polynomial lower bound for the number of rounds needed to inform Ω(n) vertices.
In particular, we have not tried to optimize the exponent α here.

We can understand this result as follows. While SPA model graphs have a
backbone of long edges that decrease graph distances between vertices, only old
edges are long. Old edges have old endpoints, so the vertices on this backbone
are old. Old vertices have high degree, and vertices of high degree are slower
in spreading the rumour. So if the rumour travels along long edges, then it will
become delayed due to high vertex degree, and if it travels along short edges, it
takes many steps to cover the entire space.

In [17] it was shown that, for certain choices of the parameters, the generalized
spatial model by Jacob and Mörters exhibits a similar mixture of long and short
edges. This suggests that our results may be extended to this model; this would
be an interesting question to pursue.

The push&pull protocol has been studied on two small-world (non-spatial)
models and it turned out that it spreads the rumour in logarithmic time: it was
shown in [10] that on a random graph model based on preferential attachment,
push&pull spreads the rumour within O(log n) rounds. A similar bound was
proved in [13] for the performance of this protocol on random graphs with given
expected degrees when the average degree distribution is power law. Thus, the
SPA model is a unique example of a natural model that exhibits both the small
world property and slow rumour spreading.

2 The Effective Diameter of SPA Model Graphs

In this section we show that a SPA model graph typically has a small effective
diameter. We assume that S is two-dimensional, so m = 2, and p = 1. We
will derive our bound using properties of the random geometric graph model,
especially those studied in [15,24].

A two-dimensional random geometric graph on N vertices with radius r =
r(N) (denoted by RGG(N, r)) is generated as follows: N vertices are chosen
independently and uniformly at random from the unit square S, and an edge
is added between two vertices if and only if their Euclidean distance is at most
r. To see how the geometric random graph model relates to the SPA model, let
{Gt}n

t=0 be a sequence of graphs produced by the SPA model. For each t, define
the graph Rt as a graph with vertex set V (Gt) in which two vertices are adjacent
if and only if their distance is at most

√
A2/(tπ). Observe that Rt conforms to

the random geometric graph model on t vertices with radius

rt :=
√

A2/(tπ).

Moreover, observe that for all t, Rt is a subgraph of (the undirected under-
lying graph of) Gt. For, at all times from 1 to t each sphere of influence has
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volume at least A2/t, i.e. radius at least rt. Therefore, if two vertices vi and vj ,
1 ≤ i < j ≤ t, have distance at most rt, then at time j, when vj is born, vj will
fall inside the sphere of influence of vi, and a link vjvi will be created. We will
use the graphs Rt to bound the diameter of Gn.

As mentioned earlier, graphs produced by the SPA model are generally not
connected. However, we can choose the parameters so that there exists a giant
component, i.e. a component containing an Ω(1) fraction of all vertices. Note
that if Rn has a giant component, then so has Gn. Moreover, it is known (see
[24]) that there exists a constant ac so that, if r =

√
a/(πN) with a > ac, then

a.a.s. RGG(N, r) has a giant component, while if a < ac then a.a.s. it does not
have one (note that a is simply the average degree). Experiments give ac ≈ 4.51.
Therefore, Gn has a giant component a.a.s. if A2 > ac. It would be interesting to
determine whether this value of A2 is indeed the threshold for the emergence of
the giant component in Gn. Determination of this threshold was left open in [8].

The following theorem about the size of the giant component directly follows
from Theorem 10.9 and Proposition 9.21 in [24].

Theorem 3 [24]. There exists a constant abig > ac so that a.a.s. a random
geometric graph RGG(N, r) with πNr2 > abig has a connected component con-
taining at least 0.99N of its vertices.

Lemma 1. Let G = Gn be a graph produced by the SPA model with parameters
A1 ∈ [0, 1), A2 > abig, m = 2, p = 1. Let C be the giant component of Gn.
Then a.a.s. for every t with log n ≤ t ≤ n, the giant components of Rt and Rt/2

intersect.

Proof. For each log n ≤ t ≤ n, let Ct be the giant component of Rt. Since
A2 > abig, a.a.s. each Ct contains at least 0.99t vertices. Therefore, for all t, Ct

and Ct/2 intersect. �

We want to show that the diameter of the giant component of Gn is O(log3 n).
We will proceed as follows. Given an arbitrary vertex v in the giant component
of Gn, the idea is to find a path of length O(log2 n) connecting v to some vertex
y1 in the giant component of Gn/2, then connect y1 to a vertex y2 in the giant
of Gn/4 etc.

We will use a known structural property of the giant component of a random
geometric graph. Suppose R is a random geometric graph with parameters N
and r = r(N), and assume that S is subdivided into subsquares of size r/4×r/4.
Two subsquares are called adjacent if they share a side. A path of subsquares is
a sequence of distinct subsquares so that each consecutive pair is adjacent. A
path is closed if its first and last subsquares are adjacent. A subsquare is called
occupied if it contains a vertex of R, and empty otherwise.

Lemma 2. There exists an absolute (large) constant M with the following prop-
erty. Let R be a random geometric graph RGG(N, r) with πNr2 = M . Then for
large N , with probability at least 1−N−2, R has a unique giant component, and
every point of S is enclosed by a closed path P of occupied subsquares with the
following properties:
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Mr logN

Mr logN

Fig. 1. Illustration of the proof of Lemma 2: left-to-right crossings are blue, top-to-
bottom crossings are green. The green and blue crossings constitute a grid-like backbone
for the giant component. Any point in the unit square (purple) is enclosed by some
closed path P (red) (Color figure online).

(i) all subsquares of P lie inside a 2Mr log N × 2Mr log N square, and
(ii) all vertices inside the subsquares of P belong to the giant component.

Proof. For a given rectangle L, a left-to-right crossing is a path of occupied
subsquares inside L with one endpoint touching the left side of L and the
other endpoint touching its right side. A top-to-bottom crossing is defined simi-
larly. Partition the unit square S into (Mr log N)−1 horizontal rectangles of size
Mr log N ×1, and also into (Mr log N)−1 vertical rectangles of size 1×Mr log N .
By [15, Lemma 2], each of the horizontal (vertical) rectangles has a left-to-right
(top-to-bottom) crossing with probability at least 1 − N1/2−Ω(M2). The total
number of rectangles is less than

√
N , so by the union bound we can choose M

large enough that with probability at least 1 − N−2 all horizontal (vertical) rec-
tangles have a left-to-right (top-to-bottom) crossing (see Fig. 1). These crossings
constitute a grid-like “backbone” for the giant component. Any point of S not
part of the giant component lies inside a “cell” of this grid, which lies inside a
2Mr log N × 2Mr log N square, completing the proof. �

Lemma 3. Let G be a graph produced by the SPA model with parameters A1 ∈
[0, 1), A2 > abig, m = 2, and p = 1. The following is true a.a.s. Let t be an integer
such that log n ≤ t ≤ n/2. Let v be a vertex in the giant component of R2t. Then
there exists a path of length O(log2 t) in R2t from v to the giant component of Rt.

Proof. Recall that Rt is a random geometric graph on t vertices with radius
rt =

√
A2/(πt). Assume that S is subdivided into subsquares of size rt/4×rt/4.

By Lemma 2 (applied to Rt), with probability at least 1 − t−2 there exists a
giant component Ct and a constant M with the properties given in that lemma.
Assume this is the case (and to obtain the result for all log n ≤ t ≤ n/2, we
simply apply the union bound).
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Fix v in the giant component C2t of R2t. If v ∈ V (Ct) we are done; otherwise,
by Lemma 2 there exist a closed path P of subsquares with properties (i) and
(ii). Let Q denote the region enclosed by P . By Lemma 1, Ct and C2t intersect,
so there exists a shortest path ξ in R2t from v to V (Ct). It can be shown using a
geometric argument that ξ can have at most two vertices outside Q. Also, since
ξ is a geodesic path, it can contain at most one vertex from each subsquare.
Since there are at most 4M2 log2 t subsquares in Q, the conclusion follows. �

Theorem 4. Let G = Gn be a graph produced by the SPA model with parameters
A1 ∈ [0, 1), A2 > abig,m = 2, p = 1. Then a.a.s. Rn has a giant component Cn

which contains at least
√

0.9n vertices, and the diameter of Cn is O(log3 n). So
the effective diameter of Gn is O(log3 n).

Proof. By Theorem 3 and the fact that Rn is distributed as RGG(n, rn) with
rn =

√
A2/(πn), we have that a.a.s. Rn contains a giant component Cn which

contains at least 0.99n >
√

0.9n vertices. Assume this is the case. Let y0 be a
vertex in Cn. By repeated application of Lemma 3, a.a.s. there exists a sequence
of vertices y1, y2, . . . , yk, where k is the largest integer so that n2−k ≥ log n,
with the following properties: for each i, 0 < i ≤ k, yi is in the giant component
of Rn2−i , and there exists a path of length O(log2 n) from yi to yi−1. As Rn2−k

has size at most 2 log n, there exists a path of length O(log3 n) between any two
vertices in Cn. �

Theorem 1 follows immediately from the above theorem. The methods used
in this section do not suffice to show that the diameter of the giant component
of Gn is also logarithmic. In principle, it could be that there exist vertices in Gn

that are not contained in the giant component of Rn, but that are connected to
this component by a long path that uses edges from inside the minor components
of the graphs Rn, Rn/2, etc. Nevertheless, we believe that the SPA model graphs
have logarithmic diameters a.a.s., and we leave this as an open problem.

3 Lower Bounds for Rumour Spreading

We will first establish some structural properties of the SPA model, and then
use them to prove results about the rumour spreading protocols. Recall that m
denotes the dimension and n denotes the number of vertices. Let cm denote the
volume of the m-dimensional ball of unit radius, and let w = w(n), L = L(n),
y = y(n) and T = T (n) be functions satisfying

cmLm > wpA1−1 log2 n, y/w = nΩ(1), and y < n/ log n. (1)

We say an edge is long if the distance between its endpoints is larger than L, and
is short otherwise. A vertex/edge is old if it was born during one of the rounds
1, 2, . . . , w, and is new otherwise. The following lemma, whose proof is somewhat
technical and is omitted from this extended abstract, establishes properties of
old and new vertices and long and short edges.
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Lemma 4 (Structural properties of graphs generated by the SPA
model). Let G be a graph generated by the SPA model, and let ζ be a uni-
formly random vertex of it. A.a.s. we have the following properties.

(a) All new edges are short.
(b) For all t = 1, 2, . . . , T , The number of old vertices within distance tL of ζ is

O (log T + w(tL)m).
(c) If there exists a constant φ ∈ (0, 1) such that

(TL)mw
(
(w/y)φpA1/2 + n−4/3 log n

)
= o(1), (2)

then all old vertices v within distance TL of ζ satisfy

deg(v, w)
deg(v, n)

< nε

(
y log n

n

)pA1

. (3)

(d) If there exists a constant θ ∈ (0, 1) such that

w
(
(w/y)θpA1/2 + n−4/3 log n

)
= o(1), (4)

then all old vertices v satisfy (3).

Since by part (a) of the lemma all edges created after round w are short,
assertion (3) quantifies the informal statement “most edges incident to an old
vertex are short.”

Theorem 5 (Main Theorem for the push protocol). Suppose that (1)
and (2) hold, and suppose there exists a constant ε ∈ (0, 1) such that

nε−pA1(y log n)pA1
(
T log T + wLmTm+1

)
= o(1). (5)

Then, if the rumour starts from a uniformly random vertex, then a.a.s. after T
rounds of the push protocol, all informed vertices lie within distance TL of the
initial vertex.

Proof. Let G be a graph generated by the SPA model, and let ζ be a random
vertex. Assume that G and ζ satisfy properties (a)–(c) given in Lemma 4. We
need only show that, a.a.s. the rumour does not pass through a long edge during
the first T rounds. Note that new vertices are not incident to long edges by
Lemma 4(a). Moreover, by Lemma 4(c) every old vertex v within distance TL
of ζ satisfies (3), which guarantees that most edges incident to v are short.
Condition (3) implies that the probability that an informed old vertex pushes
the rumour along a long edge in a given round is smaller than nε (y log n/n)pA1 .
On the other hand, for any t ∈ {1, . . . , T}, after t rounds, the number of informed
old vertices is O(log T + w(tL)m) by Lemma 4(b) and an inductive argument.
We apply the union bound over all rounds t = 1, . . . , T :

T∑
t=1

(log T + w(tL)m) nε

(
y log n

n

)pA1

≤ nε−pA1(y log n)pA1
(
T log T + wLmTm+1

)
= o(1).

�
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Proof (of Theorem 2). Define ι := min{pA1/24, (1 − pA1)/12} ∈ (0, 1) and
set w = n1/6, y = n2/3, L = n(ι−α)/2+(pA1−1)/12, and T = nα, and observe
that (1), (2) and (5) hold. By Theorem 5, a.a.s. after T rounds of push protocol,
all informed vertices lie in a disc of area π(TL)2. By the Chernoff bound, a.a.s.
there are O(n(TL)2) = o(n) vertices in this disc.

Theorem 6 (Main Theorem for the push&pull protocol). Suppose (1)
and (4) hold, and suppose there exists a constant ε ∈ (0, 1) with

Twnε−pA1(y log n)pA1 = o(1). (6)

Then, if the rumour starts from a uniformly random vertex, then a.a.s. after T
rounds of the push&pull protocol, all informed vertices lie within distance TL of
the initial vertex.

Proof. Let G be a graph generated by the SPA model, and let ζ be a uniformly
random vertex of it. We may assume that G and ζ satisfy the properties (a)
and (c) given in Lemma 4. We need only show that the rumour does not pass
through a long edge during the first T rounds. Note that new vertices are not
incident to long edges by Lemma 4(a). Moreover, by Lemma 4(c) every old
vertex v satisfies (3), which guarantees that most edges incident to v are short.
Condition (3) implies that the probability that an old vertex contacts a neighbour
along some long edge in a given round is smaller than nε (y log n/n)pA1 . There
are exactly w old vertices. By the union bound over all old vertices and over the
rounds 1 to T , the probability that an old vertex contacts a neighbour along
some long edge is bounded by wTnε (y log n/n)pA1 , which is o(1) by (6). �

Corollary 1. Let δ > 0 be an arbitrarily small constant and assume that m = 2
and pA1 < 1. Define

λ :=
pA1(1 − pA1)

10 + 2pA1
∈ (0, 1).

If the rumour starts from a uniformly random vertex, then a.a.s. after nλ−2δ

rounds of push&pull protocol, number of informed vertices is o(n).

Proof. Define μ := pA1 and set w = nμ/(5+μ), y = n(3+μ)/(5+μ), L =
nδ+μ(μ−1)/(2μ+10), and T = nλ−2δ = nμ(1−μ)/(10+2μ)−2δ, and observe that (1)
and (4) and (6) are satisfied. By Theorem 6, a.a.s. after T rounds all informed
vertices lie in a disc of area π(TL)2. By the Chernoff bound, a.a.s. the number
of vertices in any such disc is O(n(TL)2) = o(n). �
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25. Zuev, K., Boguñá, M., Bianconi, G., Krioukov, D.: Emergence of soft communities
from geometric preferential attachment. Nat. Sci. Rep. 5, 9421 (2015)



A Note on Modeling Retweet Cascades
on Twitter

Ashish Goel1, Kamesh Munagala2, Aneesh Sharma3, and Hongyang Zhang4(B)

1 Department of Management Science and Engineering,
Stanford University, Stanford, USA

ashishg@stanford.edu
2 Department of Computer Science, Duke University, Durham, USA

kamesh@cs.duke.edu
3 Twitter, Inc., San Francisco, USA

aneesh@twitter.com
4 Department of Computer Science, Stanford University, Stanford, USA

hongyz@stanford.edu

Abstract. Information cascades on social networks, such as retweet cas-
cades on Twitter, have been often viewed as an epidemiological process,
with the associated notion of virality to capture popular cascades that
spread across the network. The notion of structural virality (or average
path length) has been posited as a measure of global spread.

In this paper, we argue that this simple epidemiological view, though
analytically compelling, is not the entire story. We first show empiri-
cally that the classical SIR diffusion process on the Twitter graph, even
with the best possible distribution of infectiousness parameter, cannot
explain the nature of observed retweet cascades on Twitter. More specif-
ically, rather than spreading further from the source as the SIR model
would predict, many cascades that have several retweets from direct fol-
lowers, die out quickly beyond that.

We show that our empirical observations can be reconciled if we take
interests of users and tweets into account. In particular, we consider a
model where users have multi-dimensional interests, and connect to other
users based on similarity in interests. Tweets are correspondingly labeled
with interests, and propagate only in the subgraph of interested users via
the SIR process. In this model, interests can be either narrow or broad,
with the narrowest interest corresponding to a star graph on the inter-
ested users, with the root being the source of the tweet, and the broadest
interest spanning the whole graph. We show that if tweets are generated
using such a mix of interests, coupled with a varying infectiousness para-
meter, then we can qualitatively explain our observation that cascades
die out much more quickly than is predicted by the SIR model. In the
same breath, this model also explains how cascades can have large size,
but low “structural virality” or average path length.
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1 Introduction

Information cascades are among the most widely studied phenomena in social
networks. There is a vast literature on modeling the spread of these cascades
as diffusion processes, studying the kinds of diffusion trees that arise, as well as
trying to predict the global spread (or virality) of these cascades [4,8,9,11,12,16].
A specific example of such a diffusion process, which is the focus of this paper,
are retweet cascades on Twitter.

Extant models of information cascades build on classical epidemiological
models for spread of infectious diseases [5]. The simplest of these is the SIR
model, where a node in the network can be in one of three states at any time:
Susceptible (S); Infected (I); and Recovered (R). Nodes in the network switch
their states due to infections transmitted over the network, and the rate of these
infections is governed by an infectiousness parameter, p. The SIR model unfolds
via the following process: all nodes are initially in state S except the source (or
a set of nodes called the “seed set”), which is in state I. Every node which is
in state I infects each of its neighbors independently with probability p, before
moving itself to state R. If a node in state S gets infected, it moves to state I.
This process naturally quiesces with all nodes settling in their final state, and
all nodes that were ever in state I are considered to have acquired the infection.
There is a natural and trivial mapping of this model to information cascades,
where the infectiousness parameter p serves to measure the interestingness of
the piece of information, in our case, a tweet. In epidemiology, the goal is to
differentiate infections that die out quickly from those that spread to the whole
network; analogously, information cascades are deemed viral if their global reach
is large.

The above view of information cascades as the spreading of content through
the network is intuitively and analytically appealing. In fact, Goel et al. show
that when simulated on a scale-free graph, the SIR model statistically mim-
ics important properties of retweet cascades on Twitter. In particular, they use
structural virality, or average path length in the diffusion tree, as a quantitative
measure of “infectiousness” of a cascade, and show that the distribution of cas-
cade sizes (number of users that retweet a tweet plus the author of the tweet) and
structural virality are statistically similar to that from the simulations. On the
other hand, these empirical studies also show that cascades observed in Twitter
are mostly shallow and exceedingly rare: Goel et al. [7] show there are no viral
cascades in a corpus of a million tweets; and in subsequent work [6], show that
viral cascades do indeed exist if the corpus size is increased to a billion tweets.
This data contrasts with the observation that social networks like Twitter have
a power-law degree distribution [13], and these networks should have low epi-
demic threshold, so that even with low infectiousness parameter p, most cascades
should be viral [1,2]. Therefore, explaining the low frequency of viral events on
Twitter via an SIR model requires that the infectiousness parameter be quite
low almost all the time. Finally, this result also begs the question of whether
modeling viral events if even of any interest if these events are so rare.
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We therefore ask: Is there something fundamental about real-world informa-
tion cascades, particularly those on Twitter, that is not captured by the simple
SIR model? Though this question is about a specific social network, and a specific
(simplistic) epidemiological model, even understanding this via suitably designed
experiments is challenging, and has not been performed before.

1.1 Our Contributions

In the process of answering the above question, we make the following
contributions.

Evaluating Epidemic Models Through Twitter Network. Our main contribution
is to show that the SIR model is a poor fit for information flow on Twitter. We
show this by empirically testing the hypothesis that retweet cascades on Twitter
propagate using the SIR process. Our null hypothesis is that each cascade has
an underlying infectiousness p (that could be different for different cascades),
and conditioned on receiving the tweet, a user retweets it with probability p.
We compare the value of p that we obtain by best-fit for the users directly
connected to the source of the tweet (level 1 followers), and those who receive
the tweet from a direct follower of the source (level 2 followers). Using a corpus
of 8 million cascades, we develop a statistical test to show that these two values
of p are different – the second level value is significantly smaller than the first.
The technically interesting part of this analysis is the fact that most cascades
are shallow. Thus, many tweets generate very few retweets at the first level,
and this number dictates the number of tweet impressions and retweets at the
second level. The SIR model therefore corresponds to a stochastic process for the
retweets that has very low mean but potentially very high variance because of the
skewed degree distribution of the graph. We have to therefore devise a statistical
test that works around this high variance. Apart from this statistical test, at a
coarse level, we find that the median value of first level infection probability
is 0.00046, while the median value of second level infection probability is 0 (in
other words, half of the tweets do not have second level retweets!). Even among
the tweets that have at least 1000 impressions at the first level, more than 80%
of them, have that first level p is at least twice the second level p. This suggests
that, rather than spreading further from the source, a cascade typically dies out
quickly within a few hops.1 This echoes with the observation that most of the
cascades tend to be star-like trees [16]. It also suggests an explanation for truly
viral cascades being so rare [6].

Interest-based SIR Model. Since the SIR model assumption of fixed propaga-
tion probability per cascade is statistically violated on Twitter, we propose an
alternative model for retweet cascades. In particular, we present a tweet propa-
gation model that takes interests of users and tweets into account. In order to do

1 Indeed, the median of first level impressions is 175, while the median of second level
impressions is 29!
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this, we revisit a Kronecker graph-based model for social networks first consid-
ered in [3]. In this attribute based model, users have attribute vectors in some
d-dimensions, and interests are specified by a subset of these dimensions along
with their attribute values. If fewer dimensions are specified, these interests are
broad and encompass many users; if many dimensions are specified, these inter-
ests are narrow with a shallow component around the source. Tweets are also
correspondingly labeled with interests, and propagate only in the subgraph of
interested users via a SIR process with infectiousness drawn from a distribution.
We show that if tweets are generated using such a mix of narrow and broad
interests, then this coupled with a varying infectiousness parameter can qualita-
tively explain the level-one infectiousness being larger than subsequent levels. As
a simple intuition, observe that cascades corresponding to narrow interests only
reside in their shallow subgraphs, while those corresponding to broad interests
can be “viral” in the usual sense.

As mentioned above, Goel et al. [6] define the notion of structural virality,
or average path length of a cascade as a measure of its virality. They show that
this measure is uncorrelated with the size of the cascade, except when structural
virality is large. The proposed explanation in their work is an SIR model on a
scale-free graph with extremely low infectiousness parameter. Our model leads
to a different explanation: cascades corresponding to narrow interests have low
structural virality, but can have large size. This explanation does not depend on
any specific setting of the infectiousness parameter, and is therefore of indepen-
dent interest. Finally, we show that cascades arising for broad interests can have
large structural virality, but our model would predict a large expected size as
well, which again matches previous empirical findings.

1.2 Related Work

Epidemic models on social networks have received a lot of attention in the past
decade, and we won’t attempt to review the large literature here. Instead, we
point the reader to a small set of representative papers and the excellent sur-
vey articles and books on the topic [4,5,9,11,12,14]. Despite all the attention
on studying diffusion, there has been relatively little work evaluating epidemic
models on social networks such as Twitter [6,14,19]. In particular, we believe
that the empirical testing of structural properties of cascades on the Twitter
graph (as opposed to a specific generative model) is unique to our work.

Part of the reason, as has been pointed out in [6], is that only recently have
large datasets of information contents become available. In the same work, the
authors defined the notion of structural virality and observe that it is very rare
to observe structurally viral cascades, but they can find these rare cascades by
obtaining a large collection of tweets. By carefully choosing the infectiousness
parameter of the SIR model on a power law network, they are able to repro-
duce many empirical statistics of the observed cascades distribution, such as the
probability that a piece of content gains at least 100 adopters, and the mean
structural virality. However, they also point out that other important statistics
does not match with the empirical distribution. For example, the variance is
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much smaller in the simulated model, compared to the empirical distribution.
We present an alternative interest-based model for explaining the same phenom-
ena, while comprehensively refuting the SIR hypothesis.

Similarly, Leskovec et al. [16] were able to fit cascade sizes and degree
distributions of a large collection of blogs, with the SIS model defined by an
infectiousness parameter. We also want to mention a study of user adoption on
Facebook, Ugander et al. [19] find that the probability of users joining Facebook
is dependent on the number of connected components in an user’s ego network
(or neighborhood graph), rather than by the size of the ego network. Note that
this work studied user adoption rather than content diffusion, but the observa-
tion that sub-structures in the network can dominate network size for adoption
is in general agreement with our proposed model.

2 Evaluating the SIR Model on the Twitter Network

In this section, we describe our evaluation of the simple SIR model on eight mil-
lion retweet cascades observed on Twitter. These retweet cascades are collected
from a single week and each cascade is restricted to be started by a user based
in the US. In our analysis, we have excluded tweets posted by Twitter accounts
that are likely to be spammers using an internal quality detection tool.2 For
each tweet, we collect the information described in Table 1. Note that we use the
number of followers of a user as a proxy for the number of impressions of the
user’s tweets. While we could also count impressions directly on Twitter, this
would not correctly represent the significant fraction of users that visit Twitter
through third-party clients. All the information described in Table 1 could be
collected through the public Twitter APIs.3 While we used Twitter’s internal
spam detection mechanism to filter away potential spam users, we believe that
exploiting well-known features (for example pagerank values) would also achieve
the same results for our task.

2.1 Defining the Null Hypothesis

Let us fix a given set of tweets T . For each tweet t ∈ T , let p1(t) and p2(t)
denote the underlying retweet rate at the first level and second level of the
Twitter graph, respectively. Note that these parameters are fixed but unknown
for any given tweet. The dependence of p1 and p2 on t models the fact that
different tweets can have different infectiousness. Our null hypothesis is that
p1(t) = p2(t) for all t ∈ T , which corresponds to cascade propagation via the
simple SIR model. A different, but equivalent view of the null hypothesis is that
it posits p1(t) is drawn from some distribution, and conditioned on this, we set
p2(t) = p1(t).

2 A lot of spam tweets have star-like cascade structure that may significantly impact
the experiment results while not representing general user behavior.

3 https://dev.twitter.com/streaming/public.

https://dev.twitter.com/streaming/public
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Table 1. A list of observed information for a tweet τ , posted by a node s. Let N1(τ)
denote the set of nodes that follow the node s. Let R1(τ) denote the subset of nodes
among N1(τ) that retweet the tweet τ . And let N2(τ) denote the set of nodes that
follow any nodes in R1(τ).

v1 Number of followers of the source node (the size of N1(τ))

r1 Number of retweets among the set of nodes N1(τ) (the size of R1(τ))

v2 Number of nodes that follow any nodes in R1(τ) (the size of N2(τ))

r2 Number of retweets among the set of nodes in N2(τ)

Fig. 1. A scatter plot of ten thousand sampled tweets. The y-axis has been truncated
since there are no points beyond 1/3 in the samples.

The stochastic process, given a tweet t and corresponding underlying p1(t)
and p2(t) unfolds as follows (we omit t for notational convenience): let the value
v1 be a (non-random) parameter associated with the tweet source. Then r1 ∼
B(v1, p1) is a Binomial random variable with parameters v1 and the unknown p1.
We will assume that v2 (th) is nonzero whenever r1 is nonzero. Since v2 is defined
as the total number of followers among those who retweet the source tweet, if
this value is zero with r1 being non-zero, then the source user is very likely to
be a spammer. However, since we eliminated spam sources in our filtering step,
this event is very unlikely in our dataset. Now, r2 is a random variable that is
generated according to B(v2, p2). Note that we are modelling r2 as a Binomial
random variable, since it is easier to present than the SIR process. As a matter
of fact, there is no difference to our conclusions if r2 is generated according to
the SIR process. The reason for that is Lemma 1 will continue to hold under the
SIR process. We observe a realization of the random variables, v2, r1, and r2.

2.2 Refuting the SIR Model

We will now refute the null hypothesis, i.e., show that p1(t) > p2(t) for almost
all t ∈ T . Observe that if r1(t) and r2(t) are sufficiently large, then by standard
concentration bounds, r1(t)

v1(t)
will be a good approximation to p1(t), and likewise

for p2(t). A natural approach is therefore to compare the empirical average of
r1(t)
v1(t)

over t ∈ T to the empirical average of r2(t)
v2(t)

. If these are different, that
would refute p1(t) = p2(t) for all t ∈ T . In Fig. 1, we plot these empirical values,
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and this provides some evidence that the null hypothesis is false. However, this
approach is not quite statistically rigorous.

Specifically, the problem with this approach is that when r1(t) is zero, then
v2(t) is zero and p2(t) remains undefined. However, if we filter away any tweet
whose r1(t) = 0, then we could potentially bias the estimation of p1(t) as well.
To overcome this issue, we will correct the bias by subtracting a corresponding
factor in r1(t)

v1(t)
.

In the lemmas and definitions below, the expectation is over the stochastic
process described above, where v2, r1, r2 are random variables. For each tweet
t ∈ T we define the following random variables:

X2(t) =
{

r2(t)/v2(t) if v2(t) > 0
0 if v2(t) = 0 (1)

X1(t) = r1(t)/v1(t) − f0(t) (2)

where f0(t) = ( v1(t)
v1(t)+1 )v1(t)+1/v1(t).

Lemma 1. Under the null hypothesis that p1(t) = p2(t), we have EX2(t) ≥
EX1(t), for any t ∈ T .

Proof. Note that

EX2(t) = p(t) Pr(v2(t) �= 0) = p(t) Pr(r1(t) �= 0),

by our assumption that v2(t) = 0 if and only if r1(t) = 0. Further,

EX1(t) = p(t) − f0(t)

The conclusion follows since:

p(t) Pr(r1(t) = 0) = p(t) × (1 − p(t))v1(t) ≤ f0(t).

where the last inequality is obtained by observing the maximum value of the
function p(t) × (1 − p(t))v1(t) of p(t).

For any subset T of tweets, let χ1 =
∑

t∈T X1(t) and χ2 =
∑

t∈T X2(t). We
compute the observed values of χ1 and χ2 for several different buckets of tweets
T , grouped by ranges over number of first level impressions. These buckets are
shown in Table 2. Based on the second and third columns, we conclude that the
average observed X2 is less than the average observed X1, thereby contradicting
the null hypothesis.

Now we examine the significance of the above finding. The idea is that since
both χ1 and χ2 are sums of independent random variables in the range [0, 1],
the observed values should be concentrated around the mean value. While we
don’t know the mean values, Eχ1 and Eχ2, we can obtain an upper bound of
the desired probability, by maximizing over all possible values of Eχ1 and Eχ2,



126 A. Goel et al.

Table 2. Experimental results for several different buckets of tweets. See main text for
more details.

v1 Number of tweets χ1 χ2 p-value

(0, ∞) 3766 k 3017 836 0.0

(100, 1000) 359 k 690 109 10−100

(1000, 10000) 2133 k 1830 531 10−150

(10000, ∞) 1274 k 477 195 10−30

subject to the null hypothesis, Lemma 1. This is summarized in the following
Lemma:

Lemma 2. For a set of tweets T with observed values of χ1 ≥ χ2, the probability
that such an observation could happen under the null hypothesis, p1(t) = p2(t)
for all t ∈ T , can be upper bounded by:

2 exp(−2
√

2(χ2
1 + χ2

2) − 2χ1 − 2χ2

3
).

Proof. Let t1 = Eχ1 and t2 = Eχ2. By Chernoff bound (cf Corollary 4.6 [18]),

Pr(|χ1 − t1| ≥ δ1t1) ≤ 2 exp(−t1δ
2
1)/3

Pr(|χ2 − t2| ≥ δ2t2) ≤ 2 exp(−t2δ
2
2)/3

Hence

max
t2≥t1>0

Pr(|χ1 − t1| ≥ δ1t1, |χ2 − t2| ≥ δ2t2)

≤ max
t2≥t1>0

2 exp(−(t1δ21 + t2δ
2
2)/3)

= max
t2≥t1>0

2 exp(−(
χ2
1

t1
+ t1 +

χ2
2

t2
+ t2 − 2χ1 − 2χ2)/3) (3)

Consider two cases,

1. if t2 ≤ χ1, then we know that χ2
1

t1
+t1 ≥ χ2

1
t2

+t2, and (3) can be upper bounded
by

2 exp(−2
√

2(χ2
1 + χ2

2) − 2χ1 − 2χ2

3
)

when t2 = t1 =
√

χ2
1+χ2

2
2 .

2. if t2 > χ1, then we know that χ2
1

t1
+ t1 ≥ 2χ1, and χ2

1
t1

+ t1 ≥ χ2
1

χ1
+ χ1. Then

(3) can be upper bounded by

2 exp(−(
χ2
1

χ1
+ χ1 − 2χ2)/3)

when t1 = t2 = χ1. And it’s not hard to check that this is smaller than the
bound obtained in the first case.
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Fig. 2. The histogram of p-values obtained from 10000 random subset of tweets. Each
random subset contains 1 % of all tweets.

We compute these probabilities and show them as p-values in Table 2. This
shows that the observed χ1, χ2 are highly unlikely under the null hypothesis.

Finally, we note that the above analysis does not necessarily show that
p1(t) > p2(t) for almost all t in our corpus. To address this concern, we ran-
domly sample 1 % of the tweets, run the same analysis, and repeat for 10000
times. Figure 2 plots the histogram of p-values that we obtain. Since we observed
consistently low p-values among all the samples, this shows that the null hypoth-
esis of p1(t) = p2(t) for all t ∈ T is very unlikely to hold in our dataset. In fact,
our analysis shows that p1(t) is almost always bigger than p2(t).

3 An Interest Based Model for Tweet Propagation

We now show that the above empirical observations are consistent with the
following model: Users have interests and connect to other users based on simi-
larities in interests. Each tweet corresponds to an interest (either a broad interest
or a narrow interest) and is retweeted only by users with the corresponding inter-
est. We formalize this model below, and show how it can qualitatively explain
our observations.

We adapt the Kronecker interest model formulated in [3]. This is based on
the Kronecker social graph, which has been studied as a reasonable theoretical
model for social networks [15,17]. We note that some of the model assumptions
below are not an exact fit for social networks; nevertheless, this model captures
most high-level statistical properties observed in reality, in addition to being
easy to interpret. In our model, parametrized by a small number K, there are
|V | = n users, and d = logK n attributes, each with K possible values from the
set S = {a1, a2, . . . , aK}. Each node u ∈ V maps to a d-dimensional vector of
attribute values (u1, u2, . . . , ud), where each ui ∈ S. Therefore, |V | = Kd = n.
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Treat the values in S as the K vertices of an undirected seed graph G0, and denote
the adjacency matrix of this graph as A. Assume A[as, as] = 1 for 1 ≤ s ≤ K.

For each u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd), the edge (u, v) exists
iff A[uj , vj ] = 1 for all j = 1, 2, . . . , d. We define an interest as a set of pairs
of attribute dimensions and their values, where a generic interest i ∈ I has the
following form:

i = {〈j1, aj1〉, 〈j2, aj2〉, . . . , 〈jr, ajr 〉} where j1, j2, . . . , jr ≤ K and r ≤ d

The consumers of this interest are defined as:

Ci = {u = (u1, u2, . . . , ud) | A[uj , aj ] = 1 ∀〈j, aj〉 ∈ i}
Similarly, the producers of this interest are defined as:

Pi = {u = (u1, u2, . . . , ud) | uj = aj ∀〈j, aj〉 ∈ i}
The above interest model has the following interpretation. Since each interest

is specified by a subset of attributes along with their values, the graph G0 and
adjacency matrix A specify which interests are related, i.e. which interests specify
an interested in relationship. We classify interests are narrow or broad. The
narrowest interests have |i| = d, and the broadest interest has |i| = 0. Further,
these interests have a natural hierarchical structure, where the broader interests
are those specified by fewer attributes. Also note that a producer of an interest
needs to align with it’s attribute values on all the relevant attribute dimensions,
while a consumer of an interest only needs to be interested in those attribute
values in the relevant attribute dimensions.

We parametrize the tweet propagation process by two distributions: There
is an interest distribution F and a SIR parameter distribution G. We choose
an interest i at random from distribution F ; choose a producer u uniformly at
random from Pi, and choose an infectiousness p at random from G. The tweet
originates at u, and propagates using the SIR model with parameter p on the
subgraph induced by Ci.

We now perform some calculations to understand the behavior of this process
for various interest sizes. In order to simplify these calculations, we assume G0

is regular with degree w, and denote A = wd as the degree of each user. We
assume A 
 w. Note that G0 has K vertices, so w ≤ K. We denote d − |i| = s
as the size of the interest. We further assume that the infectiousness parameter
p is small so that wp � 1; on the other hand, we assume it is large enough that
Ap 
 1. We note that these assumptions are only to derive simple formulas
that can be qualitatively interpreted. We need to use more nuanced parameter
settings to model real social networks, but these will not affect the high-level
qualitative nature of our conclusions.

Narrowest Interests, s = 0 In this case, |Pi| = 1, so that there is one user u
who is a potential producer. This user is directly connected to all users in Ci.
Therefore, for any p, the size of the cascade is Ap, and the structural virality is
exactly 2.
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Narrow Interest, s = 1 In this case, |Pi| = K, and these producers are connected
as G0. Assume all these producers have the first d − 1 coordinates of their
attribute vector fixed to one value, and the final coordinate taking one of K
possible values. The consumers Ci are all the neighbors of Pi. For small enough
p, let wp = δ ∈ (0, 1). Then we approximately have Size = A

w δ(1 + δ), and
SV = 2 + δ

2 . In this case, though structural virality grows very slowly with size,
a large structural virality implies a large size but not necessarily the other way
around.

Broad Interest, s = d In this case, |Pi| = n. Assuming Ap 
 1, the expected
size of the cascade is (Ap)h, where h = logA n is the depth of the process.
The structural virality is 2h regardless of p. Therefore, for broad interests with
moderate infectiousness p, we expect a high value of structural virality, and
a correspondingly high value of size. Therefore, in our model, a high value of
structural virality corresponds to a broader interest, and these cascades also have
large size.

4 Conclusion

In this paper, we performed an empirical examination of the SIR epidemic model
on a large selection of retweet cascades on Twitter. The experimental results
refute the null hypothesis, and show that the SIR model does not fit the empiri-
cal observations. This is because retweet rates decrease as a cascade propagates
further from the source, contradicting the fixed probability per cascade assump-
tion in the SIR model. We also proposed an alternative interest-based diffusion
model, where users retweet based on overlapping interests with a tweet. It is
an interesting future challenge to empirically test the interest-based diffusion
model. Indeed, in preliminary experiments we often found that structurally viral
cascades correspond to “broad” topics that also have a very large size. In partic-
ular, we tweets containing jokes, appeals for finding a lost person, and “not safe
for work” (NSFW) content are common among large structurally viral retweet
cascades. On the other hand, tweets that correspond to “narrow” topics (niche
sports and other topical content) usually have small structural virality. We leave
it to future work to validate these observations on a large scale.

We also emphasize that our work is specific to the flow on information in
social networks such as Twitter, and on fitting the simple SIR model (with
possibly different levels of infectiousness or interestingness for different tweets)
to it. We view this work as one further step towards validating simple models for
information spreading. Given the format of retweets on Twitter where multiple
retweets to a user can be suppressed, we have not considered threshold models
(such as in [10]) that are based on a user receiving multiple copies of the message
from different sources. We note that such threshold models have been extensively
investigated in other diffusion contexts such as adoption of new technologies, and
are likely appropriate for spread of information cascades in other social media.
This makes it a good topic for future investigation. We also note that the interest-
based model, coupled with SIR on the appropriate interest subgraph, is only one
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possible explanation for our observations. It is an interesting research direction
to see if there are other possible explanations, such as local structure in networks,
epidemic thresholds, etc. that can be empirically validated. Finally, an interesting
direction is to explore alternative notions of virality other than structural virality.
In particular, is there a way to capture “viral” events that are specific to a group
of friends, or inside a community? We believe that understanding these questions
will also provide new insights for content recommendation and targeting on social
networks.
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Abstract. Information gathering by crawlers on the web is of practi-
cal interest. We consider a simplified model for crawling complex net-
works such as the web graph, which is a variation of the robot vacuum
edge-cleaning process of Messinger and Nowakowski. In our model, a
crawler visits nodes via a deterministic walk determined by their weight-
ings which change during the process deterministically. The minimum,
maximum, and average time for the robot crawler to visit all the nodes
of a graph is considered on various graph classes such as trees, multi-
partite graphs, binomial random graphs, and graphs generated by the
preferential attachment model.

1 Introduction

A central paradigm in web search is the notion of a crawler, which is a soft-
ware application designed to gather information from web pages. Crawlers per-
form a walk on the web graph, visiting web pages and then traversing links as
they explore the network. Information gathered by crawlers is then stored and
indexed, as part of the anatomy of a search engine such as Google or Bing.
See [10,16,25] and the book [22] for a discussion of crawlers and search engines.

Walks in graph theory have been long-studied, stretching back to Euler’s
study of the Königsberg bridges problem in 1736, and including the travelling
salesperson problem [3] and the sizeable literature on Hamiltonicity problems
(see, for example, [28]). An intriguing generalization of Eulerian walks was intro-
duced by Messinger and Nowakowski in [23], as a variant of graph cleaning
processes (see, for example, [2,24]). The reader is directed to [8] for an overview
of graph cleaning and searching. In the model of [23], called the robot vacuum, it
is envisioned that a building with dirty corridors (for example, pipes containing
algae) is cleaned by an autonomous robot. The robot cleans these corridors in
a greedy fashion, so that the next corridor cleaned is always the “dirtiest” to
which it is adjacent. This is modelled as a walk in a graph. The robot’s initial
position is any given node, with the initial weights for the edges of the graph
G being −1,−2, . . . ,−|E(G)| (each edge has a different value). At every step of
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the walk, the edges of the graph will be assigned different weights indicating the
last time each one was cleaned (and thus, its level of dirtiness). It is assumed
that each edge takes the same length of time to clean, and so weights are taken
as integers. In such a model, it is an exercise to show that for a connected graph,
one robot will eventually clean the graph (see [23]).

Let s(G) and S(G) denote the minimum and maximum number of time-steps
over all edge weightings, respectively, when every edge of a graph G has been
cleaned. As observed in [23], if G is an Eulerian graph, then we have that s(G) =
|E(G)|, and moreover the final location of the robot after the first time every
edge has been cleaned is the same as the initial position. Li and Vetta [20] gave an
interesting example where the robot vacuum takes exponential time to clean the
graph. Let Se be the maximum value of S over all connected graphs containing
exactly e edges. It is proven in [20] that there exists an explicit constant d > 0
such that, for all e, Se ≥ d(3/2)e/5 − 1/2. Moreover, Se ≤ 3e/3+1 − 3. An
analogous result was independently proven by Copper et al. [13] who analyzed
a similar model to the robot vacuum process. The “self-stabilization” found
in robot vacuum is also a feature of so-called ant algorithms (such as the well-
known Langton’s ant which is capable of simulating a universal Turing machine;
see [15]). The robot vacuum model can be regarded as an undirected version of
the rotor-router model; see [27,29].

In the present work, we provide a simplified model of a robot crawler on the
web, based on the robot vacuum paradigm of [20,23]. In our model, the crawler
cleans nodes rather than edges. Nodes are initially assigned unique non-positive
integer weights from {0,−1,−2, . . . ,−|V (G)| + 1}. In the context of the web
or other complex networks, weights may be correlated with some popularity
measure such as in-degree or PageRank. The robot crawler starts at the dirtiest
node (that is, the one with the smallest weight), which immediately gets its
weight updated to 1. Then at each subsequent time-step it moves greedily to the
dirtiest neighbour of the current node. On moving to such a node, we update
the weight to the positive integer equalling the time-step of the process. The
process stops when all weights are positive (that is, when all nodes have been
cleaned). Note that while such a walk by the crawler may indeed be a Hamilton
path, it usually is not, and some weightings of nodes will result in many re-visits
to a given node. Similar models to the robot crawler have been studied in other
contexts; see [18,21,27].

A rigorous definition of the robot crawler is given in Sect. 2. We consider there
the minimum, maximum, and average number of time-steps required for the
robot crawler process. We give asymptotic (and in some cases exact) values for
these parameters for paths, trees, and complete multi-partite graphs. In Sect. 3,
we consider the average number of time-steps required for the robot crawler to
explore binomial random graphs. The robot crawler is studied on the preferential
attachment model, one of the first stochastic models for complex networks, in
Sect. 4. We conclude with a summary and a list of open problems for further
study. Due to lack of space, some of the proofs are omitted from this extended
abstract and deferred to the extended version.
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Throughout, we consider only finite, simple, and undirected graphs. For a
given graph G = (V,E) and v ∈ V , N(v) denotes the neighbourhood of v
and deg(v) = |N(v)| its degree. For background on graph theory, the reader is
directed to [28]. For a given n ∈ N, we use the notation Bn = {−n + 1,−n +
2, . . . ,−1, 0} and [n] = {1, 2, . . . , n}. All logarithms in this paper are with respect
to base e. We say that an event An holds asymptotically almost surely (a.a.s.)
if it holds with probability tending to 1 as n tends to infinity.

2 The Robot Crawler Process: Definition and Properties

We now formally define the robot crawler process and the various robot crawler
numbers of a graph. Some proofs are omitted owing to space constraints, and
will appear in the full version of the paper. The robot crawler RC(G,ω0) =(
(ωt, vt)

)L

t=1
of a connected graph G = (V,E) on n nodes with an initial weighting

ω0 : V → Bn, that is a bijection from the node set to Bn, is defined as follows.

1. Initially, set v1 to be the node in V with weight ω0(v1) = −n + 1.
2. Set ω1(v1) = 1; the other values of ω1 remain the same as in ω0.
3. Set t = 1.
4. If all the weights are positive (that is, minv∈V ωt(v) > 0), then set L = t,

stop the process, and return L and RC(G,ω0) =
(
(ωt, vt)

)L

t=1
.

5. Let vt+1 be the dirtiest neighbour of vt. More precisely, let vt+1 be such that

ωt(vt+1) = min{ωt(v) : v ∈ N(vt)}.

6. ωt+1(vt+1) = t + 1; the other values of ωt+1 remain the same as in ωt.
7. Increment to time t + 1 and return to 4.

If the process terminates, then define

rc(G,ω0) = L,

that is rc(G,ω0) is equal to the number of steps in the crawling sequence (v1, v2,
. . . , vL) (including the initial state) taken by the robot crawler until all nodes are
clean; otherwise rc(G,ω0) = ∞. We emphasize that for a given ω0, all steps of the
process are deterministic. Note that at each point of the process, the weighting
ωt is an injective function. In particular, there is always a unique node vt+1,
neighbour of vt of minimum weight (see step (4) of the process). Hence, in fact,
once the initial configuration is fixed, the robot crawler behaves like a cellular
automaton. It will be convenient to refer to a node as dirty if it has a non-
positive weight (that is, it has not been yet visited by the robot crawler), and
clean, otherwise.

The next observation that the process always terminates in a finite number
of steps is less obvious, but we omit the proof owing to space constraints.

Theorem 1. For a connected graph G = (V,E) on n nodes and a bijection
ω0 : V → Bn, RC(G,ω0) terminates after a finite number of steps; that is,
rc(G,ω0) < ∞.
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The fact that every node in a graph will be eventually visited inspires the
following definition. Let G = (V,E) be any connected graph on n nodes. Let Ωn

be the family of all initial weightings ω0 : V → Bn. Then

rc(G) = min
ω0∈Ωn

rc(G,ω0) and RC(G) = max
ω0∈Ωn

rc(G,ω0).

In other words, rc(G) and RC(G) the are minimum and maximum number of
time-steps, respectively, needed to crawl G, over all choices of initial weightings.
Now let ω0 be an element taken uniformly at random from Ωn. Then we have
the average case evaluated as

rc(G) = E [rc(G,ω0)] =
1

|Ωn|
∑

ω0∈Ωn

rc(G,ω0).

The following result is immediate. (Part 5. follows from the observation that,
if a node v is cleaned by the robot crawler Δ + 1 times within an interval of
time-steps, then every neighbour of v must be cleaned at least once during that
interval.)

Lemma 1. Let G be a connected graph of order n, maximum degree Δ, and
diameter d. Let Cn and Kn denote the cycle and the clique of order n, respec-
tively.

1. rc(G) ≤ rc(G) ≤ RC(G).
2. rc(Kn) = rc(Kn) = RC(Kn) = n.
3. rc(Cn) = rc(Cn) = RC(Cn) = n.
4. rc(G) = n if and only if G has a hamiltonian path.
5. RC(G) ≤ n(Δ + 1)d.

The model introduced in [23] is analogous to the robot crawler process, in a
way we make precise. For any connected graph G = (V,E) and any k ∈ N, a
k-subdivision of G, Lk(G), is a graph that is obtained from G by replacing each
edge of G by a path of length k. The following theorem shows the connection
between the two models. Recall that s(G) is the analogue of rc(G) in the robot
vacuum model.

Theorem 2. If G = (V,E) is a connected graph, then

s(G) =
⌊

rc(L3(G)) + 1
3

⌋
.

Theorem 2 shows that, indeed, the model we consider in this paper is a general-
ization of the edge model introduced in [23]. Instead of analyzing s(G) for some
connected graph G, we may construct L3(G) and analyze rc(L3(G)).

Let us start with the following elementary example to illustrate the robot
crawler parameters. For the path Pn of length n−1 ≥ 2, we have that rc(Pn) = n
and RC(Pn) = 2n − 2. In order to achieve the minimum, one has to start the
process from a leaf of Pn. Regardless of ω0 used, the process takes n steps to
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finish (see Lemma 1(4) and Theorem 4 for more general results). In order to
achieve the maximum, the robot crawler has to start from a neighbour of a
leaf and a weighting that forces the process to move away from the leaf (again,
see Theorem 4 for more general result). By direct computation, we have the
following result.

Theorem 3. For any n ∈ N,

rc(Pn) =
3n

2
− 3

2
+

1
n

∼ 3n

2
.

We next give the precise value of rc and RC for trees. The main idea behind
the proof of this result is comparing the robot crawler to the Depth-First Search
algorithm on a tree.

Theorem 4. Let T = (V,E) be a tree on n ≥ 2 nodes. Then we have that

rc(T ) = 2n − 1 − diam(T ) and RC(T ) = 2n − 2,

where diam(T ) is the diameter of T .

Now, let us move to more sophisticated example. For k ∈ N \ {1} and n ∈ N,
denote the complete k-partite graph with partite sets V1, . . . , Vk of size n by Kk

n.
Note that for any n ∈ N and k = 2, we have that

rc(K2
n) = rc(K2

n) = RC(K2
n) = |V (K2

n)| = 2n.

Indeed, since K2
n has a hamiltonian path, rc(K2

n) = 2n (see Lemma 1(4)). How-
ever, in fact, regardless of the ω0 used, the robot crawler starts at a node v0 and
then oscillates between the two partite sets visiting all nodes in increasing order
of weights assigned initially to each partite set of K2

n.
We next consider the case k ≥ 3. Since Kk

n still has a hamiltonian path,
rc(Kk

n) = kn. For RC(Kk
n) the situation is slightly more complicated.

Theorem 5. For any k ∈ N \ {1, 2} and n ∈ N, we have that

rc(Kk
n) = kn and RC(Kk

n) = (k + 1)n − 1.

Investigating rc(Kk
n) appears more challenging. However, we derive the

asymptotic behaviour.

Theorem 6. For any k ∈ N \ {1, 2}, we have that

rc(Kk
n) = kn + O(log n) ∼ kn.

Before we sketch the proof of Theorem 6, we need a definition. Suppose that
we are given an initial weighting ω0 of Kk

n. For any � ∈ [kn], let A� be the set of
� cleanest nodes; that is,

A� = {v ∈ V1 ∪ V2 ∪ . . . ∪ Vk : ω0(v) ≥ −� + 1}.



The Robot Crawler Number of a Graph 137

Finally, for any � ∈ [kn] and j ∈ [k], let aj
� = aj

�(ω0) = |A� ∩ Vj |; that is, aj
�

is the number of nodes of Vj that are among � the cleanest ones (in the whole
graph Kk

n). Note that for a random initial weighing ω0, the expected value of
aj

� is �/k. Let ε > 0. We say that ω0 is ε-balanced if for each j ∈ [k] and
6ε−2k log n ≤ � ≤ kn, we have that

∣∣∣∣aj
� − �

k

∣∣∣∣ <
ε�

k
.

A crucial observation is that almost all initial weightings are ε-balanced,
regardless of how small ε is. We will use the following version of Chernoff’s bound.
Suppose that X ∈ Bin(n, p) is a binomial random variable with expectation
μ = np. If 0 < δ < 3/2, then

Pr (|X − μ| ≥ δμ) ≤ 2 exp
(

−δ2μ

3

)
. (1)

(For example, see Corollary 2.3 in [17].) It is also true that (1) holds for a random
variable with the hypergeometric distribution. The hypergeometric distribution
with parameters N , n, and m (assuming max{n,m} ≤ N) is defined as follows.
Let Γ be a set of size n taken uniformly at random from set [N ]. The random
variable X counts the number of elements of Γ that belong to [m]; that is,
X = |Γ ∩ [m]|. It follows that (1) holds for the hypergeometric distribution
with parameters N , n, and m, with expectation μ = nm/N . (See, for example,
Theorem 2.10 in [17].)

Now we are ready to state the important lemma which is used in the proof of
Theorem 6. Its proof follows from the Chernoff’s bound (1) for hypergeometric
distributions, and is omitted.

Lemma 2. Let ε > 0 and k ∈ N\{1, 2}, and let ω0 be a random initial weighting
of Kk

n. Then we have that ω0 is ε-balanced with probability 1 − O(n−1).

Proof of Theorem 6. Let k ∈ N \ {1, 2} and fix ε = 0.01. We will show that
for any ε-balanced initial weighting ω0, rc(Kk

n, ω0) = kn + O(log n). This will
finish the proof since, by Lemma 2, a random initial weighting is ε balanced with
probability 1 − O(n−1), and for any initial weighting ω0 we have rc(Kk

n, ω0) ≤
RC(Kk

n) = (k + 1)n − 1 = O(n). Indeed,

rc(Kk
n) = Pr (ω0 is ε-balanced) (kn + O(log n)) + Pr (ω0 is not ε-balanced) O(n)

= (kn + O(log n)) + O(1) = kn + O(log n).

Let ω0 be any ε-balanced initial weighting. Fix � ∈ [kn] and let us run the
process until the robot crawler is about to move for the first time to a node of
A�. Suppose that the robot crawler occupies node v ∈ Vi for some i ∈ [k] (v 
∈ A�)
and is about to move to node u ∈ Vj for some j ∈ [k], j 
= i (u ∈ A�). Let us
call Vi a �-crucial partite set. Concentrating on non-crucial sets, we observe that
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for any s 
= i, all the nodes of Vs \ A� are already cleaned; otherwise, the robot
crawler would go to such node, instead of going to u. On the other hand, it
might be the case that not all nodes of Vi \ A�, that belong to a �-crucial set,
are already visited; we will call such nodes �-dangerous. Let f(�) be the number
of �-dangerous nodes.

Our goal is to control the function f(�). We say that � is good if f(�) ≤ 0.6�/k.
Clearly, � = kn is good, as f(kn) = 0. We use the following claim.
Claim. If � is good, then �′ = �2�/3� is good, provided that �2�/3� ≥ 6ε−2k log n.

To show the claim, we run the process and stop at time T� when the robot
crawler is about to move to the fist node of A�. We concentrate on the time
interval from T� up to time-step T�′ when a node of A�′ is about to be cleaned.
First, note that during the first phase of this time interval, the crawler oscillates
between nodes of A� \ A�′ that are not in the �-crucial set and �-dangerous
nodes. Clearly, there are � − �′ ≥ �/3 nodes in A� \ A�′ . Since ω0 is ε-balanced,
the number of nodes of the �-crucial set that belong to A� and A�′ is at most
(1 + ε)�/k and at least (1 − ε)�′/k, respectively. Since

�

3
−
(
(1 + ε)�

k
− (1 − ε)�′

k

)
=

�

3
− (1 + 5ε)�

3k
+ O(1) ≥

(
k − 1

3
− 2ε

)
�

k
> 0.64

�

k
≥ f(�),

this phase lasts 2f(�) steps and all �-dangerous nodes are cleaned. The claim
now follows easily as one can use a trivial bound for the number of �′-dangerous
nodes. Regardless which partite set is �′-crucial, since ω0 is ε-balanced, we can
estimate the number of nodes in �′-crucial set that belong to A� \ A′

�. Since
�′-dangerous nodes must be in A� \ A′

�, we obtain that

f(�′) ≤ (1 + ε)�
k

− (1 − ε)�′

k
=

(
1
2

+
5
2
ε

)
�′

k
+ O(1) < 0.53

�′

k
.

It follows that �′ is good and the claim holds by induction.
To finish the proof, we keep applying the claim recursively concluding that

there exists � < (3/2)6ε−2k log n = O(log n) that is good. At time T� of the
process, � + f(�) ≤ � + 0.6�/k = O(log n) nodes are still dirty and every other
node is visited exactly once. The process ends after at most 2(� + f(�)) another
steps for the total of at most kn + (� + f(�)) = kn + O(log n) steps. 
�

3 Binomial Random Graphs

The binomial random graph G(n, p) is defined as a random graph with node set
[n] in which a pair of nodes appears as an edge with probability p, independently
for each pair of nodes. As typical in random graph theory, we consider only
asymptotic properties of G(n, p) as n → ∞, where p = p(n) may and usually
does depend on n.

It is known (see, for example, [19]) that a.a.s. G(n, p) has a hamiltonian
cycle (and so also a hamiltonian path) provided that pn ≥ log n + log log n + ω,
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where ω = ω(n) is any function tending to infinity together with n. On the other
hand, a.a.s. G(n, p) has no hamiltonian cycle if pn ≤ log n + log log n − ω. It is
straightforward show that in this case a.a.s. there are more than two nodes of
degree at most 1 and so a.a.s. there is no hamiltonian path. Combining these
observations, we derive immediately the following result.

Corollary 1. If ω = ω(n) is any function tending to infinity together with n,
then the following hold a.a.s.

1. If pn ≥ log n + log log n + ω, then rc(G(n, p)) = n.
2. If pn ≤ log n + log log n − ω, then rc(G(n, p)) > n.

The next upper bound on RC(G(n, p)) follows from Lemma 1(5) and the fact
that G(n, p) has maximum degree at most n − 1 and a.a.s. diameter 2 for p in
the range of discussion.

Corollary 2. Suppose pn ≥ C
√

n log n, for a sufficiently large constant C > 0.
Then a.a.s. we have that

RC(G(n, p)) ≤ n3.

Moreover, we give the following lower bound (whose proof is omitted here).

Theorem 7. Suppose C
√

n log n ≤ pn ≤ (1 − ε)n, for constants C > 1 and
ε > 0. Then a.a.s. we hae that

RC(G(n, p)) ≥ (2 − p + o(p))n.

The rest of this section is devoted to the following result.

Theorem 8. Let p = p(n) such that pn � √
n log n. Then a.a.s.

rc(G(n, p)) = n + o(n).

The main ingredient to derive Theorem 8 is the following key lemma.

Lemma 3. Let G = (V,E) ∈ G(n, p) for some p = p(n) such that pn �√
n log n, and let ω0 : V → Bn be any fixed initial weighting. Then with proba-

bility 1 − o(n−3), we have that

rc(G,ω0) = n + o(n).

We are going to fix an initial weighting before exposing edges of the random
graph. For a given initial weighting ω0 : V → Bn, we partition the node set
V into 3 types with respect to their initial level of dirtiness: type 1 consists of
nodes with initial weights from Bn \ B�2n/3�, type 2 with initial weights from
B�2n/3� \B�n/3�; the remaining nodes are of type 3. Before we move to the proof
of Lemma 3, we state the following useful claim that holds even for much sparser
graphs (the proof is immediate by a standard Chernoff bound (1)).
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Claim 1. Let G = (V,E) ∈ G(n, p) for some p = p(n) such that pn � log n. Let
ω0 : V → Bn be any initial weighting. Then the following property holds with
probability 1 − o(n−3). Each node v ∈ V has (1 + o(1))pn/3 neighbours of each
of the three types.

We will use the claim in the proof of the main result but not explicitly; that
is, we do not want to condition on the property stated in the claim. Instead, we
uncover edges of the (unconditional) random graph (one by one, in some order)
and show that the desired upper bound for rc(G(n, p), ω0) holds with the desired
probability unless the claim is false. Now we can move to the proof of Lemma 3.

Proof of Lemma 3. We consider four phases of the crawling process.

Phase 1 : We start the process from the initial node (which is of type 1, since it
has initial weight −n + 1), and then we clean only nodes of type 1. The phase
ends when the robot crawler is not adjacent to any dirty node of type 1; that is,
when the crawler is about to move to a node of some other type than type 1 or
to re-clean some node of type 1. An important property is that, at any point of
the process, potential edges between the crawler and dirty nodes are not exposed
yet. Hence, if x ≥ 5 log n/p nodes of type 1 are still dirty, the probability that
this phase ends at this point is equal to

(1 − p)x ≤ exp(−px) ≤ n−5.

Hence, it follows from the union bound that, with probability at least 1−n−4 =
1−o(n−3), this phase ends after T1 steps, where �n/3�−5 log n/p ≤ T1 ≤ �n/3�,
at most 5 log n/p nodes of type 1 are still dirty, and the other type 1 nodes
are cleaned exactly once. Observe that during this phase we exposed only edges
between type 1 nodes.

Phase 2 : During this phase we are going to clean mostly nodes of type 2, with
a few “detours” to type 1 nodes that are still dirty. Formally, the phase ends
when the robot crawler is not adjacent to any dirty node of type 1 or 2; that
is, when the crawler is about to move to a node of type 3 or to re-clean some
node (of type 1 or 2). Arguing as before, we deduce that, with probability at
least 1 − o(n−3), this phase ends after the total of T2 steps (counted from the
beginning of the process), where �2n/3� − 5 log n/p ≤ T2 ≤ �2n/3�, at most
5 log n/p nodes of type 1 or 2 are still dirty, and the other type 1 or 2 nodes are
cleaned exactly once.

Suppose that at the end of this phase some node v of type 1 is still dirty. This
implies that v has at most 10 log n/p neighbours that are type 2. Indeed, at most
5 log n/p of them are perhaps not visited by the crawler yet; at most 5 log n/p
of them were visited by the crawler but it did not move to v from them but
went to some other of the at most 5 log n/p dirty nodes of type 1 instead. Since
pn ≥ 10

√
n log n, we obtain that 10 log n/p ≤ pn/10 and so this implies that the

property stated in Claim 1 is not satisfied. If this is the case, then we simply
stop the argument. We may then assume that all nodes of type 1 are cleaned
at this point of the process. Finally, let us mention that during this phase we
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exposed only edges between type 2 nodes, and between type 1 nodes that were
dirty at the end of phase 1 and type 2 nodes.

Phase 3 : This phase ends when the robot crawler is not adjacent to any dirty
node; that is, when the crawler is about to re-clean some node. During this phase
we are going to clean mostly nodes of type 3, with a few “detours” to type 2
nodes that are still dirty. Arguing as before, we deduce that, with probability at
least 1−o(n−3), this phase ends after the total of T3 steps, where n−5 log n/p ≤
T2 ≤ n. Moreover, we may assume that at the end of this phase at most 5 log n/p
nodes of type 3 are still dirty whereas all other nodes are cleaned exactly once;
otherwise, the property stated in Claim 1 is not satisfied. As usual, the main
observation is that during this phase we exposed only edges between type 3
nodes, and between type 2 nodes that were dirty at the end of phase 2 and type
3 nodes.

Phase 4 : During this final phase we are going to re-clean (for the second time)
some nodes of type 1, with a few “detours” to type 3 nodes that are still dirty.
This phase ends when one of the following properties is satisfied:

(a) all nodes are cleaned,
(b) this phase takes more than 20 log n/p2 steps,
(c) the robot crawler is not adjacent to any dirty node nor to any type 1 node

that was cleaned only once, during phase 1 (note that these nodes have the
smallest weights at this point of the process).

Recall that our goal is to show that either the property stated in Claim 1 is not
satisfied or, with probability at least 1−o(n−3), the phase ends when all nodes are
cleaned. From this it will follow that the process takes n+O(log n/p2) = n+o(n)
steps with probability at least 1 − o(n−3), and the proof will be finished.

Suppose first that the phase ends because of property (c). It follows that
the crawler occupies a node v that has at most 25 log n/p neighbours that are
type 1: at most 20 log n/p of them were re-cleaned during this phase, and at
most 5 log n/p of them were cleaned during phase 2. Since pn ≥ 10

√
n log n,

25 log n/p ≤ pn/4 and so the property in Claim 1 is not satisfied. Hence, we may
assume that the phase does not end because of (c).

Suppose now that the phase ends because of property (b) and that prop-
erty (c) is never satisfied. This implies that all nodes visited during phase 4 must
be different, since otherwise property (c) would hold. Moreover, the robot crawler
can be adjacent to a dirty node at most 5 log n/p out of the first �20 log n/p2�
steps in this phase, since each time this happens one dirty node will be cleaned
in the next step, and there were at most 5 log n/p nodes of type 3 that were dirty
at the end of phase 3. A crucial observation is that no edges between type 1 and
type 3 nodes (and also no edges between dirty nodes of type 3) were exposed at
the beginning of this phase. Using this we can estimate the probability that at
the end of this phase some node is still dirty. Indeed, at each step, the probabil-
ity that the robot crawler is adjacent to a dirty node (provided that some dirty
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node still exists) is at least p. Hence, using Chernoff bound (1), the probability
that phase 4 ends because of property (b) and not (c) is at most

Pr
(
Bin(�20 log n/p2�, p) ≤ 5 log n/p

) ≤ exp
(

− (3/4)220 log n/p

3 + o(1)

)
= o(n−3).

This shows that phase 4 does not stop because of property (b) with probability
1 − o(n−3), as required. 
�

4 Preferential Attachment Model

The results in Sect. 3 demonstrate that for the binomial random graph, for most
initial weightings the robot crawler will finish in approximately n steps. We now
consider the robot crawler on a stochastic model for complex networks. The
preferential attachment model, introduced by Barabási and Albert [4], was an
early stochastic model of complex networks. We will use the following precise
definition of the model, as considered by Bollobás and Riordan in [5] as well as
Bollobás, Riordan, Spencer, and Tusnády [6].

Let G0
1 be the null graph with no nodes (or let G1

1 be the graph with one node,
v1, and one loop). The random graph process (Gt

1)t≥0 is defined inductively as
follows. Given Gt−1

1 , we form Gt
1 by adding node vt together with a single edge

between vt and vi, where i is selected randomly with the following probability
distribution:

Pr (i = s) =

{
deg(vs, t − 1)/(2t − 1) 1 ≤ s ≤ t − 1,

1/(2t − 1) s = t,

where deg(vs, t−1) denotes the degree of vs in Gt−1
1 . (In other words, we send an

edge e from vt to a random node vi, where the probability that a node is chosen
as vi is proportional to its degree at the time, counting e as already contributing
one to the degree of vt.)

For m ∈ N \ {1}, the process (Gt
m)t≥0 is defined similarly with the only

difference that m edges are added to Gt−1
m to form Gt

m (one at a time), counting
previous edges as already contributing to the degree distribution. Equivalently,
one can define the process (Gt

m)t≥0 by considering the process (Gt
1)t≥0 on a

sequence v′
1, v

′
2, . . . of nodes; the graph Gt

m if formed from Gtm
1 by identifying

nodes v′
1, v

′
2, . . . , v

′
m to form v1, identifying nodes v′

m+1, v
′
m+2, . . . , v

′
2m to form

v2, and so on. Note that in this model Gt
m is in general a multigraph, possibly

with multiple edges between two nodes (if m ≥ 2) and self-loops. For the purpose
of the robot crawler, loops can be ignored and multiple edges between two nodes
can be treated as a single edge.

It was shown in [6] that for any m ∈ N a.a.s. the degree distribution of
Gn

m follows a power law: the number of nodes with degree at least k falls off as
(1 + o(1))ck−2n for some explicit constant c = c(m) and large k ≤ n1/15. Let
us start with the case m = 1, which is easy to deal with, since Gn

1 is a forest.
Each node sends an edge either to itself or to an earlier node, so the graph
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consists of components which are trees, each with a loop attached. The expected
number of components is then

∑n
t=1 1/(2t − 1) ∼ (1/2) log n and, since events

are independent, we derive that a.a.s. there are (1/2 + o(1)) log n components
in Gn

1 by Chernoff’s bound (1). Moreover, Pittel [26] essentially showed that
a.a.s. the largest distance between two nodes in the same component of Gn

1 is
(γ−1 + o(1)) log n, where γ is the solution of γe1+γ = 1 (see Theorem 13 in [5]).
Hence, the following result holds immediately from Theorem 4.

Theorem 9. The following properties hold a.a.s. for any connected component
G of Gn

1 :

rc(G) = 2|V (G)| − 1 − diam(G) = 2|V (G)| − O(log n),
RC(G) = 2|V (G)| − 2.

We may modify slightly the definition of the model to ensure Gn
1 is a tree on

n nodes, by starting from G2
1 being an isolated edge and not allowing loops to be

created in the process (this is in fact the original model in [4]). For such variant,
we would have that a.a.s. rc(Gn

1 ) ∼ RC(Gn
1 ) ∼ 2n, as the diameter would be

negligible comparing to the order of the graph.
The case m ≥ 2 is more difficult to investigate. It is known that a.a.s. Gn

m

is connected and its diameter is (1 + o(1)) log n/ log log n, as shown in [5], and
in contrast to the result for m = 1 presented above. We managed to show that
for the case m = 2, the robot crawler needs substantially more than n steps to
clean the graph in this model. This immediately implies (in a strong sense) that
Gn

2 is not hamiltonian a.a.s.

Theorem 10. A.a.s. rc(Gn
2 ) ≥ (1 + ξ + o(1))n, where

ξ = max
c∈(0,1/2)

(
2
√

c

3
− c − c2

6

)
≈ 0.10919.

Proof. Many observations in the argument will be valid for any m but, of course,
we will eventually fix m = 2. Consider the process (Gt

m)t≥0 on the sequence of
nodes (vt)t≥0. We will call node vi lonely if deg(vi, n) = m; that is, no loop is
created at the time vi is introduced and no other node is connected to vi later
in the process. Moreover, vi is called old if i ≤ cn for some constant c ∈ (0, 1)
that will be optimized at the end of the argument; otherwise, vi is called young.
Finally, vi is called j-good if vi is lonely and exactly j of its neighbours are old.

Let us begin with the big picture for the case m = 2. Suppose that an nodes
are young and 1-good, bn nodes are young and 2-good, and dn nodes are old and
lonely (which implies that they are 2-good). Clearly, the robot crawler needs to
visit all young nodes and all old and lonely ones, which takes at least (1−c)n+dn
steps. Observe that each time a young and 2-good node is visited, the crawler
must come from an old but not-lonely node and move to another such one right
after. Similarly, each time the crawler visits a young and 1-good node, it must
come from or move to some node that is old but not lonely. It follows that nodes
that are old but not lonely must be visited at least an/2 + bn + O(1) times.
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Hence, the process must take at least (1 − c + d + a/2 + b + o(1))n steps, and
our hope is that it gives a non-trivial bound for some value of c ∈ (0, 1).

The probability that vi is lonely is easy to estimate from the equivalent
definition of Gn

m obtained in terms of Gmn
1 . For i � 1, we derive that

Pr (vi is lonely) = Pr (deg(vi, i) = m)
nm∏

t=im+1

(
1 − m

2t − 1

)

∼ exp

(
−

nm∑
t=im+1

m

2t − 1
+ O

(
nm∑

t=im+1

t−2

))

∼ exp

(
−m

2

nm∑
t=im+1

t−1

)
∼ exp

(
−m

2
log

(nm

im

))
=

(
i

n

)m/2

.

We will also need to understand the behaviour of the following random variable:
for �cn� ≤ t ≤ n, let

Yt =
∑
j≤cn

deg(vj , t).

In view of the identification between the models Gn
m and Gmn

1 , it will be useful
to investigate the following random variable instead: for m�cn� ≤ t ≤ mn, let

Xt =
∑

j≤cmn

degGt
1
(v′

j , t).

Clearly, Yt = Xtm. It follows that Xm�cn� = Y�cn� = 2m�cn�. Moreover, for
m�cn� < t ≤ mn,

Xt =

{
Xt−1 + 1 with probability Xt−1

2t−1 ,

Xt−1 otherwise.

The conditional expectation is given by

E [Xt|Xt−1] = (Xt−1+1) · Xt−1

2t − 1
+Xt−1

(
1 − Xt−1

2t − 1

)
= Xt−1

(
1 +

1
2t − 1

)
.

Taking expectation again, we derive that

E [Xt] = E [Xt−1]
(

1 +
1

2t − 1

)
.

Hence, arguing as before, it follows that

E [Yt] = E [Xtm] = 2m�cn�
tm∏

s=m�cn�+1

(
1 +

1

2s − 1

)
∼ 2cmn

(
tm

cmn

)1/2

= 2mn
√

ct/n.

Noting that E [Yt] = Θ(n) for any �cn� ≤ t ≤ n, and that Yt increases by at
most m each time (Xt increases by at most one), we obtain that with probability
1 − o(n−1), Yt = E [Yt] + O(

√
n log n) ∼ E [Yt] (using a standard martingale
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argument; see Azuma-Hoeffding inequality (see, for example, [17]). Hence, we
may assume that Yt ∼ 2mn

√
ct/n for any �cn� ≤ t ≤ n.

The rest of the proof is straightforward. Note that, for a given t = xn with
c ≤ x ≤ 1, the probability that an edge generated at this point of the process
goes to an old node is asymptotic to (2mn

√
ct/n)/(2mt) =

√
cn/t =

√
c/x.

Moreover, recall that vt is lonely with probability asymptotic to (t/n)m/2 = x
for the case m = 2. It follows that

a ∼
∫ 1

c

2
√

c/x(1 −
√

c/x)xdx =
4
√

c

3
− 2c +

2c2

3
,

b ∼
∫ 1

c

(
√

c/x)2xdx = c − c2,

d ∼
∫ c

0

xdx =
c2

2
.

Since

1 − c + d + a/2 + b ∼ 1 +
2
√

c

3
− c − c2

6

is maximized at c =

(
(4+4

√
5)2/3−4

)2

4(4+4
√
5)2/3

≈ 0.10380, the proof follows. 
�

5 Conclusion and Open Problems

We introduced the robot crawler model, which is a simplified model of web crawl-
ing. We studied the minimum, maximum, and average time for the robot crawler
process to terminate. We found exact values for these parameters in several graph
classes such as trees and complete multi-partite graphs. We have successfully
addressed the robot crawler model in binomial random graphs, and considered
the rc parameter for preferential attachment graphs in the cases m = 1, 2.

Several problems concerning the robot crawler model remain open. We list
some of these relevant to our investigation below.

1. Let Gn be the complete k-partite graph with partite sets of sizes c1n, c2n,
. . . , ckn for some constants 0 < c1 ≤ c2 ≤ . . . ≤ ck. Derive the asymptotic
behaviour of rc(Gn), rc(Gn), and RC(Gn).

2. Theorem 8 holds for dense random graphs; that is, for pn � √
n log n. What

about sparser random graphs?
3. Can the bound in Corollary 2 be improved? Is it true that RC(G(n, p)) = O(n)

for a wide range of p? Recall, in view of Theorem 7, that we cannot achieve
RC(G(n, p)) = (1 + o(1))n, provided that p < 1 − ε for some ε > 0.

4. Properties of the robot crawler remain open in the preferential attachment
model when m > 2. Fix m ≥ 3. Is it true that a.a.s. rc(Gn

m) ≥ (1 + ξ)n for
some constant ξ > 0? Or maybe rc(Gn

m) ∼ n? It is possible that there is some
threshold m0 such that for m ≤ m0, rc(Gn

m) ≥ (1 + ξ)n for some constant
ξ > 0 but rc(Gn

m) ∼ n for m > m0.
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Our work with the robot crawler is a preliminary investigation. As such, it would
be interesting to study the robot crawler process on other models of complex
networks, such as random graphs with given expected degree sequence [11], pref-
erential attachment graphs with increasing average degrees [14], or geometric
models such as the spatially preferred attachment model [1,12], geographical
threshold graphs [9], or GEO-P model [7].

References

1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A spatial web graph
model with local influence regions. Internet Math. 5, 175–196 (2009)

2. Alon, N., Pra�lat, P., Wormald, N.: Cleaning regular graphs with brushes. SIAM J.
Discrete Math. 23, 233–250 (2008)
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Abstract. PageRank has numerous applications in information retrieval,
reputation systems, machine learning, and graph partitioning. In this
paper, we study PageRank in undirected random graphs with expansion
property. The Chung-Lu random graph represents an example of such
graphs. We show that in the limit, as the size of the graph goes to infin-
ity, PageRank can be represented by a mixture of the restart distribution
and the vertex degree distribution.
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1 Introduction

PageRank has numerous applications in information retrieval [20,26,30], rep-
utation systems [19,21], machine learning [3,4], and graph partitioning [1,11].
A large complex network can often be conveniently modeled by a random graph.
It is surprising that not many analytical studies are available for PageRank in
random graph models. We mention the work [5] where PageRank was analysed in
preferential attachment models and the more recent works [9,10] where PageR-
ank was analysed in directed configuration models. According to several studies
[16,18,23,29] PageRank and in-degree are strongly correlated in directed net-
works such as Web graph. Apart from some empirical studies [8,27], to the best
of our knowledge, there is no rigorous analysis of PageRank on basic undirected
random graph models such as the Erdős–Rényi graph [17] or the Chung-Lu graph
[13]. In this paper, we fill this gap and show that in these models PageRank can
be represented as a mixture of the restart distribution and the vertex degree
distribution when the size of the graph goes to infinity. First, we show the con-
vergence in total variation norm for a general family of random graphs with
expansion property. Then, we specialize the results for the Chung-Lu random
graph model proving the element-wise convergence. We conclude the paper with
numerical experiments and several interesting future research directions.
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-26784-5 12
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2 Definitions

Let G(n) = (V (n), E(n)) denote a family of random graphs, where V (n) is a vertex
set, |V (n)| = n, and E(n) is an edge set, |E(n)| = m. Denote also by A(n) the
associated adjacency matrix with elements

A
(n)
ij =

{
1, if i and j are connected,
0, otherwise.

In this work, we analyze PageRank on undirected graphs and hence AT = A. At
the same time, our analysis easily extends to some families of weighted undirected
graphs. We omit the superscript index n when it is clear from the context. Let
1 be the vector of ones of an appropriate dimension and let d = A1 be the
vector of (weighted) degrees. It is helpful to define D = diag(d), a diagonal
matrix with the degree sequence on its diagonal. Let P = AD−1 be the Markov
transition matrix corresponding to the standard random walk on the graph and
let Q = D−1/2AD−1/2 be the symmetrized transition matrix. In this paper we
work with column stochastic matrices. Note that the symmetrized transition
matrix is closely related to the normalized Laplacian L = I − D−1/2AD−1/2 =
I −Q [12]. Further we will also use the resolvent matrix R = [I −αP ]−1 and the
symmetrized resolvent matrix S = [I − αQ]−1.

Note that since Q is a symmetric matrix, its eigenvalues λi, i = 1, ..., n are
real and can be arranged in decreasing order, i.e., λ1 ≥ λ2 ≥ ... . In particular,
we have λ1 = 1. The value δ = 1 − max{|λ2|, |λn|} is called the spectral gap.

In what follows, let K be an arbitrary constant that is not the same every-
where and may change even from one line to the next (of course, not causing
any inconsistency).

For two functions f(n), g(n) g = O(f), if ∃C, a constant such that | g
f | ≤ C,

for large n, and g = o(f) if lim supn→∞| g
f | = 0. Additionally, by f � g, we

mean that f > Cg for any constant C for n large enough.
An event E is said to hold with high probability (w.h.p.) if Pr(E) ≥ 1 −

O(n−c) for some c > 0. Recall that if a finite number of events hold true w.h.p.,
then so does their intersection. Furthermore, we say that a sequence of random
variables in (Ω,F , P ) Xn = o(1) w.h.p. if there exists a function ψ(n) = o(1)
such that the event {Xn ≤ ψ(n)} holds w.h.p.

In the present work, we consider families of random graphs with the following
two properties:

Property I: W.h.p., d
(n)
max/d

(n)
min ≤ K, where d

(n)
max and d

(n)
min are the maximum

and minimum degrees, respectively.

Property II: W.h.p., max{|λ(n)
2 |, |λ(n)

n |} = o(1).

The above two properties can be regarded as a variation of the expansion
property. In the standard case of an expander family, one requires the graphs
to be regular and the spectral gap δ = 1 − max{|λ2|, |λn|} to be bounded away
from zero (see, e.g., [28]). Property I is a relaxation of the regularity condition,
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whereas Property II is stronger than the requirement for the spectral gap to be
bounded away from zero. Properties I and II allow us to consider several standard
families of random graphs such as Erdős–Rényi graphs, regular random graphs
with increasing average degrees, and Chung-Lu graphs. For Chung-Lu graphs
Property I imposes some restriction on the degree spread in the graph. It is
worth noting that as a consequence of Property I we consider graphs that are
do not have isolated vertices (dmin > 0) w.h.p.

Recall that the Personalized PageRank vector with a restart distribution
vector v is defined as a stationary distribution of the modified Markov chain
with the transition matrix

P̃ = αP + (1 − α)v1T ,

where α is a so-called damping factor [20]. We also recall the following useful
formula for the Personalized PageRank π when α < 1 (see, e.g., [22])

π = (1 − α)[I − αP ]−1v = (1 − α)Rv. (1)

3 Convergence in Total Variation

We recall that for two discrete probability distributions u and v, the total vari-
ation distance dTV(u, v) is defined as dTV(u, v) = 1

2

∑
i |ui − vi|. This can also

be thought of as a 1-norm distance measure in the space of probability vectors,
wherein for x ∈ Rn, 1-norm ||x||1 =

∑
i |xi|, and since for any probability vec-

tor πn, ||πn||1 = 1 ∀n, it makes sense to talk about convergence in 1-norm or
TV-distance. Now we are in a position to formulate the following result.

Theorem 1. Let a family of graphs G(n) satisfy Properties I and II. If, in
addition, ||v||2 = O(1/

√
n)1, the PageRank can be asymptotically approximated

in total variation norm by a mixture of the restart distribution v and the vertex
degree distribution. Namely, w.h.p.

dTV (π(n), π̄(n)) = o(1) as n → ∞,

where

π̄(n) =
αd(n)

vol(G(n))
+ (1 − α)v,

and vol(G(n)) =
∑

i d
(n)
i .

The above expression for the asymptotic PageRank vector is interesting in
two respects: first it tells us that the rank vector asymptotically behaves like
a convex combination of the stationary vector of a standard random walk with
transition matrix P ; with the weight being α, and secondly, it starts to resemble
the stationary vector as α tends to 1.

1 For a vector x ∈ Rn, ||x||2 =
√∑

i |xi|2 is the 2-norm.
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Proof. We only consider the case in which 0 < α < 1, since when α = 0 or
α = 1, the statement of the theorem holds trivially.

We first note that the matrix Q can be written as follows by Spectral Decom-
position Theorem [6]:

Q = u1u
T
1 +

n∑
i=2

λiuiu
T
i , (2)

where 1 = λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues and {u1, u2, . . . un} are
the corresponding orthogonal eigenvectors, ui ∈ Rn, ||ui||2 = 1, and u1 =
D1/21/

√
1T D1 is the Perron–Frobenius eigenvector. Next, we rewrite (1) in

terms of the matrix Q

π = (1 − α)D1/2[I − αQ]−1D−1/2v.

Substituting (2) into the above equation, we obtain

π = (1 − α)D1/2

(
1

1 − α
u1u

T
1 +

n∑
i=2

1
1 − αλi

uiu
T
i

)
D−1/2v

= D1/2u1u
T
1 D−1/2v + (1 − α)D1/2

⎛
⎝∑

i�=1

1
1 − αλi

uiu
T
i

⎞
⎠D−1/2v.

Let us denote the error by ε = π − π̄. Then, we can write

ε = π − αD1/2u1u
T
1 D−1/2v − (1 − α)D1/2ID−1/2v

= (1 − α)D1/2

⎛
⎝∑

i�=1

uiu
T
i

1 − αλi
− (I − u1u

T
1 )

⎞
⎠D−1/2v

= (1 − α)D1/2

⎛
⎝∑

i�=1

uiu
T
i

αλi

1 − αλi

⎞
⎠D−1/2v.

Now let us bound the 1-norm ||ε||1 of the error:

||ε||1 /(1 − α) =

∣∣∣∣∣∣

∣∣∣∣∣∣D
1/2

⎛
⎝∑

i�=1

uiu
T
i

αλi

1 − αλi

⎞
⎠D−1/2v

∣∣∣∣∣∣

∣∣∣∣∣∣
1

≤ C
√

dmax/dmin

√
n max(|λ2|, |λn|) ||v||2 (3)

by using ||Ax||1
||x||2 ≤ √

n
||Ax||2
||x||2 ≤ √

n ||A||2 ,2 for any A and x, the submultiplica-
tive property of matrix norm3 and the fact that ||A||2 = maxi |λi| if A is Her-
mitian [6]. Hence we have that ||ε||1 = o(1) w.h.p., under Properties I and II,
when ||v||2 = O(1/

√
n). ��

2 For any matrix A ∈ Rm,n, ||A||2 = supx,||x||2=1 ||Ax||2 [6].
3 For two matrices A ∈ Rm,n, and B ∈ Rn,p, ||AB||2 ≤ ||A||2 ||B||2.
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Note that in the case of the standard PageRank, vi = 1/n implies ||v||2 =
O(1/

√
n), but Theorem1 also admits more general restart distributions than the

uniform one.

Corollary 1. The statement of Theorem1 also holds with respect to the weak
convergence, i.e., for any function f on V such that maxx∈V |f(x)| ≤ 1,

sup

{∑
v

f(v)πv −
∑

v

f(v)π̄v

}
= o(1) w.h.p.

Proof. This follows from Theorem 1 and the fact that the left-hand side of the
above equation is upper bounded by 2 dTV(πn, π̄n) [24]. ��

4 Chung-Lu Random Graphs

In this section, we analyze the asymptotics of the PageRank vector in random
graphs. As a model of random graphs we consider the Chung-Lu model [13],
which is a generalization of the Erdős–Rényi graph model, and hence our results
naturally hold for Erdős–Rényi graphs also. The spectral properties of Chung-Lu
graphs have been studied extensively in a series of papers [14,15].

4.1 Chung-Lu Random Graph Model

Let us first provide a definition of the Chung-Lu random graph model.

Definition 1 (Chung-Lu Random Graph Model). A Chung-Lu graph G(w)
with an expected degree vector w = (w1, w2, . . . wn), where wi are positive real
numbers, is generated by drawing an edge between any two vertices vi and vj

independently of all others with probability pij = wiwj∑
k wk

, with the condition of
existence maxi w2

i ≤∑k wk.

Below we specify a corollary of Theorem 1 as applied to these graphs. But
before that we need the following lemmas about Chung-Lu graphs mainly taken
from [14,15].

Lemma 1. If the expected degrees w1, w2, . . . wn satisfy wmin � log(n), then in
G(w) we have, w.h.p., maxi | di

wi
− 1| = o(1).

This result is shown in the sense of convergence in probability in [15], but it
can be extended to the above result using Bernstein Concentration Lemma [7]:

Pr{|Yn − EYn| ≥ ε} ≤ 2 exp
−ε2

2(B2
n + bε/3)

,

where B2
n = E(Yn −EYn)2, Sn = X1 + . . . Xn, Xi are independent, and |Xi| ≤ b.

Applying this lemma to the degrees di of the Chung-Lu graph we see that

Pr
(

max
1≤i≤n

∣∣∣∣ di

wi
− 1
∣∣∣∣ ≥ β

)
≤ 2

nc/4−1
, if β ≥

√
c log(n)
wmin

= o(1)

if wmin � log(n).
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Lemma 2. If wmax ≤ Kwmin, and w̄ =
∑

k wk/n � log6(n), then for G(w) we
have almost surely

||C||2 =
2√
w̄

(1 + o(1)),

where C = W−1/2AW−1/2 − χT χ, W = diag(w), and χi =
√

wi/
∑

k wk is a
row vector.

This lemma is an application of Theorem 5 in [14]. It can be verified that
when wmax ≤ Kwmin and w̄ � log6(n), the condition in Theorem 5 is satisfied,
namely, wmin � √

w̄ log3(n), and hence the result follows.

Lemma 3. For G(w) with wmax ≤ Kwmin, and w̄ � log6(n),

max(λ2(P ),−λn(P )) = o(1) w.h.p.,

where P is the Markov matrix.

Proof. We have ||Q − W−1/2AW−1/2|| = o(1) w.h.p. using Lemma 1 and the
same argument as in the last part of the proof of Theorem 2 in [15]. From
this, using Bauer-Fike Lemma [6], we get |λi(P ) − λi(W−1/2AW−1/2)| = o(1)
w.h.p. Then, using Lemma3, we conclude that maxi=1,2,...n |λi(C)| = o(1) for
w̄ � O(log6(n)), as a consequence of Bauer-Fike Lemma and the fact that χT χ is
unit rank. So, maxi=1,2...n |λi(P )| ≤ maxi=1,2..n |λi(C)| + |λi(P ) − λi(C)| = o(1)
w.h.p. ��
Corollary 2. Let ||v||2 = O(1/

√
n), and α < 1. Then PageRank π of the

Chung-Lu graph can asymptotically be approximated in TV distance by π̄, if
w̄ � log6(n) and wmax ≤ Kwmin for some K that does not depend on n.

Proof. Using Lemma 1 and the condition that wmax ≤ Kwmin, one can show
that ∃K

′
s.t. dmax

dmin
≤ K

′
w.h.p. Then the result is a direct consequence of

Lemma 3 and the inequality from (3). ��
We further note that this result holds also for Erdős-Rényi graphs G(n, p)

with npn � log6(n), where we have (w1, w2, . . . wn) = (npn, npn, . . . npn).

4.2 Element-Wise Convergence

Earlier in this section, we proved the convergence of PageRank in TV distance
for Chung-Lu random graphs. Note that since each component of PageRank
could decay to zero as the graph size grows to infinity, this does not necessarily
guarantee a convergence in an element-wise sense. In this section, we provide a
proof for our convergence conjecture to include the element-wise convergence of
the PageRank vector. Here we deviate slightly from the spectral decomposition
technique and eigenvalue bounds used hitherto, and instead rely on well-known
concentration bounds to bound the error in convergence.
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Let Π̄ = diag{π̄1, π̄2, . . . π̄n} be a diagonal matrix whose diagonal elements
are made of the components of the approximated PageRank vector and δ̃ =
Π̄−1(π − π̄), i.e., δ̃i = (πi − π̄i)/π̄i. Then

δ̃i =
(

(1 − α)vi + α
di

vol(G)

)−1
⎡
⎣D1/2

∑
j �=1

αλj

1 − αλj
uju

T
j D−1/2v

⎤
⎦

i

.

Therefore,

∣∣∣
∣∣∣δ̃
∣∣∣
∣∣∣
∞

≤
∑

i di/n

αdmin

√
dmax

∣∣∣∣∣∣

∣∣∣∣∣∣
∑
i�=1

αλi

1 − αλi
uiu

T
i ṽ′

∣∣∣∣∣∣

∣∣∣∣∣∣
∞

, (4)

where ṽ′ ≡ nD−1/2v, and
∣∣∣
∣∣∣δ̃
∣∣∣
∣∣∣
∞

= maxi |δ̃i|.
Define Q̃ = Q − u1u

T
1 , the restriction of the matrix Q to the orthogonal

subspace of u1. Later in this section we prove the following lemma.

Lemma 4. For a Chung-Lu random graph G(w) with expected degrees w1,
w2, . . . wn, where wmax ≤ Kwmin and wmin � log(n), we have with high proba-
bility,

∣∣∣
∣∣∣Q̃ṽ′

∣∣∣
∣∣∣
∞

= o(1/
√

wmin), when vi = O(1/n) ∀i.

The next lemma is related to the matrix S = (I − αQ)−1, as defined earlier
in the paper.

Lemma 5. Under the conditions of Lemma 4, ||S||∞ ≤ C w.h.p., where C is a
number independent of n that depends only on α and K.

Proof. Note that S = (I−αQ)−1 = D−1/2(I−αP )−1D1/2. Therefore, ||S||∞ ≤√
dmax

dmin

∣∣∣∣(I − αP )−1
∣∣∣∣

∞ and the result follows since
∣∣∣∣(I − αP )−1

∣∣∣∣
∞ ≤ 1

1−α [22]
and using Lemma 1. ��
Theorem 2. Let vi = O(1/n) ∀i, and α < 1. PageRank π converges element-
wise to π̄ = (1 − α)v + αd/vol(G), in the sense that maxi (πi − π̄i)/π̄i = o(1)
w.h.p., on the Chung-Lu graph with expected degrees {w1, w2, . . . wn} such that
wmin > logc(n) for some c > 1 and wmax ≤ Kwmin, K being a constant inde-
pendent of n.

Proof. Define Z :=
∑

i�=1
αλi

1−αλi
uiu

T
i . We then have:

Z =
n∑

i=1

αλi

1 − αλi
uiu

T
i − α

1 − α
u1u

T
1 = (I − αQ)−1αQ − α

1 − α
u1u

T
1

= S

[
αQ − α

1 − α
(I − αQ)u1u

T
1

]
= αSQ̃
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Using Lemmas 4 and 5, and Eq. (4), we have:

∣∣∣
∣∣∣δ̃
∣∣∣
∣∣∣
∞

= C

∑
i di/n

dmin

√
dmaxo(1/

√
wmin) = C

(
dmax

dmin

) 3
2

o(1), (5)

which using Lemma 1 is o(1) w.h.p. ��
Corollary 3 (Erdős–Rényi graphs). For an Erdős-Rényi graph G(n, p) with
npn � log(n), we have that asymptotically the personalized PageRank π con-
verges pointwise to π̄ for v such that vi = O(1/n).

Proof for Lemma 4: From Lemma 1, we have for Chung-Lu graphs that: di =
wi(1 + εi), where ω ≡ maxi εi = o(1) with high probability. In the proof we
assume explicitly that vi = 1/n, but the results hold in the slightly more general
case where vi = O(1/n) uniformly ∀i, i.e., ∃K such that maxi nvi ≤ K. It can be
verified easily that all the bounds that follow hold in this more general setting.
The event {ω = o(1)}, holds w.h.p. asymptotically from Lemma1. In this case,
we have

∑
j

(
Aij√
didj

−
√

didj∑
i di

)
vj√
dj

=
∑

j

(
Aij√
didj

−
√

didj∑
k dk

)
vj√
wj

(1 + εj)

where εj is the error of convergence, and we have maxj εj = O(ω). Therefore,∣∣∣
∣∣∣Q̃ṽ′

∣∣∣
∣∣∣
∞

≤
∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

+ max
i

εi

∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

≤
∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

(1 + o(1)) w.h.p.,

where q is a vector such that qi = nvi√
wi

. Furthermore, we have w.h.p.

Aij√
didj

−
√

didj∑
k dk

=
Aij√

wi(1 + εi)wj(1 + εj)
−
√

wi(1 + εi)wj(1 + εj)∑
k wk(1 + εk)

=
Aij√
wiwj

(1 + O(εi) + O(εj)) −
√

wiwj∑
k wk

(
1 + O(εi) + O(εj)

1 + O(ω)

)

=
(

Aij√
wiwj

−
√

wiwj∑
k wk

)
(1 + δij),

where δij is the error in the ijth term of the matrix and δij = O(ω) uniformly,

so that maxij δij = o(1) w.h.p. Consequently, defining Q̃ij = Aij√
wiwj

−
√

wiwj∑
k wk

we
have: ∣∣∣

∣∣∣Q̃q
∣∣∣
∣∣∣
∞

≤
∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

+ max
i

|
∑

j

Q̃ijδijqj |

≤
∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

+ O(ω)max
i

1√
wmin

∑
j

|Q̃ij |

≤
∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

+ o(1)
1√

wmin

(√
wmax

wmin
+

wmax

wmin

)
(6)

≤
∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

+ o(1/
√

wmin) (7)
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where in (6) we used the fact the O(ω) is a uniform bound on the error and it is o(1),

and the fact that maxi

∑
j |Q̃ij | ≤ maxi

∑
j

Aij√
wiwj

+
∑

j

√
wiwj∑
k wk

≤
√

wmax

wmin
+ wmax

wmin

from simple bounds, and maxj qj ≤ 1√
wmin

. Now we proceed to bound
∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

.

Substituting for qi = 1√
wi

, we get

∑
j

1√
wj

(
Aij√
wiwj

−
√

wiwj∑
k wk

)
=
∑

j

1
wj

√
wi

(
Aij − wiwj∑

i wi

)
≡ 1√

wi
Xi. (8)

We seek to bound maxi |Xi| : Xi =
∑

j
1

wj

(
Aij − wiwj∑

i wi

)
≡ Yn − EYn, where

Yn =
∑

j
Aij

wj
. Furthermore, EX2

n =
∑

j
1

w2
j
E(Aij − pi)2, with pi = wiwj∑

wi
. So,

ES2
n ≤ wi∑

i wi

∑
j

1
wj

≤ n pi

wmin
, and Aij

wj
≤ 1/wmin. Therefore by use of Bernstein

Concentration Lemma for ε < nmaxi pi:

Pr

⎧⎨
⎩max

i
|
∑

j

(Aij − pij)/wj | ≥ ε

⎫⎬
⎭ ≤ n max

i
exp(− ε2

2(pin/wmin) + ε/wmin
)

≤ n max
i

exp(− wminε2

2(npi + ε)
) ≤ n exp(−ε2wmin/(4n max

i
pi))

≤ n exp(
−ε2volwmin

4wmaxn
),

where vol
n =

∑
i wi

n ≥ wmin. It can be verified that when ε = 1
(w̄)α for example,

for some α > 0, the probability above can be upper bounded by n−(γK−1), if
w̄ ≥ (γ log(n))

1
1−2α , for some γ large enough, which can be easily satisfied if

wmin � O(logc(n)), for some c > 1. Thus, finally, from (8) and (7) we have∣∣∣
∣∣∣Q̃q
∣∣∣
∣∣∣
∞

= o(1/
√

wmin), w.h.p., and therefore from (4.2), we get
∣∣∣
∣∣∣Q̃ṽ′

∣∣∣
∣∣∣
∞

=

o(1/
√

wmin). ��

5 Experimental Results

In this section, we provide experimental evidence to further illustrate the analytic
results obtained in the previous sections. In particular, we simulated Erdős–
Rényi graphs with pn = C log7(n)

n and Chung-Lu graphs with the degree vector
w sampled from a geometric distribution so that the average degree w̄ = O(n1/3),
clipped such that wmax = 7wmin, for various values of graph size, and plotted the
maximum of relative error δ̃ and TV distance error ||δ||1, respectively, in Figs. 1
and 2. As expected, both these errors decay as functions of the graph size, which
illustrates that the PageRank vector does converge to the asymptotic value. In
the interest of exploration, we also conducted simulations on power-law graphs
with exponent 5, and it appears that PageRank converges for these graphs as
well, albeit the decay of the error being slightly noisier than observed in the
previous examples (see Fig. 3). This requires further study.
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Fig. 1. Log-log plot of maximum relative error for Erdős–Rényi and Chung-Lu graphs
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Fig. 2. Log-log plot of TV distance error for Erdős–Rényi and Chung-Lu graphs

Furthermore, we see that when vi = 1 for some i the convergence does not
hold (Fig. 4 in the case of Erdős–Rényi graphs). Whereas we see from our analysis
that if vk = 1 for some k, the quantity

∣∣∣
∣∣∣Q̃D−1/2v

∣∣∣
∣∣∣
∞

, becomes:

max
i

∣∣∣∣∣∣
∑

j

(
Aij√
didj

−
√

didj∑
l dl

)
vj/
√

dj

∣∣∣∣∣∣ = max
i

1√
didk

∣∣∣∣Aik − didk∑
l dl

∣∣∣∣ ,

which is O
(

1√
wminwk

)
and does not fall sufficiently fast.
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Fig. 3. Log-log plot of TV distance and maximum relative error for power-law graphs
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Fig. 4. Log-log plot of TV distance and maximum relative error for ER-graph when
v = e1

6 Conclusions

In this work, we showed that when the size of a graph tends to infinity, the
PageRank vector lends itself to be approximated by a mixture of the restart dis-
tribution and the degree distribution, subject to some conditions for a class of
random graphs. In future, we would like to relax some of these conditions, espe-
cially the condition on degree spread. This condition can be relaxed as demon-
strated by simulations on power-law graphs. In addition, we would like to obtain
closer bounds on the error for Chung-Lu graphs as empirical evidence suggests
these can be improved too.
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Abstract. We present a new algorithm for estimating the Personal-
ized PageRank (PPR) between a source and target node on undirected
graphs, with sublinear running-time guarantees over the worst-case choice
of source and target nodes. Our work builds on a recent line of work on
bidirectional estimators for PPR, which obtained sublinear running-time
guarantees but in an average-case sense, for a uniformly random choice of
target node. Crucially, we show how the reversibility of random walks on
undirected networks can be exploited to convert average-case to worst-
case guarantees. While past bidirectional methods combine forward ran-
dom walks with reverse local pushes, our algorithm combines forward
local pushes with reverse random walks. We also discuss how to modify
our methods to estimate random-walk probabilities for any length dis-
tribution, thereby obtaining fast algorithms for estimating general graph
diffusions, including the heat kernel, on undirected networks.

1 Introduction

Ever since their introduction in the seminal work of Page et al. [23], PageRank
and Personalized PageRank (PPR) have become some of the most important
and widely used network centrality metrics (a recent survey [13] lists several
examples). At a high level, for any graph G, given ‘teleport’ probability α and a
‘personalization distribution’ σ over the nodes of G, PPR models the importance
of every node from the point of view of σ in terms of the stationary probabilities
of ‘short’ random walks that periodically restart from σ with probability α. It
can be defined recursively as giving importance α to σ, and in addition giving
every node importance based on the importance of its in-neighbors.

Formally, given normalized adjacency matrix W = D−1A, the Personalized
PageRank vector πσ with respect to source distribution σ is the solution to

πσ = ασ + (1 − α)πσW. (1)

An equivalent definition is in terms of the terminal node of a random-walk
starting from σ. Let {X0,X1,X2, . . .} be a random-walk starting from X0 ∼ σ,
and L ∼ Geometric(α). Then the PPR of any node t is given by [4]:

πσ(t) = P[XL = t] (2)

The equivalence of these definitions can be seen using a power series expansion.
c© Springer International Publishing Switzerland 2015
D.F. Gleich et al. (Eds.): WAW 2015, LNCS 9479, pp. 164–176, 2015.
DOI: 10.1007/978-3-319-26784-5 13
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In this work, we focus on developing PPR-estimators with worst-case sublin-
ear guarantees for undirected graphs. Apart from their technical importance, our
results are of practical relevance as several large-scale applications of PPR are
based on undirected networks. For example, Facebook (which is an undirected
social network) used Personalized PageRank for friend recommendation [5]. The
social network Twitter is directed, but Twitter’s friend recommendation algo-
rithm (Who to Follow) [16] uses an algorithm called personalized SALSA [6,19],
which first converts the directed network into an expanded undirected graph1,
and then computes PPR on this new graph. Random walks have also been used
for collaborative filtering by the YouTube team [7] (on the undirected user-item
bipartite graph), to predict future items a user will view. Applications like this
motivate fast algorithms for PPR estimation on undirected graphs.

Equations (1) and (2) suggest two natural estimation algorithms for PPR –
via linear-algebraic iterative techniques, and using Monte Carlo. The linear alge-
braic characterization of PageRank in Eq. (1) suggests the use of power iteration
(or other localized iterations; cf Sect. 1.2 for details), while Eq. (2) is the basis for
a Monte-Carlo algorithm, wherein we estimate πσ[t] by sampling independent
L-step paths, each starting from a random state sampled from σ. For studying
PageRank estimation algorithms, smaller probabilities are more difficult to esti-
mate than large ones, so a natural parametrization is in terms of the minimum
PageRank we want to detect. Formally, given any source σ, target node t ∈ V
and a desired minimum probability threshold δ, we want algorithms that give
accurate estimates whenever πσ[t] ≥ δ. Improved algorithms are motivated by
the slow convergence of these algorithms: both Monte Carlo and linear algebraic
techniques have a running time of Ω(1/δ) for PageRank estimation. Further-
more this is true not only for worst case choices of target state t, but on average
Monte-Carlo requires Ω(1/δ) time to estimate a probability of size δ. Power iter-
ation takes Θ(m) time, where m is the number of edges, and the work [21] shows
empirically that the local version of power-iteration scales with 1/δ for δ > 1/m.

In a recent line of work, linear-algebraic and Monte-Carlo techniques were
combined to develop new bidirectional PageRank estimators FAST-PPR [22] and
Bidirectional-PPR [20], which gave the first significant improvement in the
running-time of PageRank estimation since the development of Monte-Carlo
techniques. Given an arbitrary source distribution σ and a uniform random
target node t, these estimators were shown to return an accurate PageRank

estimate with an average running-time of Õ

(√
d/δ

)
, where d = m/n is the

average degree of the graph. Given Õ

(
n
√

d/δ

)
precomputation and storage,

the authors prove worst case guarantees for this bidirectional estimator but in
practice that is a large precomputation requirement. This raised the challenge
1 Specifically, for each node u in the original graph, SALSA creates two virtual nodes,

a “consumer-node” u′ and a “producer-node” u′′, which are linked by an undirected
edge. Any directed edge (u, v) is then converted into an undirected edge (u′, v′′) from
u’s consumer node to v’s producer node.
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of designing an algorithm with similar running-time guarantees over a worst-
case choice of target node t. Inspired by the bidirectional estimators in [20,22],
we propose a new PageRank estimator for undirected graphs with worst-case
running time guarantees.

1.1 Our Contribution

We present the first estimator for personalized PageRank with sublinear run-
ning time in the worst case on undirected graphs. We formally present our
Undirected-BiPPR algorithm in Sect. 2, and prove that it has the following
accuracy and running-time guarantees:

Result 1 (See Theorem 1 in Sect. 2). Given any undirected graph G, teleport
probability α, source node s, target node t, threshold δ and relative error ε, the
Undirected-BiPPR estimator (Algorithm2) returns an unbiased estimate π̂s[t]
for πs[t], which, with probability greater than 1 − pfail, satisfies:

|π̂s[t] − πs[t]| < max {επs[t], 2eδ}.

Result 2 (See Theorem 2 in Sect. 2). Let any undirected graph G, teleport
probability α, threshold δ and desired relative error ε be given. For any source,
target pair (s, t), the Undirected-BiPPR algorithm has a running-time of

O

(√
ln(1/pfail)

ε

√
dt

δ

)
, where dt is the degree of the target node t.

In personalization applications, we are often only interested in personalized
importance scores if they are greater than global importance scores, so it is
natural to set δ based on the global importance of t. Assuming G is con-
nected, in the limit α → 0, the PPR vector for any start node s converges
to the stationary distribution of infinite-length random-walks on G – that is
limα→0 πs[t] = dt/m. This suggests that a natural PPR significance-test is to
check whether πs(t) ≥ dt/m. To this end, we have the following corollary:

Result 3 (See Corollary 1 in Sect. 2). For any graph G and any (s, t) pair
such that πs(t) ≥ dt

m , then with high probability2, Undirected-BiPPR returns an
estimate πs(t) with relative error ε with a worst-case running-time of
O (

√
m log n/ε).

Finally, in Sect. 3, using ideas from [8], we extend our technique to estimating
more general random-walk transition-probabilities on undirected graphs, includ-
ing graph diffusions and the heat kernel [11,18].

1.2 Existing Approaches for PageRank Estimation

We first summarize the existing methods for PageRank estimation:

Monte Carlo Methods: A standard method [4,9] for estimating πσ[t] is by
using the terminal node of independently generated random walks of length
2 Following convention, we use w.h.p. to mean with probability greater than 1 − 1

n
.
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L ∼ Geometric(α) starting from a random node sampled from σ. Simple con-
centration arguments show that we need Θ̃(1/δ) samples to get an accurate
estimate of πσ[t], irrespective of the choice of t and graph G.

Linear-Algebraic Iterations: Since the PageRank vector is the stationary
distribution of a Markov chain, it can also be estimated via forward or reverse
power iterations. A direct power iteration is often infeasible for large graphs; in
such cases, it is preferable to use localized power iterations [1,2]. These local-
update methods can also be used for other transition probability estimation
problems such as heat kernel estimation [18]. Local update algorithms are often
fast in practice, as unlike full power iteration methods they exploit the local
structure of the chain. However even in sparse Markov chains and for a large
fraction of target states, their running time can be Ω(1/δ). For example, consider
a random walk on a random d-regular graph and let δ = o(1/n). Then for
	 ∼ logd(1/δ), verifying πes

[t] > δ is equivalent to uncovering the entire logd(1/δ)
neighborhood of s. However since a large random d-regular graph is (w.h.p.) an
expander, this neighborhood has Ω(1/δ) distinct nodes.

Bidirectional Techniques: Bidirectional methods are based on simultaneously
working forward from the source node s and backward from the target node
t in order to improve the running-time. One example of such a bidirectional
technique is the use of colliding random-walks to estimate length-2	 random-
walk transition probabilities in regular undirected graphs [14,17] – the main idea
here is to exploit the reversibility by using two independent random walks of
length 	 starting from s and t respectively, and detecting if they collide. This
results in reducing the number of walks required by a square-root factor, based
on an argument similar to the birthday-paradox.

The FAST-PPR algorithm of Lofgren et al. [22] was the first bidirectional
algorithm for estimating PPR in general graphs; this was subsequently refined
and improved by the Bidirectional-PPR algorithm [20], and also generalized
to other Markov chain estimation problems [8]. These algorithms are based on
using a reverse local-update iteration from the target t (adapted from Andersen
et al. [1]) to smear the mass over a larger target set, and then using random-
walks from the source s to detect this target set. From a theoretical perspective, a
significant breakthrough was in showing that for arbitrary choice of source node

s these bidirectional algorithms achieved an average running-time of Õ(
√

d/δ)
over uniform-random choice of target node t – in contrast, both local-update and
Monte Carlo has a running-time of Ω(1/δ) for uniform-random targets. More
recently, [10] showed that a similar bidirectional technique achieved a sublinear
query-complexity for global PageRank computation, under a modified query
model, in which all neighbors of a given node could be found in O(1) time.

2 PageRank Estimation in Undirected Graphs

We now present our new bidirectional algorithm for PageRank estimation in
undirected graphs.
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2.1 Preliminaries

We consider an undirected graph G(V,E), with n nodes and m edges. For ease of
notation, we henceforth consider unweighted graphs, and focus on the simple case
where σ = es for some single node s. We note however that all our results extend
to weighted graphs and any source distribution σ in a straightforward manner.

2.2 A Symmetry for PPR in Undirected Graphs

The Undirected-BiPPR Algorithm critically depends on an underlying reversibil-
ity property exhibited by PPR vectors in undirected graphs. This property, stated
before in several earlier works [3,15], is a direct consequence of the reversibility
of random walks on undirected graphs. To keep our presentation self-contained,
we present this property, along with a simple probabilistic proof, in the form of
the following lemma:

Lemma 1. Given any undirected graph G, for any teleport probability α ∈ (0, 1)
and for any node-pair (s, t) ∈ V 2, we have:

πs[t] =
dt

ds
πt[s].

Proof. For path P = {s, v1, v2, . . . , vk, t} in G, we denote its length as 	(P )
(here 	(P ) = k + 1), and define its reverse path to be P = {t, vk, . . . , v2, v1, s} –
note that 	(P ) = 	(P ). Moreover, we know that a random-walk starting from s
traverses path P with probability P[P ] = 1

ds
· 1

dv1
· . . . · 1

dvk
, and thus, it is easy

to see that we have:
P[P ] · ds = P[P ] · dt (3)

Now let Pst denote the set of paths in G starting at s and terminating at t. Then
we can re-write Eq. (2) as:

πs[t] =
∏

P∈Pst

α(1 − α)�(P )
P[P ] =

∏
P∈Pts

α(1 − α)�(P )
P[P ] =

dt

ds
πt[s] ��

2.3 The Undirected-BiPPR Algorithm

At a high level, the Undirected-BiPPR algorithm has two components:

– Forward-work: Starting from source s, we first use a forward local-update
algorithm, the ApproximatePageRank(G,α, s, rmax) algorithm of Andersen
et al. [2] (shown here as Algorithm 1). This procedure begins by placing one
unit of “residual” probability-mass on s, then repeatedly selecting some node
u, converting an α-fraction of the residual mass at u into probability mass,
and pushing the remaining residual mass to u’s neighbors. For any node u, it
returns an estimate ps[u] of its PPR πs[u] from s as well as a residual rs[u]
which represents un-pushed mass at u.
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– Reverse-work: We next sample random walks of length L ∼ Geometric(α)
starting from t, and use the residual at the terminal nodes of these walks
to compute our desired PPR estimate. Our use of random walks backwards
from t depends critically on the symmetry in undirected graphs presented in
Lemma 1.

Note that this is in contrast to FAST-PPR and Bidirectional-PPR, which
performs the local-update step in reverse from the target t, and generates random-
walks forwards from the source s.

Algorithm 1. ApproximatePageRank(G,α, s, rmax) [2]
Inputs: graph G, teleport probability α, start node s, maximum residual rmax

1: Initialize (sparse) estimate-vector ps = 0 and (sparse) residual-vector rs = es

(i.e. rs[v] = 1 if v = s; else 0)

2: while ∃u ∈ V s.t. rs[u]
du

> rmax do
3: for v ∈ N [u] do
4: rs[v] += (1 − α)rs[u]/du

5: end for
6: ps[u] += αrs[u]
7: rs[u] = 0
8: end while
9: return (ps, rs)

In more detail, our algorithm will choose a maximum residual parameter
rmax, and apply the local push operation in Algorithm1 until for all v, rs[v]/dv <
rmax. Andersen et al. [2] prove that their local-push operation preserves the
following invariant for vectors (ps, rs):

πs[t] = ps[t] +
∑
v∈V

rs[v]πv[t], ∀ t ∈ V. (4)

Since we ensure that ∀v, rs[v]/dv < rmax, it is natural at this point to use the
symmetry Lemma 1 and re-write this as:

πs[t] = ps[t] + dt

∑
v∈V

rs[v]
dv

πt[v].

Now using the fact that
∑

t πv[t] = nπ[t] get that ∀ t ∈ V , |πs[t] − ps[t]| ≤
rmaxdtnπ[t].

However, we can get a more accurate estimate by using the residuals. The
key idea of our algorithm is to re-interpret this as an expectation:

πs[t] = ps[t] + dtEV ∼πt

[
rs[v]
dV

]
. (5)

We estimate the expectation using standard Monte-Carlo. Let Vi ∼ πt and
Xi = rs(Vi)dt/dVi

, so we have πs[t] = ps[t] +E[X]. Moreover, each sample Xi is
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bounded by dtrmax (this is the stopping condition for ApproximatePageRank),
which allows us to efficiently estimate its expectation. To this end, we generate
w random walks, where

w =
c

ε2
rmax

δ/dt
.

The choice of c is specified in Theorem 1. Finally, we return the estimate:

π̂s[t] = pt[s] +
1
w

w∑
i=1

Xi.

The complete pseudocode is given in Algorithm 2.

Algorithm 2. Undirected-BiPPR(s, t, δ)
Inputs: graph G, teleport probability α, start node s, target node t, minimum prob-

ability δ, accuracy parameter c = 3 ln (2/pfail) (cf. Theorem 1)
1: (ps, rs) = ApproximatePageRank(s, rmax)
2: Set number of walks w = cdtrmax/(ε2δ)
3: for index i ∈ [w] do
4: Sample a random walk starting from t, stopping after each step with probability

α; let Vi be the endpoint
5: Set Xi = rs(Vi)/dVi

6: end for
7: return π̂s[t] = ps[t] + (1/w)

∑
i∈[w] Xi

2.4 Analyzing the Performance of Undirected-BiPPR

Accuracy Analysis: We first prove that Undirected-BiPPR returns an unbi-
ased estimate with the desired accuracy:

Theorem 1. In an undirected graph G, for any source node s, minimum thresh-
old δ, maximum residual rmax, relative error ε, and failure probability pfail,
Algorithm2 outputs an estimate π̂s[t] such that with probability at least 1 − pfail
we have: |πs[t] − π̂s[t]| ≤ max{επs[t], 2eδ}.

The proof follows a similar outline as the proof of Theorem 1 in [20]. For
completeness, we sketch the proof here:

Proof. As stated in Algorithm 2, we average over w = cdtrmax/ε2δ walks, where
c is a parameter we choose later. Each walk is of length Geometric(α), and we
denote Vi as the last node visited by the ith walk; note that Vi ∼ πt. As defined
above, let Xi = rs(Vi)dt/dVi

; the estimate returned by Undirected-BiPPR is:

π̂s[t] = pt[s] +
1
w

w∑
i=1

Xi.
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First, from Eq. (5), we have that E[π̂s[t]] = πs[t]. Also, ApproximatePageRank
guarantees that for all v, rs[v] < dvrmax, and so each Xi is bounded in [0, dtrmax];
for convenience, we rescale Xi by defining Yi = 1

dtrmax
Xi.

We now show concentration of the estimates via the following Chernoff
bounds (see Theorem 1.1 in [12]):

1. P[|Y − E[Y ]| > εE[Y ]] < 2 exp(− ε2

3 E[Y ])
2. For any b > 2eE[Y ],P[Y > b] ≤ 2−b

We perform a case analysis based on whether E[Xi] ≥ δ or E[Xi] < δ. First, if
E[Xi] ≥ δ, then we have E[Y ] = w

dtrmax
E[Xi] = c

ε2δE[Xi] ≥ c
ε2 , and thus:

P [|π̂s[t] − πs[t]| > επs[t]] ≤ P
[∣∣X̄ − E[Xi]

∣∣ > εE[Xi]
]

= P [|Y − E[Y ]| > εE[Y ]]

≤ 2 exp
(

−ε2

3
E[Y ]

)
≤ 2 exp

(
− c

3

)
≤ pfail,

where the last line holds as long as we choose c ≥ 3 ln (2/pfail).
Suppose alternatively that E[Xi] < δ. Then:

P[|π̂s[t] − πs[t]| > 2eδ] = P[
∣∣X̄ − E[Xi]

∣∣ > 2eδ] = P

[
|Y − E[Y ]| >

w

dtrmax
2eδ

]

≤ P

[
Y >

w

dtrmax
2eδ

]
.

At this point we set b = 2eδw/dtrmax = 2ec/ε2 and apply the second Chernoff
bound. Note that E[Y ] = cE[Xi]/ε2δ < c/ε2, and hence we satisfy b > 2eE[Y ].
We conclude that:

P[|π̂s[t] − πs[t]| > 2eδ] ≤ 2−b ≤ pfail

as long as we choose c such that c ≥ ε2

2e log2
1

pfail
. The proof is completed by

combining both cases and choosing c = 3 ln (2/pfail). �

Running Time Analysis: The more interesting analysis is that of the running-
time of Undirected-BiPPR – we now prove a worst-case running-time bound:

Theorem 2. In an undirected graph, for any source node (or distribution) s,
target t with degree dt, threshold δ, maximum residual rmax, relative error ε, and
failure probability pfail, Undirected-BiPPR has a worst-case running-time of:

O

⎛
⎝

√
log 1

pfail

ε

√
dt

δ

⎞
⎠ .
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Before proving this result, we first state and prove a crucial lemma from [2]:

Lemma 2 (Lemma 2 in [2]). Let T be the total number of push operations per-
formed by ApproximatePageRank, and let dk be the degree of the vertex involved
in the kth push. Then:

T∑
k=1

dk ≤ 1
αrmax

Proof. Let vk be the vertex pushed in the kth step – then by definition, we have
that rs(vk) > rmaxdk. Now after the local-push operation, the sum residual ||rs||1
decreases by at least αrmaxdk. However, we started with ||rs||1 = 1, and thus we
have

∑T
k=1 αrmaxdk ≤ 1. ��

Note also that the amount of work done while pushing from a node v is dv.

Proof (of Theorem 2). As proven in Lemma 2, the push forward step takes total
time O (1/αrmax) in the worst-case. The random walks take O(w) = O

(
1
ε2

rmax
δ/dt

)
time. Thus our total time is

O

(
1

rmax
+

ln 1
pfail

ε2
rmax

δ/dt

)
.

Balancing this by choosing rmax = ε√
ln 1

pfail

√
δ/dt, we get total running-time:

O

⎛
⎝

√
ln 1

pfail

ε

√
dt

δ

⎞
⎠ . ��

We can get a cleaner worst-case running time bound if we make a natural assump-
tion on πs[t]. In an undirected graph, if we let α = 0 and take infinitely long
walks, the stationary probability of being at any node t is dt

m . Thus if πs[t] < dt

m ,
then s actually has a lower PPR to t than the non-personalized stationary prob-
ability of t, so it is natural to say t is not significant for s. If we set a significance
threshold of δ = dt

m , and apply the previous theorem, we immediately get the
following:

Corollary 1. If πs[t] ≥ dt

m , we can estimate πs[t] within relative error ε with
probability greater than 1 − 1

n in worst-case time:

O

(
log n

ε

√
m

)
.

In contrast, the running time for Monte-Carlo to achieve the same accuracy
guarantee is O

(
1
δ
log(1/pfail)

αε2

)
, and the running time for ApproximatePageRank

is O
(

d̄
δα

)
. The FAST-PPR algorithm of [22] has an average case running time of

O

(
1

αε2

√
d̄
δ

√
log(1/pfail) log(1/δ)

log(1/(1−α))

)
for uniformly chosen targets, but has no clean

worst-case running time bound because its running time depends on the degree
of nodes pushed from in the linear-algebraic part of the algorithm.
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3 Extension to Graph Diffusions

PageRank and Personalized PageRank are a special case of a more general set
of network-centrality metrics referred to as graph diffusions [11,18]. In a graph
diffusion we assign a weight αi to walks of length i. The score is then is a
polynomial function of the random-walk transition probabilities of the form:

f(W,σ) :=
∞∑

i=0

αi

(
σW i

)
,

where αi ≥ 0,
∑

i αi = 1. To see that PageRank has this form, we can expand
Eq. (1) via a Taylor series to get:

πσ =
∞∑

i=1

α(1 − α)i
(
σW i

)

Another important graph diffusion is the heat kernel hσ, which corresponds to
the scaled matrix exponent of (I − W )−1:

hσ,γ = e−γ(I−W )−1
=

∞∑
i=1

e−γγi

i!
(
σW i

)

In [8], Banerjee and Lofgren extended Bidirectional-PPR to get bidirectional
estimators for graph diffusions and other general Markov chain transition-
probability estimation problems. These algorithms inherited similar performance
guarantees to Bidirectional-PPR – in particular, they had good expected
running-time bounds for uniform-random choice of target node t. We now briefly
discuss how we can modify Undirected-BiPPR to get an estimator for graph dif-
fusions in undirected graphs with worst-case running-time bounds.

First, we observe that Lemma 1 extends to all graph diffusions, as follows:

Corollary 2. Let any undirected graph G with random-walk matrix W , and
any set of non-negative length weights (αi)∞

i=0 with
∑

αi = 1 be given. Define
f(W,σ) =

∑∞
i=0 αi

(
σW i

)
. Then for any node-pair (s, t) ∈ V 2, we have:

f (W, es) =
dt

ds
f (W, et) .

As before, the above result is stated for unweighted graphs, but it also extends
to random-walks on weighted undirected graphs, if we define di =

∑
j wij .

Next, observe that for any graph diffusion f(·), the truncated sum f �max =∑�max
i=0 αi

(
πT

σ P i
)

obeys: ||f − f �max ||∞ ≤ ∑∞
�max+1 αk. Thus a guarantee on an

estimate for the truncated sum directly translates to a guarantee on the estimate
for the diffusion.
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The main idea in [8] is to generalize the bidirectional estimators for PageRank
to estimating multi-step transitions probabilities (for short, MSTP). Given a
source node s, a target node t, and length 	 ≤ 	max, we define:

p�
s[t] = P[Random-walk of length 	 starting from s terminates at t]

Note from Corollary 2, we have for any pair (s, t) and any 	, p�
s[t]ds = p�

t[s]dt.
Now in order to develop a bidirectional estimator for p�

s[t], we need to define
a local-update step similar to ApproximatePageRank. For this, we can modify
the REVERSE-PUSH algorithm from [8], as follows.

Similar to ApproximatePageRank, given a source node s and maximum length
	max, we associate with each length 	 ≤ 	max an estimate vector q�

s and a residual
vector r�

s. These are updated via the following ApproximateMSTP algorithm:

Algorithm 3. ApproximateMSTP(G, s, 	max, rmax)
Inputs: Graph G, source s, maximum steps �max, maximum residual rmax

1: Initialize: Estimate-vectors qk
s = 0 , ∀ k ∈ {0, 1, 2, . . . , �max},

Residual-vectors r0s = es and rk
s = 0 , ∀ k ∈ {1, 2, 3, . . . , �max}

2: for i ∈ {0, 1, . . . , �max} do
3: while ∃ v ∈ § s.t. ri

t[v]/dv > rmax do
4: for w ∈ N (v) do
5: ri+1

s [w] += ri
s[v]/dv

6: end for
7: qi

s[v] += ri
s[v]

8: ri
s[v] = 0

9: end while
10: end for
11: return {q�

s, r
�
s}�max

�=0

The main observation now is that for any source s, target t, and length 	,
after executing the ApproximateMSTP algorithm, the vectors {q�

s, r
�
s}�max

�=0 satisfy
the following invariant (via a similar argument as in [8], Lemma 1):

p�
s[t] = q�

s[t] +
�∑

k=0

∑
v∈V

rk
s [v]p�−k

v [t] = q�
s[t] + dt

�∑
k=0

∑
v∈V

rk
s [v]
dv

p�−k
t [v]

As before, note now that the last term can be written as an expectation over
random-walks originating from t. The remaining algorithm, accuracy analysis,
and runtime analysis follow the same lines as those in Sect. 2.

4 Conclusion

We have developed Undirected-BiPPR, a new bidirectional PPR-estimator for
undirected graphs, which for any (s, t) pair such that πs[t] > dt/m, returns
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an estimate with ε relative-error in worst-case running time of O(
√

m/ε). This
thus extends the average-case running-time improvements achieved in [20,22] to
worst-case bounds on undirected graphs, using the reversibility of random-walks
on undirected graphs. Whether such worst-case running-time results extend to
general graphs, or if PageRank computation is fundamentally easier on undi-
rected graphs as opposed to directed graphs, remains an open question.
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Abstract. We consider the problem of computing local clusters in large
graphs distributed across nodes in a network using two different models of
distributed computation. We give a distributed algorithm that computes
a local cluster in time that depends only logarithmically on the size of
the graph in the CONGEST model. In particular, when the conductance
of the optimal local cluster is known, the algorithm runs in time entirely
independent of the size of the graph and depends only on error bounds
for approximation. We also show that the local cluster problem can be
computed in the k-machine distributed model in sublinear time. The
speedup of our local cluster algorithms is mainly due to the use of our
distributed algorithm for heat kernel pagerank.

Keywords: Distributed algorithms · Local cluster · Sparse cut · Heat
kernel pagerank · Heat kernel · Random walk

1 Introduction

Distributed computation is an increasingly important framework as the demand
for fast data analysis grows and data simultaneously becomes too large to fit in
main memory. As distributed systems for large-scale graph processing such as
Pregel [21], GraphLab [20], and Google’s MapReduce [12] are rapidly developing,
there is a need for both theoretical and practical bounds in adapting classical
graph algorithms to a modern distributed and parallel setting.

A distributed algorithm performs local computations on pieces of input and
communicates the results through given communication links. When processing a
massive graph in a distributed algorithm, local outputs must be configured with-
out shared memory and with few rounds of communication. A central problem
of interest is to compute local clusters in large graphs in a distributed setting.

Computing local clusters are of certain application-specific interests, such as
detecting communities in social networks [16] or groups of interacting proteins
in biological networks [17]. When the graph models the computer network itself,
detecting local clusters can help identify communication bottlenecks, where one
set of well-connected nodes is separated from another by a small number of
links. Further, being able to identify the clusters quickly prevents bottlenecks
from developing as the network grows.
c© Springer International Publishing Switzerland 2015
D.F. Gleich et al. (Eds.): WAW 2015, LNCS 9479, pp. 177–189, 2015.
DOI: 10.1007/978-3-319-26784-5 14
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A local clustering algorithm computes a set of vertices in a graph with a small
Cheeger ratio (or so-called conductance as defined in Sect. 2.2). Moreover, we ask
that the algorithm use only local information. In the static setting, an important
consequence of this locality constraint is running times proportional to the size
of the output set, rather than the entire graph. In this paper, we present the first
algorithms for computing local clusters in two distributed settings that finish in
a sublinear number of rounds of communication.

A standard technique in local clustering algorithms is the so-called sweep
algorithm. In a sweep, one orders the vertices of a graph according to some
real-valued function defined on the vertex set and then investigates the cut set
induced by each prefix of vertices in the ordering. The classical method of spec-
tral clustering uses eigenvectors as functions for the sweep. For local clustering
algorithms, the sweep functions are based on random walks [18,19,25]. In [1],
the efficiency of the local clustering algorithm is due to the use of PageRank vec-
tors as the sweep functions [4]. In this paper, the main leverage in the improved
running times of our algorithms is to use the heat kernel pagerank vector for
performing a sweep. In particular, we are able to exploit parallelism in our algo-
rithm for computing the heat kernel pagerank and give a distributed random
walk-based procedure which requires fewer rounds of communication and yet
maintains similar approximation guarantees as previous algorithms.

In Sect. 2.1, we will describe two distributive models – the CONGEST
model and the k-machine model. We demonstrate in two different distrib-
uted settings that a heat kernel pagerank distribution can be used to com-
pute local clusters with Cheeger ratio O(

√
φ) when the optimal local cluster

has Cheeger ratio φ. With a fast, parallel algorithm for approximating the heat
kernel pagerank and efficient local computations, our algorithm works on an
n-vertex graph in the CONGEST, or standard message passing, model with
high probability in at most O

(
log(ε−1) log n
log log(ε−1) + 1

ε log n
)

rounds of communica-
tion where ε is an error bound for approximation. This is an improvement
over the previously best-performing local clustering algorithm in [9] which uses
a personalized PageRank vector and finishes in O

(
1
α log2 n + n log n

)
rounds

in the CONGEST model for any 0 < α < 1. We then extend our results
to the k-machine model to show that a local cluster can be computed in
Õ

(
log(ε−1)

ε3k2 log log(ε−1) + 1
εk2 +

(
log(ε−1)

k log log(ε−1) + 1
kε

)
max

{
1
ε3 ,Δ

})
rounds, where Δ is

the maximum degree in the graph, with high probability.

1.1 Related Work

The idea of computing local clusters with random walks was introduced by
Lovász and Simonovits in their works analyzing the isoperimetric properties of
random walks on graphs [18,19]. Spielman and Teng [25] expanded upon these
ideas and gave the first nearly-linear time algorithm for local clustering, improv-
ing the original framework by sparsifying the graph. The algorithm of [25] finds
a local cluster with Cheeger ratio O(

√
φ log3/2 n) in time O(m(log n/φ)O(1)),

where m is the number of edges in the graph. Each of these algorithms uses the
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distribution of random walks of length O( 1
φ ). Andersen et al. [1] give a local

clustering algorithm using the distribution given by a PageRank vector. Their
algorithm promises a O(

√
φ log1/2 n) cluster approximation and runs in time

O(m
φ log4 m). Orecchia et al. use a variant of heat kernel random walks in their

randomized algorithm for computing a cut in a graph with prescribed balance
constraints [22]. A key subroutine in the algorithm is a procedure for computing
e−Av for a positive semidefinite matrix A and a unit vector v in time Õ(m)
for graphs on n vertices and m edges. Indeed, heat kernel has proven to be an
efficient and effective tool for local cluster detection [6,15].

Andersen and Peres [2] simulate a volume-biased evolving set process to find
sparse cuts. Their algorithm improves the ratio between the running time of the
algorithm on a given run and the volume of the output set while maintaining
similar approximation guarantees as previous algorithms. Their algorithm is later
improved in [13]. Arora, Rao, and Vazirani [3] give a O(

√
log n)-approximation

algorithm using semi-definite programming techniques, however it is slower than
algorithms based on spectral methods and random walks.

For distributed algorithms, in [11] fast random walk-based distributed algo-
rithms are given for estimating mixing time, conductance and the spectral gap
of a network. In [10], distributed algorithms are derived for computing PageR-
ank vectors with O( 1

α log n) rounds for any 0 < α < 1 with high probability.
Das Sarma et al. [9] give two algorithms for computing sparse cuts in the CON-
GEST distributed model. The first algorithm uses random walks and is based on
the analysis of [25]. By incorporating the results of [11], they show that the sta-
tionary distribution of a random walk of length l can be computed in O(l) rounds.
The second algorithm in [9] uses PageRank vectors and is based on the analysis
of [1]. By using the results of [10], the authors of [9] compute local clusters in
O(( 1

φ + n) log n) rounds with standard random walks and O( 1
α log2 n + n log n)

rounds using PageRank vectors.

2 The Setting and Our Contributions

2.1 Models of Computation

We consider two models of distributed computation – the CONGEST model
and the k-machine model. In each, data is distributed across nodes (machines)
of a network which may communicate over specified communication links in
rounds. Memory is decentralized, and the goal is to minimize the running time
by minimizing the number of rounds required for computation for an arbitrary
input graph G. We emphasize that local communication is taken to be free.

The CONGEST Model. The first model we consider is the CONGEST model.
In this model, the communication links are exactly the edges of the input graph
and each vertex is mapped to a dedicated machine. The CONGEST (or stan-
dard message-passing) model was introduced in [23,24] to simulate real-world
bandwidth restrictions across a network.
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Due to how the vertices are distributed in the network, we simplify the model
by assuming the computer network is the input graph G = (V,E) on n = |V |
nodes or machines and m = |E| edges or communication links. Each node has a
unique log n-bit ID. Initially each node only possesses its own ID and the IDs of
each of its neighbors, and in some instances we may allow nodes some metadata
about the graph (the value of n, for instance). Nodes can only communicate
through edges of the network and communication occurs in rounds. That is, any
message sent at the beginning of round r is fully transmitted and received by the
end of round r. We assume that all nodes run with the same processing speed.
Most importantly, we only allow O(log n) bits to be transmitted across any edge
per round.

The k-machine Model. The defining difference between the k-machine model
and the CONGEST model is that, whereas vertices are mapped to distinct, ded-
icated machines in the CONGEST model, a number of vertices may be mapped
to the same machine in the k-machine model. This model is meant to more accu-
rately simulate distributed graph computation in systems such as Pregel [21] and
GraphLab [20].

We consider computing over massive datasets distributed over nodes of the
k-machine network. The complete data is never known by any individual machine,
and there is no shared memory. Each machine executes an instance of a distrib-
uted algorithm, and the output of each machine is with respect to the data
points it hosts. A solution to a full problem is then a particular configuration of
the outputs of each of the machines. The model is discussed in greater detail in
Sect. 5.

The two models are limiting and advantageous in different ways, and one
is not inherently better than the other. For instance, since many vertices are
mapped to a single machine in the k-machine model, there is more “local infor-
mation” available since vertices sharing a machine can communicate for free.
However, since communication is restricted to the communication links in the
computer network, vertex-vertex communication is somewhat less restrictive in
the CONGEST model since links exactly correspond to edges. The consequences
of these differences are largely observed in time complexity, and certain graph
problems are more suited to one model than the other.

In this paper we analyze our algorithmic techniques in the CONGEST model,
and then use the Conversion Theorem of [14] to give an efficient probabilistic
algorithm in the k-machine model for computing local clusters.

2.2 Local Clusters and Heat Kernel Pagerank

Throughout this paper, we consider a graph G = (V,E) with n = |V | and
m = |E| that is connected and undirected. In this section we give some definitions
that will make our problem statement and results precise.
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Personalized Heat Kernel Pagerank. The heat kernel pagerank is so named
for the heat kernel of the graph, Ht = e−tL, where L is the normalized graph
Laplacian L = D−1/2(D−A)D−1/2. Here D is the diagonal matrix whose entries
correspond to vertex degree and A is the symmetric adjacency matrix. The heat
kernel is a solution to the heat equation ∂u

∂t = −Lu, and thus has fundamen-
tal connections to diffusion properties of a graph. Because of its connection
to random walks, for heat kernel pagerank we use a similar heat kernel matrix,
Ht = e−tL, where L = I −P . Here, I is the n×n identity matrix and P = D−1A
is the transition probability matrix corresponding to the following standard ran-
dom walk on the graph: at each step, move from a vertex v to a random neighbor
u. Then the heat kernel pagerank is defined in terms of a preference (row) vec-
tor f as ρt,f = fHt. When f , as a row vector, is some probability distribution
over the vertices, the following formulation is useful for our Monte Carlo-based
approximation algorithm:

ρt,f = fHt =
∞∑

k=0

e−t t
k

k!
fP k. (1)

In this paper, we consider preference vectors f = χs with all probability on a
single vertex s, called the seed, and zero probability elsewhere. This is a common
starting distribution for the PageRank vector, as well, commonly referred to as a
personalized PageRank (or PPR) vector. We will adapt similar terminology and
refer to the vector ρt,s := ρt,χs

as the personalized heat kernel pagerank vector
for s, or simply PHKPR.

Cheeger Ratio. For a non-empty subset S ⊂ V of vertices in a graph, define
the volume to be vol(S) =

∑
v∈S dv, where dv is the degree of vertex v. The

Cheeger ratio of a set S is defined as Φ(S) = |E(S,S̄)|
min{vol(S),vol(S̄)} , where we use S̄

here to denote the set V \S, and E(S, S̄) is the set of edges with one endpoint
in S and the other in S̄. The Cheeger ratio of a graph, then, is the minimum
Cheeger ratio over all sets in the graph, Φ(G) = minS⊂V Φ(S). The Cheeger
ratio provides a quantitative measure concerning graph clusters and is related
to the expansion and spectral gap of a graph [5].

Local Cluster and Sparse Cut. The sparse cut problem is to approximate
the Cheeger ratio Φ(G) of the graph. This is typically done by finding a set of
vertices whose Cheeger ratio is close to Φ(G)– that is, a set which approximates
the sparsest cut in the graph. For the local clustering problem, however, we
are concerned with finding a set with small Cheeger ratio within a specified
subset of vertices. Alternatively, one can view this as a sparse cut problem on an
induced subgraph. This Cheeger ratio is sometimes called a local Cheeger ratio
with respect to the specified subset.

A local clustering algorithm promises the following: Given a set S of Cheeger
ratio φ, many vertices in S may serve as seeds for a sweep which finds a set of
Cheeger ratio close to φ.
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2.3 Our Results

In this work we give a distributed algorithm which computes a local cluster of
Cheeger ratio O(

√
φ) with high probability, while the optimal local cluster has

Cheeger ratio φ. Our algorithm finishes in O
(

log(ε−1) log n
log log(ε−1) + 1

ε log n
)

rounds in
the CONGEST model (Theorem 5) where ε is an error bound. Further, if φ is
known, we show how to compute a local cluster in O

(
log(ε−1)

log log(ε−1) + 1
ε

)
rounds

(Theorem 4). Our algorithm is an improvement of previous local clustering algo-
rithms by eliminating a log factor in the performance guarantee. Further, its
running time improves upon algorithms using standard and PageRank random
walks. In particular, given the Cheeger ratio of an optimal local cluster, our
algorithm runs in time only dependent upon the approximation error, ε, and
is entirely independent of the input graph. The algorithms and accompanying
analysis are given in Sect. 4.

Similar to existing local clustering algorithms, our algorithm uses a variation
of random walks to compute a local cluster. However, rather than a standard
random walk [25] or a PageRank random walk with reset probabilities [1], we
use the heat kernel random walk (see Sect. 3).

We remark that in the analysis of random walks, the usual notion of approx-
imation is total variation distance or some other vector norm based distance.
However, in the approximation of PageRank or heat kernel pagerank for large
graphs, the definition of approximation is quite different. Namely, we say some
vector ρ̂t,s is an ε-approximate PHKPR vector for ρt,s with a seed vertex s and
diffusion parameter t ∈ R if:

1. (1 − ε)ρt,s(v) − ε ≤ ρ̂t,s(v) ≤ (1 + ε)ρt,s(v), and
2. for each node v with ρ̂t,s(v) = 0, it must be that ρt,s(v) ≤ ε.

With the above definition of approximation, we here define the heat kernel
pagerank approximation problem (or the PHKPR problem in short): given a
vertex s of a graph and a diffusion parameter t ∈ R, compute values ρ̂t,s(v) for
vertices v. We give a distributed algorithm which solves the PHKPR problem
and finishes after only O

(
log(ε−1)

log log(ε−1)

)
rounds of communication (Theorem 2).

We extend our results to distributed k-machine model and show the exis-
tence of an algorithm which computes a local cluster over k machines in
Õ

(
log(ε−1)

ε3k2 log log(ε−1) + 1
εk2 +

(
log(ε−1)

k log log(ε−1) + 1
kε

)
max

{
1
ε3 ,Δ

})
rounds, where Δ is

the maximum degree in the graph, with high probability (Theorem8). We note
that when hiding polylogarithmic factors, this time does not depend on the size
n of the graph. We compare this to an algorithm for computing a local cluster
with PageRank which will require Õ

( 1
α+n

k2 +
(

1
αk + n

k

)
max{ 1

ε ,Δ}
)

rounds with
high probability, which is linear in n. These results are given in Sect. 5.

We briefly note here that local clustering algorithms can easily be extended
to sparse cut algorithms. Namely, one can sample a number of random nodes in
the network and perform the local clustering algorithm from each. One node in
the network can store the Cheeger ratios output by each run of the algorithm
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and simply return the minimal Cheeger ratio as the value of the sparsest cut in
the network. In [1,25], O(n

σ log n) nodes are enough to compute a sparsest cut
with high probability, where σ is the size of the cut set.

3 Fast Distributed Heat Kernel Pagerank Computation

The idea of the algorithm is to launch a number of random walks from the seed
node in parallel, and compute the fraction of random walks which end at a node u
as an estimate of the PHKPR values ρt,s(u). Recall the definition of personalized
heat kernel pagerank from (1), ρt,s =

∑∞
k=0 e−t tk

k! χsP
k. Then the values of this

vector are exactly the stationary distribution of a heat kernel random walk : with
probability pk = e−t tk

k! , take k random walk steps according to the standard
random walk transition probabilities P (see Sect. 2.2).

To be specific, the seed node s initializes r tokens, each of which holds a
random variable k corresponding to the length of its random walk. Then, in
rounds, the tokens are passed to random neighbors with a count incrementor
until the count reaches k. At the end of the parallel random walks, each node
holding tokens outputs the number of tokens it holds divided by r as an estimate
for its PHKPR value. Algorithm1 describes the full procedure.

Algorithm 1. DistributedEstimatePHKPR
input: a network modeled by a graph G, a seed node s, a diffusion parameter t, an
error bound ε
output: estimates ρ̂t,s(v) of PHKPR values for nodes v in the network

1: seed node s generates r = 16
ε3

log n tokens ti

2: K ← c · log(ε−1)

log log(ε−1)
for any choice of c ≥ 1

3: each token ti does the following: pick a value k with probability pk = e−t tk

k!
, then

hold the counter value ki ← min{k, K}
4: for iterations j = 1 . . . K do
5: every node v performs the following in parallel:
6: for every token ti node v currently holds do
7: if ki == j then
8: hold on to this token for the duration of the iterations
9: else

10: send ti to a random neighbor
11: end if
12: end for
13: end for
14: let Cv be the number of tokens node v currently holds
15: each node with Cv > 0 returns Cv/r as an estimate for its PHKPR value ρt,s(v)

The algorithm is based on that given in [6] in a static setting. Theorem 1 of [6]
states that an ε-approximate PHKPR vector can be computed with the above
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procedure by setting r = 16
ε3 log n. Further, the approximation guarantee holds

when limiting the maximum length of random walks to K = O
(

log(ε−1)
log log(ε−1)

)
, so

that each token is passed for max{k,K} rounds, where k is drawn with proba-
bility pk as described above. In the static setting, this limit keeps the running
time down.

In contrast, the distributed algorithm DistributedEstimatePHKPR takes
advantage of decentralized control to take multiple random walk steps via multi-
ple edges at a time. That is, through parallel execution, the running time depends
only on the length of random walks, whereas when running the random walks in
serial, as in [6], the running time must also include the number of random walks
performed. Thus, keeping K small is critical in keeping the number of rounds
low, and is the key to the efficiency of our local clustering algorithms.

The correctness of the algorithm follows directly from Theorem 1 in [6], and
is stated here without proof. The authors additionally give empirical evidence of
the correctness of the algorithm with parameters r = 16

ε3 log n and K = 2 log(ε−1)
log log(ε−1)

in an extended version of the paper [7]. They specifically demonstrate that the
ranking of nodes obtained with an ε-approximate PHKPR vector computed this
way is very close to the ranking obtained with an exact vector.

Theorem 1. For any network G, any seed node s ∈ V , and any error bound
0 < ε < 1, the distributed algorithm DistributedEstimatePHKPR outputs an
ε-approximate PHKPR vector with probability at least 1 − ε.

The correctness of the algorithm holds for any choice of t, and in fact we use
a particular value of t in our local clustering algorithm (see Sect. 4). Regardless,
it is clear that the running time is independent of any choice of t. In fact, we
demonstrate in the proof of Theorem 2 (given in the full version of this paper [8])
that it is independent of n as well.

Theorem 2. For any network G, any seed node s ∈ V , and any error bound
0 < ε < 1, the distributed algorithm DistributedEstimatePHKPR finishes in
O

(
log(ε−1)

log log(ε−1)

)
rounds.

4 Distributed Local Cluster Detection

In this section we present a fast, distributed algorithm for the local clustering
problem. The backbone of the algorithm involves investigating sets of nodes
which accumulate in decreasing order of their ρ̂t,s(v)/dv values. The process is
efficient and requires at most one linear scan of the nodes in the network (we
actually show that the process can be much faster).

We describe the algorithm presently. Let p be any function over the nodes of
the graph, and let π be the ordering of the nodes in decreasing order of p(v)/dv.
Then the majority of the work of the algorithm is investigating sufficiently many
of the n − 1 cuts (Sj , S̄j) given by the first j nodes in the ordering and the
last n − j nodes in the ordering, respectively, for j = 1, . . . , n. However, by
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“sufficiently many” we indicate that we may stop investigating the cut sets when
either the volume or the size of the set Sj is large. Assume this point is after
j = j. Then we choose the cut set that yields the minimum Cheeger ratio among
the j possible cut sets. We call this process a sweep. As such, our local clustering
algorithm is a sweep of a PHKPR distribution vector.

Algorithm 2. DistributedLocalCluster
input: a network modeled by a graph G, a seed node s, a target cluster size σ, a
target cluster volume ς, an optimal Cheeger ratio φ, an error bound ε
output: a set of nodes S with Φ(S) ∈ O(

√
φ)

1: t ← φ−1 log( 2
√

ς

1−ε
+ 2εσ)

2: compute PHKPR values ρ̂t,s(v) with DistributedEstimatePHKPR(G, s, t, ε)
3: every node v with a non-zero PHKPR value estimate sends ρ̂t,s(v)/dv to every

other node with a non-zero PHKPR value estimate � Phase 1
4: let π be the ordering of nodes in decreasing order of ρ̂t,s(v)/dv � Phase 1
5: compute Cheeger ratios of each of the cut sets with a call of the Distributed

sweep algorithm and output the cut set of minimum Cheeger ratio � Phase 2

In the static setting, this process will take O(n log n) time in general. The
authors in [9] give a distributed sweep algorithm that finishes in O(n) rounds.
We improve the analysis of [9] using a PHKPR vector. The running time of our
sweep algorithm is given in Lemma 1, and the proof is provided in [8].

The sweep involves two phases. In Phase 1, the goal is for each node to know
its place in the ordering π. Each node can compute their own ρ̂t,s(v)/dv value
locally, and we use O(1ε ) rounds to ensure each node knows the π values of all
other nodes (see the proof of Lemma 1 [8]). In Phase 2, we use the decentralized
sweep of [9] described presently:

Distributed Sweep Algorithm. Let N denote the number of nodes with a
non-zero estimated PHKPR value after running the algorithm DistributedEsti-
matePHKPR. Assume each node knows its position in ordering π after Phase 1.
We will refer to nodes by their place in the ordering. Define Sj to be the cut set
of the first j nodes in the ordering. Then computing the Cheeger ratio of each
cut set Sj involves a computation of the volume of the set as well as |E(Sj , S̄j)|.
Define the following:

– Lπ
j is the number of neighbors of node j in Sj−1, and

– Rπ
j is the number of neighbors of node j in S̄j .

Then the Cheeger ratio of each cut set can be computed locally by:

◦ |E(Sj , S̄j)| = |E(Sj−1, S̄j−1)| − Lπ
j + Rπ

j , with |E(S1, S̄1)| = d1 (2)

◦ vol(Sj) = vol(Sj−1) + Lπ
j + Rπ

j , with vol(S1) = d1. (3)
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We now show that a sweep can be performed in O(N) rounds. Each node
knows the IDS of its neighbors and after Phase 1 each node knows the place of
every other node in the ordering π. Therefore, each node can compute locally
if a neighbor is in Sj−1 or S̄j , and so Lπ

j and Rπ
j can be computed locally for

each node j. Each node can then prepare an O(log n)-bit message of the form
(ID, Lπ

j , Rπ
j ). Each of the N messages of this form can then be sent to the first

node in the ordering using the upcasting algorithm (described in the proof of
Lemma 1) using the π ordering as node rank. We note that the N nodes in the
ordering are necessarily in a connected component of the network, and so the
upcasting procedure can be performed in O(N) rounds. Finally, once the first
node in the ordering is in possession of the ordering π, and the values of (Lπ

j , Rπ
j )

for every node in the ordering, it may iteratively compute Φ(Sj) locally using
the rules (2) and (3). Thus, this node can output the minimum Cheeger ratio
φ∗ as well as the j∗ such that Φ(Sj∗) = φ∗ after O(N) rounds.

Lemma 1. Performing Phases 1 and 2 of a distributed sweep takes O(1ε ) rounds.

The algorithm DistributedLocalCluster (Algorithm2) is a complete descrip-
tion of our distributed local clustering algorithm. The correctness of the algo-
rithm follows directly from [6] and we omit the proof here.

Theorem 3. For any network G, suppose there is a set of Cheeger ratio φ. Then
at least half of the vertices in S can serve as the seed s so that for any error
bound 0 < ε < 1, the algorithm DistributedLocalCluster will find a set of Cheeger
ratio O(

√
φ) with probability at least 1 − ε.

Theorem 4. For any network G, any seed node s ∈ V , and any error bound
0 < ε < 1, the algorithm DistributedLocalCluster finishes in O

(
log(ε−1)

log log(ε−1) + 1
ε

)
rounds.

Proof. The only distributed computations are those for computing approximate
PHKPR values (line 2) and Phase 1 (lines 3 and 4) and Phase 2 (line 5) of the
distributed sweep. Computing PHKPR values takes O

(
log(ε−1)

log log(ε−1)

)
rounds by

Theorem 2, and Phases 1 and 2 together take O(1ε ) rounds by Lemma 1. Thus
the running time follows.

One possible concern with the algorithm DistributedLocalCluster is that one
cannot guarantee knowing the value of φ ahead of time for any particular node s.
Therefore a true local clustering algorithm should be able to proceed without
this information. This can be achieved by “testing” a few values of φ (and fixing
some reasonable values for σ and ς). Namely, begin with φ = 1/2 and run the
algorithm above. If the output cut set S satisfies Φ(S) ∈ O(

√
φ), we are done. If

not, halve the value of φ and continue. There are O(log n) such guesses, and we
have arrived at the following.

Theorem 5. For any network G, any node s, and any error bound 0 < ε < 1,
there is a distributed algorithm that computes a set S with Cheeger ratio within
a quadratic of the optimal which finishes in O

(
log(ε−1) log n
log log(ε−1) + 1

ε log n
)
rounds.
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In particular, when ignoring polylogarithmic factors, the running time is
Õ

(
log(ε−1)

log log(ε−1) + 1
ε

)
.

5 Computing Local Clusters in the k-machine Model

In this section we consider a graph on n vertices which is distributed across
k nodes in a computer network. This is the k-machine model introduced in
Sect. 2.1.

In the k-machine model, we consider a network of k > 1 distinct machines
that are pairwise interconnected by bidirectional point-to-point communication
links. Each machine executes an instance of a distributed algorithm. The compu-
tation advances in rounds where, in each round, machines can exchange messages
through their communication links. We again assume that each link has a band-
width of O(log n) meaning that O(log n) bits may be transmitted through a link
in any round. We also assume no shared memory and no other means of com-
munication between nodes. When we say an algorithm solves a problem in x
rounds, we mean that x is the maximum number of rounds until termination of
the algorithm, over all n-node, m-edge graphs G.

In this model we are solving massive graph problems in which the vertices
of the graph are distributed among the k machines. We assume n ≥ k (typically
n � k). Initially the entire graph is not known by a single machine but rather
partitioned among the k machines in a “balanced” fashion so that the nodes
and/or edges are partitioned approximately evenly among the machines. There
are several ways of partitioning vertices, and we will consider a random partition,
where vertices and incident edges are randomly assigned to machines. Formally,
each vertex v of G is assigned independently and randomly to one of the k
machines, which we call the home machine of v. The home machine of v thereafter
knows the ID of v as well as the IDs and home machines of neighbors of v.

In the remainder of this section we prove the existence of efficient algorithms
for solving the PHKPR and local cluster problems in the k-machine model. Our
main tool is the Conversion Theorem of [14].

Define M as the message complexity, the worst case number of messages sent
in total during a run of the algorithm. Also define C as the communication degree
complexity, or the maximum number of messages sent or received by any node in
any round of the algorithm. Then we use as a key tool the Conversion Theorem
as restated below.

Theorem 6 (Conversion Theorem [14]). Suppose there is an algorithm AC

that solves problem P in the CONGEST model for any n-node graph G with
probability at least 1−ε in time TC(n). Further, let AC use message complexity M
and communication degree complexity C. Then there exists an algorithm Ak that
solves P for any n-node graph G with probability at least 1 − ε in the k-machine
model in Õ

(
M
k2 + TC(n)C

k

)
rounds with high probability.

In the forthcoming theorems, by “high probability” we mean with probability
at least 1 − 1/n.
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We note that the proof of the Conversion Theorem is constructive, describing
precisely how an algorithm Ak in the k-machine model simulates the algorithm
AC in the CONGEST model. We omit the simulation here but encourage the
reader to refer to the proof for implementation details.

By Theorem 2, we know that PHKPR values can be estimated with
ε-accuracy in O

(
log(ε−1)

log log(ε−1)

)
rounds. A total of O

(
1
ε3 log n

)
messages are gener-

ated and propogated for at most O
(

log(ε−1)
log log(ε−1)

)
random walk steps, for a total

of O
(

log(ε−1) log n
ε3 log log(ε−1)

)
messages sent during a run of the algorithm. In the first ran-

dom walk step, each of the O
(

1
ε3 log n

)
messages may be passed to a neighbor

of the seed node, so the message complexity is O
(

1
ε3 log n

)
. Therefore we arrive

at the following.

Theorem 7. There exists an algorithm that solves the PHKPR problem for any
n-node graph in the k-machine model with probability at least 1 − ε and runs in
Õ

(
log(ε−1)

ε3k log log(ε−1) (
1
k + 1)

)
rounds with high probability.

By Theorem 5, a local cluster about any seed node can be computed in
O

(
log(ε−1) log n
log log(ε−1) + 1

ε log n
)

rounds. The message complexity for the PHKPR phase

is O
((

log(ε−1) log n
ε3 log log(ε−1)

)
log n

)
and for the sweep phase is O

(
1
ε log n

)
, for a total

message complexity of O
(

log(ε−1) log2 n
ε3 log log(ε−1) + 1

ε log n
)
. The communication degree

complexity is O
(

1
ε3 log n

)
for the PHKPR phase (as above), and O(Δ), where

Δ is the maximum degree in the graph, for the sweep phase. Thus the commu-
nication degree complexity for the algorithm is the maximum of these two. We
therefore have the following result for the k-machine model.

Theorem 8. There exists an algorithm that computes a local cluster for any
n-node graph in the k-machine model with probability at least 1 − ε and runs in
Õ

(
log(ε−1)

ε3k2 log log(ε−1) + 1
εk2 +

(
log(ε−1)

k log log(ε−1) + 1
kε

)
max

{
1
ε3 ,Δ

})
rounds, where Δ is

the maximum degree in the graph, with high probability.
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Abstract. The personalized PageRank diffusion is a fundamental tool
in network analysis tasks like community detection and link prediction.
It models the spread of a quantity from a set of seed nodes, and it has
been observed to stay localized near this seed set. We derive an upper-
bound on the number of entries necessary to approximate a personalized
PageRank vector in graphs with skewed degree sequences. This bound
shows localization under mild assumptions on the maximum and mini-
mum degrees. Experimental results on random graphs with these degree
sequences show the bound is loose and support a conjectured bound.

Keywords: PageRank · Diffusion · Local algorithms

1 Introduction

Personalized PageRank vectors [23] are a ubiquitous tool in data analysis of
networks in biology [12,21] and information-relational domains such as recom-
mender systems and databases [15,17,22]. In contrast to the standard PageRank
vector, personalized PageRank vectors model a random-walk process on a net-
work that randomly returns to a fixed starting node instead of restarting from
a random node in the network as in the traditional PageRank. This process is
also called a random-walk with restart.

The stationary distributions of the resulting process are typically called
personalized PageRank vectors. We prefer the terms “localized PageRank” or
“seeded PageRank” as these choices are not as tied to PageRank’s origins on the
web. A seeded PageRank vector depends on three terms: the network modeled as
a column-stochastic matrix P characterizing the random-walk process, a para-
meter α that determines the restart probability (1 − α), and a seed node s. The
vector es is the vector of all zeros with a single 1 in the position corresponding to
node s. The seeded PageRank vector x is then the solution of the linear system:

(I − αP)x = (1 − α)es.
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When the network is strongly connected, the solution x is non-zero for all nodes.
This is because there is a non-zero probability of walking from the seed to any
other node in a strongly connected network. Nevertheless, the solution x dis-
plays a behavior called localization. We can attain accurate localized PageRank
solutions by truncating small elements of x to zero. Put another way, there is
a sparse vector xε that approximates x to an accuracy of ε. This behavior is
desirable for applications of seeded PageRank because they typically seek to
“highlight” a small region related to the seed node s inside a large graph.

The essential question we study in this paper is: how sparse can we make xε?
To be precise, we consider a notion of strong localization, ‖xε − x‖1 ≤ ε, and we
focus on the behavior of f(ε) := min nonzeros(xε). Note that xε depends on α,
the particular random-walk on the graph P, and the seed node s from which the
PageRank diffusion begins. We only consider stochastic matrices P that arise
from random-walks on strongly-connected graphs. So a more precise statement
of our goal is:

fα(ε) = max
P

max
s

min
xε

nonzeros(xε) where ‖xε − x(α,P, s)‖1 ≤ ε,

and where x(α,P, s) is the seeded PageRank vector (1 − α)(I − αP)−1es. The
goal is to establish bounds on f(ε) that are sublinear in n, the number of nodes
of the graph, because that implies localized solutions to PageRank.

Adversarial localized PageRank constructions exist where the solutions x are
near the uniform distribution (see Sect. 2). Thus, it is not possible to meaning-
fully bound f(ε) as anything other than n. It is also known that f(ε) is sublinear
in n for graphs that are essentially of bounded maximum degree [6] due to resol-
vent theory. The case of skewed degrees was open until our result.

We establish an upper-bound on fα(ε) as a function of the rate of decay of
the degree sequence, 1/ε, α, the maximum degree d, and the minimum degree δ
(Theorem 1). This bound enables us to establish sublinear localization for graphs
with growing maximum degrees provided that the other node degrees decay suffi-
ciently rapidly. When we study this bound in random realizations of appropriate
networks, it turns out to be loose; hence, we develop a new conjectured bound
(Sect. 4).

1.1 Related Work on Weak Localization

There is another notion of localization that appears in uses of PageRank for
partitioning undirected graphs:

‖D−1(xε − x)‖∞ = max
i

|[xε]i − xi|/di ≤ ε.

If this notion is used for a localized Cheeger inequality [1,10], then we need the
additional property that 0 ≤ xε ≤ x element-wise. When restated as a localiza-
tion result, the famous Andersen-Chung-Lang PageRank partitioning result [1]
includes a proof that:

max
P

max
s

min
xε

nonzeros(xε) ≤ 1
1−α

1
ε , where ‖D−1(xε − x(α,P, s))‖∞ ≤ ε.
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This establishes that any uniform random walk on a graph satisfies a weak-
localization property. The paper also gives a fast algorithm to find these weakly
local solutions. More recently, there have appeared a variety of additional weak-
localization results on diffusions [13,19].

1.2 Related Work on Functions of Matrices and Diffusions

Localization in diffusions is broadly related to localization in functions of matri-
ces [6]. The results in that literature tend to focus on the case of banded
matrices (e.g. [5]), although there are also discussions of more general results
in terms of graphs arising from sparse matrices [6]. These same types of decay
bounds can apply to a variety of graph diffusion models that involve a stochastic
matrix [3,16], and recent work shows that they may even extend beyond this
regime [13]. In the context of the decay of functions of matrices, we advance the
literature by proving a localization bound for a particular resolvent function of
a matrix that applies to graphs with growing maximum degree.

2 A Negative Result for Strong Localization

Here we give an example of a graph that always has a non-local seeded PageR-
ank vector. More concretely, we demonstrate the existence of a personalized
PageRank vector that requires Θ(n) nonzeros to attain a 1-norm accuracy of ε,
where n is the number of nodes in the graph.

The graph is just the undirected star graph on n nodes. Then the PageRank
vector x seeded on the center node has value 1/(1 + α) for the center node and
α/((1+α)(n− 1)) for all leaf nodes. Suppose an approximation x̂ of x has M of
these leaf-node entries set to 0. Then the 1-norm error ‖x − x̂‖1 would be at least
Mα/((1+α)(n−1)). Attaining a 1-norm accuracy of ε requires Mα/((1+α)(n−
1)) < ε, and so the minimum number of entries of the approximate PageRank
vector required to be non-zero (n − M) is then lower-bounded by n(1 − c) + c,
where c = ε(1 + α)/α. Note that this requires c ∈ (0, 1), which holds if ε < α/2.
Thus, the number of nonzeros required in the approximate PageRank vector
must be linear in n.

3 Localization in Personalized PageRank

The example in Sect. 2 demonstrates that there exist seeded PageRank vectors
that are non-local. Here we show that graphs with a particular type of skewed
degree sequence and a growing, but sublinear, maximum degree have seeded
PageRank vectors that are always localized, and we give an upper-bound on
f(ε) for this class of graph. This theorem originates in our recent work on seeded
heat kernel vectors [14], and we now employ similar arguments to treat seeded
PageRank vectors. Our present analysis yields tighter intermediate inequalities
and results in an entirely novel bound for the localization of PageRank.
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Theorem 1. Let P be a uniform random walk transition matrix of a graph on
n nodes with maximum degree d and minimum degree δ. Additionally, suppose
that the kth largest degree, d(k), satisfies d(k) ≤ max {dk−p, δ}. The Gauss-
Southwell coordinate relaxation method applied to the seeded PageRank problem
(I − αP)x = (1 − α)es produces an approximation xε satisfying ‖x − xε‖1 < ε
having at most N non-zeros in the solution, where N satisfies

N = min
{

n, 1
δ Cp

(
1
ε

) δ
1−α

}
, (1)

and where we define Cp to be

Cp := d(1 + log d) if p = 1

:= d

(
1 + 1

1−p

(
d
1
p −1 − 1

))
otherwise.

Note that the upper bound N = n is trivial as a vector cannot have more
non-zeros than entries. Thus, d, δ, p, and n must satisfy certain conditions to
ensure that inequality (1) is not trivial. In particular, for values of p < 1, it is
necessary that d = o(np) for inequality (1) to imply that N = o(n). For p > 1,
the bound guarantees sublinear growth of N as long as d = o(n). Additionally,
the minimum degree δ must be bounded by O(log log n). Thus we arrive at:

Corollary 1. Let G be a class of graphs with degree sequences obeying the con-
ditions of Theorem 1 with constant δ and d = o(nmin(p,1)). Then f(ε) = o(n),
and seeded PageRank vectors are localized.

We also note that the theorem implies localized seeded PageRank vectors for
any graph with a maximum degree d = O(log log n).

3.1 Our Class of Skewed Degree Sequences

We wish to make a few remarks about the class of skewed degree sequences
where our results apply. Perhaps the most well-known is the power-law degree
distribution where the probability that a node has degree k is proportional to
k−γ . These power-laws can be related to our skewed sequences with p = 1/(γ−1)
and d = O(np) [2]. This setting renders our bound trivial with n nonzeros.
Nevertheless, there is evidence that some real-world networks exhibit our type
of skewed degrees [11] where the bound is asymptotically non-trivial.

3.2 Deriving the Bound

Getting back to the proof, our goal is an ε-approximation, xε, to the equation
(I − αP)x = (1 − α)es for a seed s. Given an approximation, x̂, we can express
the error in terms of the residual vector r = (1 − α)es − (I − αP)x̂ as follows:

x − x̂ = (I − αP)−1 r. (2)
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Using this relationship, we can bound our approximation’s 1-norm accuracy,
‖x− x̂‖1, with the quantity 1

1−α‖r‖1. This is because the column-stochasticity of
P implies that ‖(I−αP)−1‖1 = 1

1−α . Guaranteeing a 1-norm error ‖x−x̂‖1 < ε is
then a matter of ensuring that ‖r‖1 < (1−α)ε holds. To bound the residual norm,
we look more closely at a particular method for producing the approximation.

The Gauss-Southwell iteration. The Gauss-Southwell algorithm is a coordinate
relaxation method for solving a linear system akin to the Gauss-Seidel linear
solver. When solving a linear system, the Gauss-Southwell method proceeds by
updating the entry of the approximate solution that corresponds to the largest
magnitude entry of the residual, r. We describe the Gauss-Southwell update as
it is used to solve the seeded PageRank linear system.

The algorithm begins by setting the initial solution x(0) = 0 and r(0) =
(1−α)es. In step k, let j = j(k) be the entry of r(k) with the largest magnitude,
and let m = |r(k)j |. We update the solution x(k) and residual as follows:

x(k+1) = x(k) + mej (3)

r(k+1) = es − (I − αP)x(k+1), (4)

and the residual update can be expanded to r(k+1) = r(k)−mej +mαPej . Since
each update to the solution x(k) alters exactly one entry of the vector, the index
k is an upper-bound on the number of non-zeros in the solution.

This application of Gauss-Southwell to seeded PageRank-style problems has
appeared numerous times in recent literature [7,8,18,20]. In at least one instance
([8], Sect. 5.2) the authors showed that the residual and solution vector stay
nonnegative throughout this process, assuming the seed vector is nonnegative
(which, in our context, it is). So the 1-norm of the residual can be expressed as
‖r(k+1)‖1 = eT r(k+1), where e is the vector of all ones. Expanding the residual in
terms of the iterative update presented above, we can write the residual norm as
eT

(
r(k) − mej + mαPej

)
. Then, denoting ‖r(k)‖1 by rk, yields the recurrence

rk+1 = rk − m(1 − α).
Next observe that since m is the largest magnitude entry in r, it is larger

than the average value of r. Let Z(k) denote the number of nonzero entries
in r(k); then the average value can be expressed as rk/Z(k). Hence, we have
m ≥ rk/Z(k), and so we can bound rk −m(1−α) above by rk − rk(1−α)/Z(k).
Thus, rk+1 ≤ rk (1 − (1 − α)/Z(k)), and we can recur to find:

rk+1 ≤ r0

k∏
t=0

(
1 − 1−α

Z(t)

)
, (5)

where r0 = (1−α) because r0 = (1−α)es. Then, using the fact that log(1−x) ≤
−x for x < 1, we note:

rk+1 ≤ (1 − α)
k∏

t=0

(
1 − 1−α

Z(t)

)
≤ (1 − α) exp

(
−(1 − α)

k∑
t=0

1
Z(t)

)
. (6)
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To progress from here we need some control over the quantity Z(t) and this is
where our skewed degree sequence enters the proof.

3.3 Using the degree sequence

We show that for a graph with this kind of skewed degree sequence, the number
of entries in the residual obeys:

Z(t) ≤ Cp + δt, (7)

where the term Cp is defined in the statement of Theorem 1. A similar analysis
was presented in [14], but the current presentation improves the bound on Cp.
This bound is proved below, but first we use this bound on Z(t) to control the
bound on rk. Lemma 5.6 from [14] implies that

k∑
t=0

1
Z(t) ≥ 1

δ log ((δ(k + 1) + Cp)/Cp)

and so, plugging into (6), we can bound

rk+1 ≤ (1 − α) exp
(
− (1−α)

δ log
(

(δ(k+1)+Cp)
Cp

))
,

which simplifies to rk+1 ≤ (1 − α) ((δ(k + 1) + Cp)/Cp)
(α−1)/δ. Finally, to guar-

antee rk < ε(1 − α), it suffices to choose k so that ((δk + Cp)/Cp)
(α−1)/δ ≤ ε.

This holds if and only if (δk + Cp) ≥ Cp (1/ε)δ/(α−1) holds, which is guaranteed
by k ≥ 1

δ Cp (1/ε)δ/(1−α)
. Thus, k = 1

δ Cp (1/ε)δ/(1−α) steps will produce an ε-
approximation. Each step introduces at most one non-zero, which implies that
if k < n, then there is an approximation xε with N = k < n non-zeros. If k ≥ n,
then this analysis produces the trivial bound N = n.

Proving the degree sequence bound. Here we prove the inequality in (7) used in
the proof above. For additional details, see the proof of Lemma 5.5 in [14], which
is similar but results in a slightly worse bound. First, observe that the number of
nonzeros in the residual after t steps is bounded above by the sum of the largest
t degrees, Z(t) ≤ ∑t

k=1 d(k). When we substitute the decay bound d(k) ≤ dk−p

into this expression, d(k) is only a positive integer when k ≤ (d/δ)1/p. Hence,
we split the summation Z(t) ≤ ∑t

k=1 d(k) into two pieces,

Z(t) ≤
t∑

k=1

d(k) ≤
⎛
⎝�(d/δ)1/p�∑

k=1

dk−p

⎞
⎠ +

t∑
k=�(d/δ)1/p�+1

δ.

We want to prove that this implies Z(t) ≤ Cp+δt. The second summand is always

less than δt. The first summand can be bounded above by d
(
1 +

∫ (d/δ)1/p

1
x−pdx

)
using a right-hand integral rule. This integral is straightforward to bound above
with the quantity Cp defined in Theorem 1. This completes the proof.
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4 Experiments

We present experimental results on the localization of seeded PageRank vectors
on random graphs that have our skewed degree sequence and compare the actual
sparsity with the predictions of our theoretical bound. This involves generating
random graphs with the given skewed degree sequence (Sect. 4.1) and then com-
paring the experimental localization with our theoretical bound (Sect. 4.3). The
bound is not particularly accurate, and so we conjecture a new bound that better
predicts the behavior witnessed (Sect. 4.4).

4.1 Generating the Graphs

For experimental comparison, we wanted a test suite of graphs with varying but
specific sizes and degree sequences. To produce these graphs, we use the Bayati-
Kim-Saberi procedure [4] for generating undirected graphs with a prescribed
degree sequences. The degree sequences used follow our description in Theorem 1
precisely. We choose the maximum degree d to be n1/3 or n1/2 and the minimum
degree to be δ = 2. We use several values for the decay exponent p, stated below.

After generating the degree sequence, we use the Erdős-Gallai conditions and
the Havel-Hakimi algorithm to check if it is graphical. If the previously generated
sequence fails, we perturb the sequence slightly and recheck the conditions. It
often fails because the sequence has an odd sum; to resolve this state it suffices
to increase the degree of one of the nodes with minimum degree by 1. Lastly, we
verify that the graph contains a large connected component. We proceed once
a graph has been generated that meets the above conditions and has a largest
connected component that includes at least n(1 − 10−2) nodes.

4.2 Measuring the Non-zeros

Given a graph, we first use the power method to compute a PageRank vector,
seeded on the node with largest degree, to high-accuracy (1-norm error bounded
by 10−12). This requires �(log(ε/2))/(log(α))� iterations based on the geometric
convergence rate of α. We then study vectors xε satisfying ‖xε − x‖1 ≤ ε, for
accuracies ε = {10−1, 10−2, 10−3, 10−4}. To count the number of nonzeros in a
vector xε for a particular accuracy ε, we first recall:

fα(ε) = max
P

max
s

min
xε

nonzeros(xε) where ‖xε − x(α,P, s)‖1 ≤ ε.

Thus, we need to compute xε in a way that includes as many zeros as possible,
subject to the constraint that the 1-norm of the difference between xε and x
stays bounded by ε. The idea is to generate xε by computing x and deleting its
smallest entries. The following steps illustrate our process to accomplish this:

– Compute the PageRank vector x with accuracy 10−12 via the power method.
– Sort x in ascending order.
– Determine the largest index j so that (

∑j
k=1 xk) ≤ ε.

– Truncate these j entries to 0. Then xε contains n − j nonzeros.
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4.3 Testing the Theoretical Bound

To test the effectiveness of our theoretical bound in Theorem 1 we generate
graphs with decay exponent p = 0.95, with different sizes n = {104, . . . , 109},
and with maximum degree d = n1/3 and minimum degree δ = 2. Then we solve
the seeded PageRank system, seeded on the node of maximum degree, with
α = {0.25, 0.5}.

For a more compact notation, let nonzeros(xε) = nnz(xε) be the empirical
number of nonzeros produced by our experiment. Figure 1 shows how nnz(xε)
varies with n and α. Our theory gives a non-trivial bound once n > 106 for
α = 0.25 and n > 108 for α = 0.5. These values of α (or near relatives) have been
used in the literature [9,24]. That said, the theoretical bound stays far from the
plot of the sparsity of the ε-approximate diffusion. Since the theoretical bound
behaves poorly even on the extreme points of the parameter settings, we wished
for a tighter, empirical bound.
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Fig. 1. A log-log plot of the quantity nnz(xε) versus 1/ε obtained for different experi-
ments for α = {0.25, 0.5} . We fix p = 0.95 for all plots, and run experiments on graphs
of sizes {104, 105, 106, 107, 108, 109}. We choose d = n1/3 and δ = 2. The red dashed
line represents a vector with all non-zeros present. The solid black line shows the bound
predicted by Theorem 1. The blue curve shows the actual number of non-zeros found
(Color figure online).

4.4 Empirical Non-zero Analysis

In this section, we develop a new bound that better predicts the scaling behavior
of the number of nonzeros in xε as other parameters vary. We do this by studying
the relationships among nnz(xε), ε, and p in a parametric study. Our goal is to
find a function g where

nnz(xε)
d log(d)

scales like g(α, ε, p). (8)

(The choice of d log(d) was inspired by our theoretical bound.) We first fix n =
106, d = n1/2, and p = 0.95 and generate a graph as mentioned in Sect. 4.1. We
then solve the PageRank problem and find the number of nonzeros for different ε
values as mentioned in Sect. 4.2. We use α = {0.25, 0.3, 0.5, 0.65, 0.85} and count
the number of nonzeros in the diffusion vector based on four accuracy settings,
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ε = {10−1, 10−2, 10−3, 10−4}. We then generate a log-log plot of nnz(xε)
d log(d) versus

1/ε for the different values of α. The outcome is illustrated in Fig. 2 (left).
From Fig. 2, we can see that as α increases, the values nnz(xε)

d log(d) also increase,

interestingly, nearly as a linear shift. Since we have seen that nnz(xε)
d log(d) seems to

vary inversely with (1 − α), we specialize the form of g as g(α, ε, p) = c1
(1−α) ·

g2(ε, p).
We similarly derive a relation between nnz(xε)

d log(d) and p. Here, we fix n = 106

and d = n1/2 then generate graphs with different decay exponents p, namely:
p = {0.5, 0.75, 0.95}. We report the results in Fig. 2 (right). We can see that as the
value of p increases, the curves nnz(xε)

d log(d) appear to grow much more slowly. Further-
more, the difference between the curves becomes exponential as 1/ε increases.
This leads us to think of the relation between p and nnz(xε)

d log(d) as an exponen-

tial function in terms of 1/ε. Also, since p and nnz(xε)
d log(d) are inversely related, we

consider 1/p rather than p. Therefore, we arrive at a relationship of the form:

g(α, ε, p) = c1
(1−α)

(
1
ε

)c2/pc3

for some constants c1, c2, c3. After experimenting with the above bound, we found
that the best results were achieved at c1 = 0.2, c2 = 0.25, c3 = 2.

4.5 Results

The experimental scaling bound derived in Sect. 4.4 is now:

nnz(xε) ≤ d log(d) 0.2
(1−α)

(
1
ε

)1/(2p)2

. (9)
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Fig. 2. Log-log plots of nnz(xε)
d log(d)

versus 1/ε obtained on graphs of size n = 106 with d =

n1/2 as α and p vary. At left, p is fixed to p = 0.95 and the black, green, blue, red, and
dashed black curves represent nnz(xε)

d log(d)
for α = {0.25, 0.3, 0.5, 0.65, 0.85} respectively.

At right, α is fixed to α = 0.5 and the dashed blue, black, and green curves represent
nnz(xε)
d log(d)

for p = {0.5, 0.75, 0.95}, respectively (Color figure online).
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Fig. 3. Each sub-plot has x-axis representing 1/ε and y-axis representing the number
of non-zeros present in a diffusion vector of 1-norm accuracy ε. The red dashed line rep-
resents a vector with all non-zeros present. The black dashed line shows our predicted
bound (9). The blue curve shows the actual number of non-zeros found. As graphs
get bigger (i.e. the fourth to sixth columns) the theoretical bound (black line) almost
exactly predicts the locality of the ε-approximate diffusion (Color figure online).
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Fig. 4. Each sub-plot has x-axis representing 1/ε and y-axis representing the number
of non-zeros present in a diffusion vector of 1-norm accuracy ε. The red dashed line rep-
resents a vector with all non-zeros present. The black dashed line shows our predicted
bound (9). The blue curve shows the actual number of non-zeros found. As graphs
get bigger (i.e. the fourth to sixth columns) the theoretical bound (black line) almost
exactly predicts the locality of the ε-approximate diffusion (Color figure online).

In what follows, we demonstrate the effectiveness of this bound in describing the
localization of seeded PageRank vectors computed with different values of α, on
graphs with skewed degree sequences with varying decay exponents.

For each set of parameters (graph size n, d = n1/2, decay exponent p, and
PageRank constant α), the plots in Figs. 3 and 4 display the number of nonzeros
needed to approximate a PageRank vector with 1-norm accuracy ε as a function
of 1/ε. The blue curve represents the actual number of nonzeros required in the
ε-approximation. Each plot also has a black dashed line showing the prediction
by our conjectured bound (9). We note that our conjectured bound appears to
properly bound the empirical scaling in all of the plots well; although, it fails to
provide a true bound for some.

5 Discussion

We have shown that seeded PageRank vectors, though not localized on all graphs,
must behave locally on graphs with degree sequences that decay sufficiently
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rapidly. Our experiments show our theoretical bound to be terribly loose. In some
sense this is to be expected as our algorithmic analysis is worst case. However,
it isn’t clear that any real-world graphs realize these worst-case scenarios. We
thus plan to continue our study of simple graph models to identify empirical
and theoretical localization bounds based on the parameters of the models. This
will include a theoretical justification or revisitation of the empirically derived
bound. It will also include new studies of Chung-Lu graphs as well as the Havel-
Hakimi construction itself. Finally, we also plan to explore the impact of local
clustering. Our conjecture is that this should exert a powerful localization effect
beyond that due to the degree sequence.

One open question sparked by our work regards the relationship between
localized solutions and constant or shrinking average distance in graphs. It is
well known that social networks appear to have shrinking or constant effective
diameters. Existing results in the theory of localization of functions of matrices
imply that a precise bound on diameter would force delocalization as the graph
grows. Although the localization theory says nothing about average distance or
small effective diameters, it hints that the solutions would delocalize. However,
solutions often localize nicely in real-world networks, and we wish to understand
the origins of the empirical localization behavior more fully. Another open ques-
tion regards whether localization is possible on graphs with a power-law degree
distribution. Our current analysis is insufficient for this case.
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