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Abstract. In this paper, we analyze the local clustering coefficient of
preferential attachment models. A general approach to preferential at-
tachment was introduced in [18], where a wide class of models (PA-class)
was defined in terms of constraints that are sufficient for the study of
the degree distribution and the clustering coefficient. It was previously
shown that the degree distribution in all models of the PA-class follows
a power law. Also, the global clustering coefficient was analyzed and a
lower bound for the average local clustering coefficient was obtained. We
expand the results of [18] by analyzing the local clustering coefficient for
the PA-class of models. Namely, we analyze the behavior of C(d) which
is the average local clustering for the vertices of degree d.
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1 Introduction

Nowadays there are a lot of practical problems connected with the analysis of
growing real-world networks, from Internet and society networks [1,5,8] to biolog-
ical networks [2]. Models of real-world networks are used in physics, information
retrieval, data mining, bioinformatics, etc. An extensive review of real-world
networks and their applications can be found elsewhere (e.g., see [1,5,6,15]).

It turns out that many real-world networks of diverse nature have some typ-
ical properties: small diameter, power-law degree distribution, high clustering,
and others [13,16,17,23]. Probably the most extensively studied property of net-
works is their vertex degree distribution. For the majority of studied real-world
networks, the portion of vertices with degree d was observed to decrease as d−γ ,
usually with 2 < γ < 3 [3,4,5,9,12].

Another important characteristic of a network is its clustering coefficient,
which has the following two most used versions: the global clustering coefficient
and the average local clustering coefficient (see Section 2.3 for the definitions).
It is believed that for many real-world networks both the average local and the
global clustering coefficients tend to non-zero limit as the network becomes large.
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Indeed, in many observed networks the values of both clustering coefficients are
considerably high [17].

The most well-known approach to modeling complex networks is the prefer-
ential-attachment idea. Many different models are based on this idea: LCD [7],
Buckley-Osthus [10], Holme-Kim [14], RAN [24], and many others. A general
approach to preferential attachment was introduced in [18], where a wide class
of models was defined in terms of constraints that are sufficient for the study of
the degree distribution (PA-class) and the clustering coefficient (T-subclass of
PA-class).

In this paper, we analyze the behavior of C(d) — the average local clustering
coefficient for the vertices of degree d — in the T-subclass. It was previously
shown that in real-world networks C(d) usually decreases as d−ψ with some
parameter ψ > 0 [11,20,22]. For some networks, C(d) scales as a power law
C(d) ∼ d−1 [15,19]. In the current paper, we prove that in all models of the
T-subclass the local clustering coefficient C(d) asymptotically behaves as C ·
d−1, where C is some constant. We also illustrated these results empirically. In
addition, we suggested and empirically verified (for A ≤ 0.75) an approximation
for the average local clustering coefficient C2(n).

The remainder of the paper is organized as follows. In Section 2, we give
a formal definition of the PA-class and present some known results. Then, in
Section 3, we state new results on the behavior of local clustering C(d). We
prove the theorems in Section 4. In Section 5 we make some simulations in order
to illustrate our results for C(d) and to empirically analyze the local clustering
coefficient. Section 6 concludes the paper.

2 Generalized Preferential Attachment

2.1 Definition of the PA-class

In this section, we define the PA-class of models which was first suggested in [18].
Let Gnm (n ≥ n0) be a graph with n vertices {1, . . . , n} and mn edges obtained
as a result of the following process. We start at the time n0 from an arbitrary
graph Gn0

m with n0 vertices and mn0 edges. On the (n + 1)-th step (n ≥ n0),
we make the graph Gn+1

m from Gnm by adding a new vertex n + 1 and m edges
connecting this vertex to some m vertices from the set {1, . . . , n, n+ 1}. Denote
by dnv the degree of a vertex v in Gnm. If for some constants A and B the following
conditions are satisfied

P
(
dn+1
v = dnv | Gnm

)
= 1−Ad

n
v

n
−B 1

n
+O

(
(dnv )

2

n2

)
, 1 ≤ v ≤ n , (1)

P
(
dn+1
v = dnv + 1 | Gnm

)
= A

dnv
n

+B
1

n
+O

(
(dnv )

2

n2

)
, 1 ≤ v ≤ n , (2)

P
(
dn+1
v = dnv + j | Gnm

)
= O

(
(dnv )

2

n2

)
, 2 ≤ j ≤ m, 1 ≤ v ≤ n , (3)
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P(dn+1
n+1 = m+ j) = O

(
1

n

)
, 1 ≤ j ≤ m , (4)

then the random graph process Gnm is a model from the PA-class. Here, as in [18],
we require 2mA+B = m and 0 ≤ A ≤ 1.

As it is explained in [18], even fixing values of parameters A and m does
not specify a concrete procedure for constructing a network. There are a lot of
models possessing very different properties and satisfying the conditions (1–4),
e.g., the LCD, the Buckley–Osthus, the Holme–Kim, and the RAN models.

2.2 Power Law Degree Distribution

Let Nn(d) be the number of vertices of degree d in Gnm. The following theorems
on the expectation of Nn(d) and its concentration were proved in [18].

Theorem 1. For every model in PA-class and for every d ≥ m

ENn(d) = c(m, d)
(
n+O

(
d2+

1
A

))
,

where

c(m, d) =
Γ
(
d+ B

A

)
Γ
(
m+ B+1

A

)
A Γ

(
d+ B+A+1

A

)
Γ
(
m+ B

A

) d→∞∼ Γ
(
m+ B+1

A

)
d−1−

1
A

A Γ
(
m+ B

A

)
and Γ(x) is the gamma function.

Theorem 2. For every model from the PA-class and for every d = d(n) we have

P
(
|Nn(d)− ENn(d)| ≥ d

√
n log n

)
= n−Ω(logn).

Therefore, for any δ > 0 there exists a function ϕ(n) ∈ o(1) such that

lim
n→∞

P
(
∃ d ≤ n

A−δ
4A+2 : |Nn(d)− ENn(d)| ≥ ϕ(n) ENn(d)

)
= 0 .

These two theorems mean that the degree distribution follows (asymptotically)
the power law with the parameter 1 + 1

A .

2.3 Clustering Coefficient

A T-subclass of the PA-class was introduced in [18]. In this case, the following
additional condition is required:

P
(
dn+1
i = dni + 1, dn+1

j = dnj + 1 | Gnm
)

= eij
D

mn
+O

(
dni d

n
j

n2

)
. (5)

Here eij is the number of edges between vertices i and j in Gnm and D is a positive
constant. Note that this property still does not define the correlation between
edges completely, but it is sufficient for studying both global and average local
clustering coefficients.
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Let us now define the clustering coefficients. The global clustering coefficient
C1(G) is the ratio of three times the number of triangles to the number of pairs of
adjacent edges in G. The average local clustering coefficient is defined as follows:
C2(G) = 1

n

∑n
i=1 C(i), where C(i) is the local clustering coefficient for a vertex

i: C(i) = T i

P i2
, where T i is the number of edges between neighbors of the vertex i

and P i2 is the number of pairs of neighbors. Note that both clustering coefficients
are defined for graphs without multiple edges.

The following theorem on the global clustering coefficient in the T-subclass
was proven in [18].

Theorem 3. Let Gnm belong to the T-subclass with D > 0. Then, for any ε > 0

(1) If 2A < 1, then whp 6(1−2A)D−ε
m(4(A+B)+m−1) ≤ C1(Gnm) ≤ 6(1−2A)D+ε

m(4(A+B)+m−1) ;

(2) If 2A = 1, then whp 6D−ε
m(4(A+B)+m−1) logn ≤ C1(Gnm) ≤ 6D+ε

m(4(A+B)+m−1) logn ;

(3) If 2A > 1, then whp n1−2A−ε ≤ C1(Gnm) ≤ n1−2A+ε .

Theorem 3 shows that in some cases (2A ≥ 1) the global clustering coefficient
C1(Gnm) tends to zero as the number of vertices grows.

The average local clustering coefficient C2(Gnm) was not fully analyzed pre-
viously, but it was shown in [18] that C2(Gnm) does not tend to zero for the
T-subclass with D > 0. In the next section, we fully analyze the behavior of the
average local clustering coefficient for the vertices of degree d.

3 The Average Local Clustering for the Vertices of
Degree d

In this section, we analyze the asymptotic behavior of C(d) — the average local
clustering for the vertices of degree d. Let Tn(d) be the number of triangles on
the vertices of degree d in Gnm (i.e., the number of edges between the neighbors
of the vertices of degree d). Then, C(d) is defined in the following way:

C(d) =
Tn(d)

Nn(d)
(
d
2

) . (6)

In other words, C(d) is the local clustering coefficient averaged over all vertices
of degree d. In order to estimate C(d) we should first estimate Tn(d). After that,
we can use Theorems 1 and 2 on the behavior of Nn(d).

We prove the following result on the expectation of Tn(d).

Theorem 4. Let Gnm belong to the T-subclass of the PA-class with D > 0. Then

(1) if 2A < 1, then ETn(d) = K(d)
(
n+O

(
d2+

1
A

))
;

(2) if 2A = 1, then ETn(d) = K(d)
(
n+O

(
d2+

1
A · log(n)

))
;

(3) if 2A > 1, then ETn(d) = K(d)
(
n+O

(
d2+

1
A · n2A−1

))
;
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where K(d) = c(m, d)
(
D + D

m ·
∑d−1
i=m

i
Ai+B

)
d→∞∼ D

Am ·
Γ(m+B+1

A )
A Γ(m+B

A )
· d− 1

A .

Second, we show that the number of triangles on the vertices of degree d is
highly concentrated around its expectation.

Theorem 5. Let Gnm belong to the T-subclass of the PA-class with D > 0. Then
for every d = d(n)

(1) if 2A < 1: P
(
|Tn(d)− ETn(d)| ≥ d2

√
n log n

)
= n−Ω(logn);

(2) if 2A = 1: P
(
|Tn(d)− ETn(d)| ≥ d2

√
n log2 n

)
= n−Ω(logn);

(3) if 2A > 1: P
(
|Tn(d)− ETn(d)| ≥ d2 n2A− 1

2 log n
)

= n−Ω(logn).

Consequently, for any δ > 0 there exists a function ϕ(n) = o(1) such that

(1) if 2A ≤ 1: limn→∞ P
(
∃ d ≤ n

A−δ
4A+2 : |Tn(d)− ETn(d)| ≥ ϕ(n) ETn(d)

)
= 0;

(2) if 2A > 1:

limn→∞ P
(
∃ d ≤ n

A(3−4A)−δ
4A+2 : |Tn(d)− ETn(d)| ≥ ϕ(n) ETn(d)

)
= 0.

As a consequence of Theorems 1, 2, 4, and 5, we get the following result on
the average local clustering coefficient C(d) for the vertices of degree d in Gnm.

Theorem 6. Let Gnm belong to the T-subclass of the PA-class. Then for any
δ > 0 there exists a function ϕ(n) = o(1) such that

(1) if 2A ≤ 1: limn→∞ P

(
∃ d ≤ n

A−δ
4A+2 :

∣∣∣∣C(d)− K(d)

(d2) c(m,d)

∣∣∣∣ ≥ ϕ(n)
d

)
= 0;

(2) if 2A > 1: limn→∞ P

(
∃ d ≤ n

A(3−4A)−δ
4A+2 :

∣∣∣∣C(d)− K(d)

(d2) c(m,d)

∣∣∣∣ ≥ ϕ(n)
d

)
= 0.

Note that K(d)

(d2) c(m,d)
= 2D

d (d−1)m

(
m+

∑d−1
i=m

i
Ai+B

)
d→∞∼ 2D

mA · d
−1.

It is important to note that Theorems 5 and 6 are informative only for A <
3
4 , since only in this case the value n

A(3−4A)−δ
4A+2 grows. This restriction seems

technical, i.e., one may think that more accurate estimation of error terms may
fill the gap between 3

4 and 1. However, as we discuss in Section 5, it seems that
for A > 3

4 the error terms can make a significant contribution to C(d) and the
obtained asymptotic may not work. This means that it is probably impossible
to estimate C(d) in the whole T-subclass for A > 3

4 and additional constraints
are needed.

In the next section, we first prove Theorem 4. Then, using the Azuma–
Hoeffding inequality, we prove Theorem 5. Theorem 6 is a corollary of Theo-
rems 1, 2, 4, and 5.

4 Proofs

In all the proofs we use the notation θ(·) for error terms. By θ(X) we denote an
arbitrary function such that |θ(X)| < X.
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4.1 Proof of Theorem 4

We need the following auxiliary theorem.

Theorem 7. Let Wn be the sum of the squares of the degrees of all vertices in
a model from the PA-class. Then

(1) if 2A < 1, then EWn = O(n),
(2) if 2A = 1, then EWn = O(n · log(n)),
(3) if 2A > 1, then EWn = O(n2A).

This statement is mentioned in [18] and it can be proved by induction. Also,
let S(n, d) be the sum of the degrees of all the neighbors of all vertices of degree
d. Note that S(n, d) is not greater than the sum of the degrees of the neighbors
of all vertices. The last is equal to Wn, because each vertex of degree d adds d2

to the sum of the degrees of the neighbors of all vertices. So, for any d we have

ES(n, d) ≤ EWn. (7)

Now we can prove Theorem 4. Note that we do not take into account the mul-
tiplicities of edges when we calculate the number of triangles, since the clustering
coefficient is defined for graphs without multiple edges. This does not affect the
final result since the number of multiple edges is small for graphs constructed
according to the model [6].

We prove the statement of Theorem 4 by induction on d. Also, for each d we
use induction on n. First, consider the case d = m. The expected number of tri-

angles on any vertex t of degree m is equal to E
∑

(i,j)∈E(Gtm)

(
eij

D
mt +O

(
dtid

t
j

t2

))
(see (5)). AsGtm has exactlymt edges, we get E

∑
(i,j)∈E(Gtm)

(
eij

D
mt +O

(
dtid

t
j

t2

))
= D + o(1). The fact that E

∑
(i,j)∈E(Gtm)O

(
didj
t2

)
= O

(
EWt

t2

)
= o(1) can be

shown by induction using the conditions (1-4). We also know (see Theorem 1)
that ENn(m) = c(m,m)n+O (1). So, ETn(m) = (D + o(1)) (c(m,m)n+O (1))
= K(m) (n+O (1)). This concludes the proof for the case d = m for all values
of A (2A < 1, 2A = 1 and 2A > 1).

Consider the case d > m. Note that the number of triangles on a vertex of
degree d is O (d), since this number is O(1) when this vertex appears plus at
each step we get a triangle only if we hit both the vertex under consideration
and a neighbor of this vertex, and our vertex degree equals d, therefore we get

at most dm triangles. Also, ENn(d) = c(m, d)
(
n+O

(
d2+

1
A

))
. So we have

ETn(d) = O(d) c(m, d)
(
n+O

(
d2+

1
A

))
. In particular, for n ≤ Q · d2 (where

the constant Q depends only on A and m and will be defined later) we have

ETn(d) = O
(
c(m, d) d3+

1
A

)
= O

(
d2
)

= K(d) · O
(
d2+

1
A

)
. This concludes the

proof for the case d > m, n ≤ Qd2 for all values of A.
Now, consider the case d > m, n > Qd2. Once we add a vertex n+ 1 and m

edges, we have the following possibilities.
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1. At least one edge hits a vertex of degree d. Then Tn(d) is decreased by the
number of triangles on this vertex (because this vertex is a vertex of degree d+1

now). The probability to hit a vertex of degree d is Ad+B
n + O

(
d2

n2

)
. Summing

over all vertices of degree d we obtain that ETn(d) is decreased by:(
Ad+B

n
+O

(
d2

n2

))
· ETn(d) . (8)

2. Exactly one edge hits a vertex of degree d− 1. Then Tn(d) is increased by
the number of triangles on this vertex. The probability to hit a vertex of degree

d− 1 once is equal to A (d−1)+B
n +O

(
d2

n2

)
. Summing over all vertices of degree

d− 1 we obtain that the value ETn(d) is increased by:(
A(d− 1) +B

n
+O

(
d2

n2

))
· ETn(d− 1) . (9)

3. Exactly one edge hits a vertex of degree d − 1 and another edge hits its
neighbor. Then, in addition to (9), Tn(d) is increased by 1. The probability to

hit a vertex of degree d−1 and its neighbor is equal to D
mn +O

(
(d−1) di
n2

)
, where

di is the degree of this neighbor. Summing over the neighbors of a given vertex
of degree d−1 and summing then over all vertices of degree d−1 we obtain that
ETn(d) is increased by:

(d− 1) ENn(d− 1)
D

mn
+O

d · E
∑

i:i is a neighbor
of a vertex of degree d− 1

di

n2


= (d− 1) ENn(d− 1)

D

mn
+O

(
dES(n, d)

n2

)
. (10)

4. Exactly i edges hit a vertex of degree d − i, where i is between 2 and m.
If no edges hit the neighbors of this vertex, then Tn(d) is increased only by the
number of triangles on this vertex. The probability to hit a vertex of degree d− i
exactly i times is equal to O

(
d2

n2

)
. If we also hit its neighbors, then Tn(d) is

additionally increased by 1 for each neighbor. The probability to hit a vertex

of degree d − i exactly i times and hit some its neighbor is, obviously, O
(
d2

n2

)
.

Summing over all vertices of degree d− i and then summing over all i from 2 to
m, we obtain that ETn(d) is increased by:

m∑
i=2

(
ETn(d− i) ·O

(
d2

n2

)
+O

(
d2

n2

)
· (d− i) · ENn(d− i)

)
= O

(
d2

n2

)
ETn(d) +O

(
d3

n2

)
ENn(d) . (11)

Finally, using (8)-(11) and the linearity of the expectation, we get
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ETn+1(d) = ETn(d)−
(
Ad+B

n
+O

(
d2

n2

))
ETn(d)

+

(
A(d− 1) +B

n
+O

(
d2

n2

))
ETn(d− 1) + (d− 1) ENn(d− 1)

D

mn

+O

(
dES(n, d)

n2

)
+O

(
d2

n2

)
ETn(d) +O

(
d3

n2

)
ENn(d)

=

(
1− Ad+B

n

)
ETn(d) +

A(d− 1) +B

n
ETn(d− 1)

+O

(
d2

n2

)
(ETn(d) + ETn(d− 1)) +O

(
d3

n2

)
ENn(d)

+
D

mn
(d− 1) ENn(d− 1) +O

(
d · ES(n, d)

n2

)
. (12)

Consider the case 2A < 1 (the cases 2A = 1 and 2A > 1 will be analyzed
similarly). We prove by induction on d and n that

ETn(d) = K(d)
(
n+ θ

(
C · d2+ 1

A

))
(13)

for some constant C > 0. Let us assume that ETi(d̃) = K(d̃)
(
i+ θ

(
C · d̃2+ 1

A

))
for d̃ < d and all i and for d̃ = d and i < n+ 1.

Recall that K(d) = c(m, d)
(
D + D

m ·
∑d−1
i=m

i
Ai+B

)
and ENn(d) = c(m, d) ·(

n+O
(
d2+

1
A

))
. If 2A < 1, then from (7) and Theorem 7 we get ES(n, d) =

O(n) and we obtain:

ETn+1(d) =

(
1− Ad+B

n

)
K(d)

(
n+ θ

(
Cd2+

1
A

))
+
A(d− 1) +B

n
K(d− 1)

(
n+ θ

(
C(d− 1)2+

1
A

))
+O

(
d2

n2

) (
K(d)

(
n+ θ

(
Cd2+

1
A

))
+K(d− 1)

(
n+ θ

(
C(d− 1)2+

1
A

)))
+O

(
d3

n2

)
c(m, d)

(
n+O

(
d2+

1
A

))
+

D

mn
(d− 1) c(m, d− 1)

(
n+O

(
d2+

1
A

))
+O

(
d

n

)
.

Note that K(d) = A(d−1)+B
Ad+B+1 K(d − 1) + D(d−1)

m(Ad+B+1) c(m, d − 1). Therefore,

we obtain:
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ETn+1(d) = K(d) (n+ 1) +K(d)

(
1− Ad+B

n

)
θ
(
C d2+

1
A

)
+K(d− 1)

A(d− 1) +B

n
θ
(
C (d− 1)2+

1
A

)
+
D(d− 1)

mn
c(m, d)O

(
d2+

1
A

)
+O

(
d

n

)
+O

(
d2

n2

)
(K(d)n

+K(d) θ
(
C d2+

1
A

)
+K(d− 1)n+K(d− 1) θ

(
C (d− 1)2+

1
A

))
+O

(
d3

n2

) (
c(m, d)n+ c(m, d)O

(
d2+

1
A

))
.

In order to show (13), it remains to prove that for some large enough C:

K(d)

(
Ad+B

n

)
C d2+

1
A ≥ K(d− 1)

A(d− 1) +B

n
C (d− 1)2+

1
A

+O

(
d2

n

)
+O

(
C
d4

n2

)
+O

(
d4

n2

)
. (14)

First, we analyze the following difference:

K(d)

(
Ad+B

n

)
d2+

1
A −K(d− 1)

A(d− 1) +B

n
(d− 1)2+

1
A

=
Ad+B

n
d2+

1
A

(
A(d− 1) +B

Ad+B + 1
K(d− 1) +

D(d− 1)

m(Ad+B + 1)
c(m, d− 1)

)
− A(d− 1) +B

n
K(d− 1) (d− 1)2+

1
A =

(Ad+B)D(d− 1)

mn(Ad+B + 1)
c(m, d− 1) d2+

1
A

+K(d− 1)
A(d− 1) +B

n

(
Ad+B

Ad+B + 1
d2+

1
A − (d− 1)2+

1
A

)
≥ (Ad+B)D(d− 1)

mn(Ad+B + 1)
c(m, d− 1) d2+

1
A

+ (d− 1)2+
1
A K(d− 1)

A(d− 1) +B

n
· 2A2d+ 2AB +B

Ad(Ad+B + 1)

≥ (Ad+B)D(d− 1)

mn(Ad+B + 1)
c(m, d− 1) d2+

1
A .

Therefore, Equation (14) becomes:

C
(Ad+B)D(d− 1)

mn(Ad+B + 1)
c(m, d− 1) d2+

1
A ≥ O

(
d2

n

)
+O

(
C
d4

n2

)
+O

(
d4

n2

)
.

9



In the case 2A = 1 this inequality will be:

C
(Ad+B)D(d− 1)

mn(Ad+B + 1)
c(m, d− 1) d2+

1
A log(n)

≥ O
(
d2

n

)
+O

(
C
d4 · log(n)

n2

)
+O

(
d4

n2

)
+O

(
d log(n)

n

)
.

In the case 2A > 1 this inequality will be:

C
(Ad+B)D(d− 1)

mn(Ad+B + 1)
c(m, d− 1) d2+

1
A n2A−1

≥ O
(
d2

n

)
+O

(
C
d4 n2A−1

n2

)
+O

(
d4

n2

)
+O

(
dn2A

n2

)
.

It is easy to see that for n ≥ Q · d2 (for some large Q which depends only on
the parameters of the model) these three inequalities are satisfied. This concludes
the proof of the theorem.

4.2 Proof of Theorem 5

This theorem is proved similarly to the concentration theorem from [18]. We also
need the following notation (introduced in [18]):

pn(d) = P
(
dn+1
v = d | dnv = d

)
= 1−Ad

n
−B 1

n
+O

(
d2

n2

)
,

p1n(d) := P
(
dn+1
v = d+ 1 | dnv = d

)
= A

d

n
+B

1

n
+O

(
d2

n2

)
,

pjn(d) := P
(
dn+1
v = d+ j | dnv = d

)
= O

(
d2

n2

)
, 2 ≤ j ≤ m,

pn :=

m∑
k=1

P(dn+1
n+1 = m+ k) = O

(
1

n

)
.

To prove Theorem 5 we also need the Azuma–Hoeffding inequality:

Theorem 8 (Azuma, Hoeffding). Let (Xi)
n
i=0 be a martingale such that |Xi−

Xi−1| ≤ ci for any 1 ≤ i ≤ n. Then P (|Xn −X0| ≥ x) ≤ 2e
− x2

2
∑n
i=1

c2
i for any

x > 0.

Consider the random variables Xi(d) = E(Tn(d) | Gim), i = 0, . . . , n. Note
that X0(d) = ETn(d) and Xn(d) = Tn(d). It is easy to see that Xn(d) is a
martingale.

We will prove below that for any i = 0, . . . , n− 1

(1) if 2A < 1, then |Xi+1(d)−Xi(d)| ≤Md2,
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(2) if 2A = 1, then |Xi+1(d)−Xi(d)| ≤Md2 log(n),

(2) if 1 < 2A < 3
2 , then |Xi+1(d)−Xi(d)| ≤Md2n2A−1,

where M > 0 is some constant. The theorem follows from this statement imme-
diately. Indeed, consider the case 2A < 1. Put ci = Md2 for all i. Then from
Azuma–Hoeffding inequality it follows that

P
(
|Tn(d)− ETn(d)| ≥ d2

√
n log n

)
≤ 2 exp

{
−nd

4 log2 n

2nM2d4

}
= n−Ω(logn) .

Therefore, for the case 2A < 1 the first statement of the theorem is satisfied.

If d ≤ n
A−δ
4A+2 , then the value nd−1/A is considerably greater than d2 log n

√
n.

From this the second statement of the theorem follows. The cases 2A = 1 and
2A > 1 can be considered similarly. It remains to estimate |Xi+1(d)−Xi(d)|.

Fix 0 ≤ i ≤ n− 1 and some graph Gim. Note that∣∣E (Tn(d) | Gi+1
m

)
− E

(
Tn(d) | Gim

)∣∣ ≤
≤ max
G̃i+1
m ⊃Gim

{
E
(
Tn(d) | G̃i+1

m

)}
− min
G̃i+1
m ⊃Gim

{
E
(
Tn(d) | G̃i+1

m

)}
.

Put Ĝi+1
m = arg max E(Tn(d) | G̃i+1

m ), Ḡi+1
m = arg min E(Tn(d) | G̃i+1

m ). It is
sufficient to estimate the difference E(Tn(d) | Ĝi+1

m )− E(Tn(d) | Ḡi+1
m ).

For i+ 1 ≤ t ≤ n put

δit(d) = E(Tt(d) | Ĝi+1
m )− E(Tt(d) | Ḡi+1

m ).

First, let us note that for n ≤W ·d2 (the value of constant W will be defined

later) we have δin(d) ≤ 2mn
d ·

(
m(m−1)

2 + dm
)
≤ 4m2n ≤ Md2 ≤ Md2 log(n) ≤

Md2n2A−1 (since we have at most 2mn
d vertices of degree d, and each vertex of

degree d has at most m(m−1)
2 triangles when this vertex appears plus at each

step we get a triangle only if we hit both the vertex under consideration and a
neighbor of this vertex, and our vertex degree is equal to d, therefore we get at
most dm triangles) for some constant M which depends only on W and m.

It remains to estimate δin(d) for n > Wd2. Consider the case 2A < 1. We want
to prove that δin(d) ≤ Md2 for n > Wd2 by induction. Suppose that n = i+ 1.
Fix Gim. Graphs Ĝi+1

m and Ḡi+1
m are obtained from the graph Gim by adding the

vertex i+1 and m edges. These m edges can affect the number of triangles on at
most m previous vertices. For example, they can be drown to at most m vertices

of degree d and decrease Ti(d) by at most md (d−1)
2 . Such reasonings finally lead

to the estimate δii+1(d) ≤Md2 for some M .

Now let us use the induction. Consider t: i+ 1 ≤ t ≤ n− 1, t > W d2 (note
that the smaller values of t were already considered). Using similar reasonings
as in the proof of Theorem 4 we get:

δit+1(m) = δit(m) (1− pt(m)) +O

(
1

t

)
,

11



δit+1(d) = δit(d) (1− pt(d)) + δit(d− 1) p1t (d− 1)

+ (d− 1) ·
(

E(Nt(d− 1) | Ĝim)− E(Nt(d− 1) | Ḡim)
)
· D
mt

+O

(
d · ES(t, d− 1)

t2

)
+O

(
ETt(d) · d2

t2

)
+O

(
ENt(d) · d3

t2

)
.

Note that E(Nt(d) | Ĝi+1
m )−E(Nt(d) | Ḡi+1

m ) = O (d) (see [18]) and ES(t, d−
1) = O (t). From this recurrent relations it is easy to obtain by induction that
δin(d) ≤Md2 for some M . Indeed,

δit+1(m) ≤Mm2 (1− pt(m))+
C1

t
≤Mm2

(
1− Am+B

t
+
C2

t2

)
+
C1

t
≤Mm2

for sufficiently large M . By Ci, i = 1, 2, . . ., we denote some positive constants.
For d > m we get

δit+1(d) ≤Md2(1− pt(d)) +M(d− 1)2p1t (d− 1) + C3
d2

t
+ C4

d4

t2

≤Md2
(

1− Ad+B

t
+ C5

d2

t2

)
+M(d− 1)2

(
A(d− 1) +B

t
+ C6

d2

t2

)
+ C3

d2

t

+ C4
d4

t2
≤Md2 +

M

t

(
A(−3d2 + 3d− 1) +B(−2d+ 1) + C7

d4

t
+ C3

d2

M

+C4
d4

Mt

)
≤Md2 +

M

t

((
−3A+ C7

d2

t
+
C3

M
+ C4

d2

Mt

)
· d2

+ (3A− 2B) · d+ (B −A)) ≤Md2 .

for sufficiently large W and M .
In the case 2A = 1 we have ES(t, d−1) = O (t log(t)) and we get the following

inequalities:

δit+1(m) ≤Mm2 log(t) (1− pt(m)) +
C1 log(t)

t
≤Mm2 log(t+ 1),

δit+1(d) ≤Md2 log(t)(1− pt(d)) +M(d− 1)2 log(t) p1t (d− 1)

+ C2
d2

t
+ C3

d log(t)

t
+ C4

d4 log(t)

t2
≤Md2 log(t+ 1) .

In the case 2A > 1 we have ES(t, d− 1) = O
(
t2A
)

and we get the following
inequalities:

δit+1(m) ≤Mm2t2A−1 (1− pt(m)) +
C1t

2A−1

t
≤Mm2(t+ 1)2A−1,

δit+1(d) ≤Md2t2A−1(1− pt(d)) +M(d− 1)2 t2A−1p1t (d− 1)

+ C2
d2

t
+ C3

d · t2A−1

t
+ C4

d4t2A−1

t2
≤Md2(t+ 1)2A−1 .

This concludes the proof of Theorem 5.
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100 101 102 103 104 105 106

d

10-6

10-5

10-4

10-3

10-2

10-1

100

C
(d

)

Experiment

Theory

(d) A = 0.8

Fig. 1: The behavior of C(d)

5 Experiments

In this section, we choose a three-parameter model from the family of polynomial
graph models defined in [18] and analyze the local clustering coefficients C(d) and
C2(n). First, we illustrate our results on C(d) which we proved in the previous
section. In addition, we consider the case A > 3

4 , for which we do not have a
theoretical proof. In this case, our approximation of C(d) slightly deviates from
the experiment. Finally, we discuss how the average local clustering coefficient
C2(n) can be approximated.

5.1 Local Clustering Coefficient C(d)

First, we generated three polynomial graphs with n = 106, m = 2, D = 0.3
and different values of A. In other words, we fixed the probability of a triangle
formation and vary the parameter of the power-law degree distribution. Detailed
graph generation process is described in [18]. We choose A to be 0.25, 0.5 and 0.7,
which corresponds to the three cases of Theorems 4 and 5. Also these cases cor-
respond to three different types of a power-law degree distribution: with a finite

13



variance, with infinite variance and the border case with γ = 3. Figure 1 illus-
trates our main result (Theorem 6). Here the theoretical value of C(d) is equal

to K(d)

(d2) c(m,d)
= 2D

d (d−1)m

(
m+

∑d−1
i=m

i
Ai+B

)
according to Theorem 6. We have

also considered the case A = 0.8 for which we do not have a theoretical proof. In
this case, the experimental result is also close to the theoretical approximation.
However, one can observe that our approximation slightly underestimates C(d)
even for small values of d (see, e.g., d = 2 on Figure 1d). This means that for
A > 3

4 the error terms can make a significant contribution to the value of C(d)
and it is probably impossible to get the accurate approximation for the whole
T-subclass for such A. So, our restriction A < 3

4 is essential. In all four cases,
the difference for large d can be explained by the error term.

5.2 Average Local Clustering Coefficient

In this section we empirically analyze the average local clustering coefficient for
the PA-class of models. Recall that the average local clustering coefficient is
defined as: C2(n) = 1

n

∑n
i=1 C(i), where C(i) is the local clustering coefficient

for a vertex i: C(i) = T i

P i2
, T i is the number of triangles on the vertex i and P i2 is

the number of pairs of neighbors. Also C2(n) can be represented in the following

form: C2(n) = 1
n ·
∑∞
d=m

Tn(d)
d(d−1)

2

.

Using Theorem 4 we can approximate the expectation of C2(n):

EC2(n) =
1

n
·
∞∑
d=m

ETn(d)
d(d−1)

2

=

=

∞∑
d=m

2D

d(d− 1)

[
1 +

1

m

d−1∑
i=m

i

Ai+B

]
·

·
Γ
(
m+ B+1

A

)
Γ
(
d+ B

A

)
AΓ
(
m+ B

A

)
Γ
(
d+ (B+A+1)

A

) · [1 +O

(
X

n

)]
=

∞∑
d=m

f(d) ·
[
1 +O

(
X

n

)]
,

(15)

where:

f(d) =
2D

d(d− 1)

[
1 +

1

m

d−1∑
i=m

i

Ai+B

]
·

Γ
(
m+ B+1

A

)
Γ
(
d+ B

A

)
AΓ
(
m+ B

A

)
Γ
(
d+ (B+A+1)

A

)
and

(1) if 2A < 1, then X = d2+
1
A ,

(2) if 2A = 1, then X = d2+
1
A · log(n),

(2) if 2A > 1, then X = d2+
1
A · log(n2A).
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Fig. 2: The behavior of C2(n) as a function of A for n = 106, m = 2, D = 0.3

It is hard to compute
∑∞
d=m f(d) analytically. Moreover, it is impossible to

prove that the error term
∑∞
d=m f(d) ·O

(
X
n

)
behaves as o(1), since this series

does not converge. Therefore, in this section we empirically analyze how well∑∞
d=m f(d) approximates the clustering coefficient C2(n). Further in this section

we consider the behavior of C2(n) depending on A and on D.

Average Local Clustering Coefficient C2(n) depending on A. We
generated polynomial graphs with n = 106, m = 2, and D = 0.3, assigning
A ∈ [0.15, 0.8]. For each value of A we generate 10 graphs and average the
obtained values of C2(n) (see Figure 2). For A ≤ 0.75 the theoretical value∑∞
d=m f(d) is extremely close to the experiment and only for A = 0.8 we observe

a small error. This is consistent with Figure 1, where we demonstrated that our
approximation of C(d) does not work for A > 3

4 .

Average Local Clustering Coefficient C2(n) depending on D. We
also generated polynomial graphs with n = 106, m = 2, and A = 0.5, assigning
D ∈ [0.05, 1]. Again, we average C2(n) over 10 graphs (see Figure 3). For all
D the theoretical value

∑∞
d=m f(d) is extremely close to the experiment. Also,

it follows from Equation (15) that C2(d) should depend linearly on D and our
experiment confirmed it.

Thus, our experiments suggest that for polynomial models we can approxi-
mate the local clustering coefficient C2(n) by

∑∞
d=m f(d) for A ≤ 3

4 .
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Fig. 3: The behavior of C2(n) as a function of D for n = 106, m = 2, A = 0.5

6 Conclusion

In this paper, we study the local clustering coefficient C(d) for the vertices of
degree d in the T-subclass of the PA-class of models. Despite the fact that the
T-subclass generalizes many different models, we are able to analyze the local
clustering coefficient for all these models. Namely, we proved that C(d) asymp-
totically decreases as 2D

Am · d
−1. In particular, this result implies that one cannot

change the exponent −1 by varying the parameters A,D, and m. This basically
means that preferential attachment models in general are not flexible enough to
model C(d) ∼ d−ψ with ψ 6= 1. In addition, we suggested and empirically verified
(for A ≤ 0.75) an approximation for the local clustering coefficient C2(n).

We would also like to mention the connection between the obtained behavior
of C(d) and the notion of weak and strong transitivity introduced in [20]. It was
shown in [21] that percolation properties of a network are defined by the type
(weak or strong) of its connectivity. Interestingly, a model from the T-subclass
can belong to either weak or strong transitivity class: if 2D < Am, then we obtain
the weak transitivity; if 2D > Am, then we obtain the strong transitivity.
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