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Abstract

The Small World phenomenon has inspired researchers aanwssber of fields. A breakthrough
in its understanding was made by Kleinberg who introducenkAgased Augmentation (RBA): add to
each vertex independently an arc to a random destinatiectsel from a carefully crafted probability
distribution. Kleinberg proved that RBA makes many netvgarvigable i.e., it allows greedy routing
to successfully deliver messages between any two verticaspiolylogarithmic number of steps. We
prove that navigability is an inherent property of many mamcdhetworks, arising without coordination,
or even independence assumptions.
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1 Introduction

The Small World phenomenon refers to the fact that therd skt chains of acquaintances between most
pairs of people in the world, popularly known as Six DegreeSaparation [17]. Milgram’s famous 1967
experiment [16] showed that not only such chains exist,l®jt tan also be found in a decentralized manner.
Specifically, each participant in the experiment was haralédter addressed to a certain person and was
told of some general characteristics of the person, inofutheir occupation and location. They were then
asked to forward the letter to the individual they knew on stfitame basis who was most likely to know
the recipient. Based on the premise that similar indivisduzve higher chance of knowing each other
(homophily), the participants typically forwarded the s@ge to their contact most similar to the target, a
strategy that yielded remarkably short paths for mostretteat reached their target (many did not).
Kleinberg’'s groundbreaking work, formulated mathemadliycene property of finding short-paths in a
decentralized manner aswvigability [8, 10]. Since then, much progress has been made [9] and toegD
of navigability has found applications in the design of P&aworks [5, 19], data-structures [4, 15] and
search algorithms [14, 18]. Key to decentralization is sti&nowledge in the form of geometry, i.e., shared
knowledge of a (distance) function on pairs of vertices (reatessarily satisfying the triangle inequality).

Geometry. A geometry(V,d) consists of a set of verticd$ and a distance functiod : V x V — IR,
whered(z,y) > 0, d(z,y) = 0iff x = y, andd(z,y) = d(y, z), i.e.,d must be a semi-metric.

Given a graph=(V, E') on a geometry(V, d), adecentralized search algorithis any algorithm that
given a target vertex and current vertex selects the next edgle, u} € E to cross by only considering
the distance of each neighboerof v to the target, i.e.,d(u,t). The allowance of paths of polylogarithmic
length in the definition of navigability, below, is motivatey the fact that in any graph with constant degree
the diameter i$2(log(n)), reflecting an allowance for polynomial loss due to the lafoglobal information.

Navigability. A graph G(V, E) on geometry(V, d) is d-navigableif there exists a decentralized search
algorithm which given any twe, ¢t € V will find a path froms to ¢ of lengthO (poly(log |V'])).

In his original work on navigability [8, 10], Kleinberg shed that ifG is the 2-dimensional grid then
adding a single random edge independently to eaehV results in a navigable graph (withbeing the
L1 distance on the grid). The distribution for selecting titeer endpoint, of each added edge is crucial.
Indeed, if it can only depend affv, v) and distinct vertices are augmented independently, Kéembhowed
that there is aunique suitable distribution, the one in which the probability iportional tod(v, u) =2
(and, more generallyj(v,u)~" for r-dimensional lattices). The underlying principle behinkkikberg’s
augmentation scheme has by now become knovwRieadk Based AugmentatigRBA) [11, 13].

Rank Based Augmentation. Given a geometryV, d), a vertexv € V', and/ > 0, let N,,(¢) be thenumber
of verticeswithin distancel fromu. In RBA, the probability of augmentingwith an edge to any. € V' is
P(v,u) - (1)
’ Ny (d(v,u))

The intuition behind RBA is that navigability is attainedchese the added edges provide connectivity
across all distance scalesConcretely, observe that for any partition of the rangehefdistance function
d into intervals, the probability that the (distance of th&)ev endpoint of an added edge lies in a given
interval is independent of the interval. Therefore, byigarting the range ofl into O(log n) intervals we
see that whatever the current verteis, there is alway$2((log n)~!) probability that its long-range edge



is to a vertex at a distance at the same “scale” as the targebubse, that alone is not enough. In order to
shrink the distance to the target by a constant factor, wersed the long-range edge to have reasonable
probability to go “in the right direction”, something whiagk effortlessly true in regular lattices for any
finite dimension. In subsequent work [11], aiming to providgrous results for graphs beyond lattices,
Kleinberg showed that the geometric conditions needed B ® achieve navigability are satisfied by the
geometries induced bset-systemsatisfying certain conditions when the distance betweenvsvtices is

the size of the smallest set (homophily) containing botle (3efinition 1 in Section 5).

Another canonical setting for achieving navigability by R when the distance functiod is the
shortest-path metric of a connected gragi(V, Ey) with large diamete®© (poly(n)). In that setting, ifEy
is the random set of edges added through RBA, the questiohdther the (random) gragh(V, Ey U E,) is
d-navigable Works of Slivkins [15] and Fraigniaud et al. [7] have showa existence of a threshold, below
which navigability is attainable and above which (in the starase) it is not attainable, in terms of theu-
bling dimensiorof the shortest path metric &f,. Roughly speaking, the doubling dimension corresponds
to the logarithm of the possible directions that one miglgdh® search, and the threshold occurs when it
crosse® (loglogn). Thus, we see that even whens a (shortest path) metric, very significant additional
constraints orl need to be imposed.

The remarkable success of RBA in conferring navigabilistserucially on itperfect adaptatiorto the
underlying geometry. This adaptation, though, not onlyinexs perfect independence and identical behavior
of all vertices, but also a very specific, indeed unique, fional form for the probability distribution of edge
formation. This exact fine tuning renders RBA unnatural tlyeaeakening its plausibilityOur goal in this
paper is to demonstrate that navigability is in fact a rolpsperty of networks that emerges from very
basic considerations without adaptation, coordinatioreven independence assumptions.

2 Our Contribution

As mentioned, at the foundation of navigability lies shatadwledge in the form of geometrur starting
premise is that geometry imposgt®bal constraints on the set of feasible networks. Most obvigusla
physical network where edges (wire, roads) correspond &saurce (copper, concrete) there is typically
an upper bound on how much can be invested to create the ketMare generally, cost may represent
a number of different notions that distinguish between sdifée formalize this intuition by (i) allowing
different edges to have arbitrary costs, i.e., without isipg any constraints on the cost structure, and (ii)
taking as input an upper bound on tio¢al costof feasible graphs, i.e., a budget. We remain fully agnostic
in all other respects, i.e., we study theiform measure on all graphs satisfying the budget constr&at.
for example, if all edges have unit cost we recover the addseiés-Rény(G(n, m) random graphs (except
now m is a random variable, sharply concentrated just below tlolgdiL)

As one can imagine, the set of all graphs feasible within amgibudget may contain wildly different
elements. Our capacity to study the uniform measure on suagihg comes from a very recent general theo-
rem we developed in [1], of which this work is the first applioa. At a high level, the main theorem of [1]
asserts that if a subsgtof the set of all undirected simple grapfis onn vertices is sufficiently symmetric,
then the uniform measure ¢hcan be well-approximated by a product measure on the edges measure
where each edge is included independently with differegesdotentially having different probabilities.
Formally, a product measure @h, is specified succinctly by a symmetric matx € [0, 1]"*" of prob-
abilities whereQ;; = 0 for i € [n]. We denote byG(n, Q) the measure in which possible edfe;} is
included independently with probabilit@;; = Q;;. The main result of [1] then allows one to approximate
the uniform measure by a product measure in the following s&ong sense.



Sandwichability. The uniform measur€ (S) over an arbitrary set of graphS C G, is (e, §)-sandwichable
if there exists an x n symmetric matrixQ such that the two distribution&* ~ G(n, (1 + ¢€)Q), and the
distribution G ~ U(S) can be coupled so th&t~ C G C G with probability at leastl — 6.

As discussed above, navigability requires some degreewgtste in the underlying geometry. It is
from this structure that we will extract the symmetry neetibeapply the theorem of [1] and derive a product
form approximation for graphs with a bounded total cost. Admvith such an approximation, establishing
navigability becomes dramatically easier, allowing usémadnstrate its robustness and ubiquRpughly
speaking, we isolate three ingredients that suffice forgahility on a geometryV, d):

e A substrateof connections between nearby pointsiénallowing the walk to never get stuck.
e Some degree afoherencef the distance functiond.

o Sufficient, and sufficiently uniform, edge density acrosslistance scales.

The first two ingredients are generalizations of existingknand, as we will see, fully compatible with
RBA. The third ingredient is also motivated by the RBA viewgpbut we will prove that it can be achieved
in far more-light handed, and thus natural, manner than RBdteover, in the course of doing so, we will
give it a very naturaéconomicainterpretation as theost of indexing

2.1 The two Basic Requirements and a Unifying Framework for BBA

Substrate. A set of edge#’; forms asubstratdor a geometry(V, d), if for every(s,t) € V x V with s # ¢,
there is at least one vertexsuch that{s, v} € Ey andd(v,t) < d(s,t) — 1.

The existence of the substrate implies that (very slow)elrbetween any two vertices is possible, so
that a decentralized algorithm never gets trivially stuck.

Coherence is a notion that comes with an associated scébe fac- 1. Specifically, given a geometry
(V,d) we will refer to the vertices whose distance from a givenesestc V lie in the interval(v*~!, v*] as
the vertices in thé-th (distance)y-scale fromw. Also, for a fixed\ < 1 and any target vertek= v, we will
say that a vertex is t-helpful tov if d(v,u) < +* (u is within the same/-scale as), andd(u,t) < \d(v,t)
(reduces the distance by a constant).

Coherence.Let K = [log, [V|]. A geometry(V,d) is y-coherentf there isA < 1 such that for alv € V:
— For all & € [K], the number of vertices in theth distance scale fromis Py (v) = ©(7%).

—Forall t # v, a constant fraction of the vertices whose distance scafadris no greater than the distance
scale oft are t-helpful tow.

The two conditions above endow the, otherwise arbitranyigaetric d with sufficient regularity and
consistency to guide the search. Although our definitiorobiezence is far more general, in order to convey
intuition about the two conditions, think for a momentlofas a set of points in Euclidean space. The first
condition guarantees that there are no “holes”, as thenegian the density of points is bounded in every
distance scale. The second condition guarantees thatcdaanvertexv the density of points does not
change much depending on the direction (target veitexd distance scale. Besides those two conditions,
we makeno furtherassumptions od and, in particular, we daot assume the triangle inequality.

Coherent geometries allow us to provide a unified treatmiemavigability since they encompass finite-
dimensional lattices, hierarchical models, any vertemditave graph with bounded doubling dimension and,
as we prove in Section 5, Kleinberg’s set systems [11] (sdmillen 1).
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Theorem 1. Every set system satisfying the conditions of [11] is@oherent geometry for some> 1.

Theorem 2. Let(V, d) be anyy-coherent geometry and |&t, be any substrate for it. lf/; is the (random)
set of edges obtained by applying RBA9d), then the graptG(V, Ey U E,) is d-navigable w.h.p.

Theorem 2 subsumes and unifies a number of previous posisrdts on RBA-induced navigability.
Our main contribution, though, lies in showing that givelubstrate and coherence, navigability can emerge
without coordination from the interplay of cost and geometr

2.2 Navigability from Organic Growth

As mentioned earlier, the success of RBA stems from the ffiattthe edge-creation mechanisnpesfectly
adapted to the underlying geometry so as to induce navigablih contrast, we will not even specify an
edge-creation mechanism, but rather focus only on the sgtaphs feasible with a given budget. Our
requirement is merely that the cost functionnformedby the geometry.

~-consistency. Given a~y-coherent geometryV, d), a cost functiore : V x V' — R is y-consistentf ¢
takes the same valug for every edgdu, v} such thatd(u, v) € (v¥~1,7%].

In particular, note that we make no requirements of the &{ug}, not even a rudimentary one, such
as being increasing ik. All that v-consistency entails is that the partition of edges acogrdo cost
is a coarsening of the partition of the edges-pgcale. In fact, even this requirement can be weakened
significantly, as long as some correlation between the twitipas remains, but it is technically much
simpler to assume-consistency as it simplifies the exposition greatly. One tténk of consistency as
limited sensitivity with respect to distance. As an exampleneans that making friends with the people
next door might be more likely than making friends with otpeople on the same floor, and that making
friends with people on the same floor is more likely than mgKrrends with people in a different floor, but
it does not really matter which floor.

Cost-geometries.We say thal® = I'(V, d, ¢) is a coherent cost-geometif/there existsy > 1 such that
(V,d) is a~y-coherent geometry andis v-consistent cost function.

Random Graphs of Bounded Cost.Given a coherent cost-geomefryV, d, ¢) and a real numbeB > 0,
letGr(B) ={ECV xV:1% _.c(e) < B}, i.e.,Gr(B) is the set of all graphs (edge sets) Brwith
total cost at mosBn. A uniformly random element 6f-(B) will be denoted afir = Er(B).

Applying the main theorem of [1], in Section 3 we will proveatitandom graphs of bounded cost (on a
consistent cost-geometry) have a product measure appatigimin the following sense.

Theorem 3. Given a coherent cost-geometry there exist a a unique function(B) > 0 and constant
By(I') > 0 such that for everyB > By(I") the uniform measure o&'r(B) is (J, €)-sandwichable by the
product measure in which the probability of every edge witst ¢, is

1
1+ exp(A(B)ex)

(@)

and(é,e) = (, /%“1‘/', 2]V\—5K>. The numben(B) > 0 can be explicitly defined in terms {f; }.

Throughout the paper, all asymptotics will be with respedht number of verticeld’| = n. Thus, with high probability will
always mean “with probability that tends to 1as—+ co.”



The regularizert\ = A\(B) in Theorem 3 corresponds to the derivative of entropy widpeet to the
budgetB (energy), i.e., is an inverse temperature, and dependsiara smooth one-to-one manner.

Theorem 3 will give us a great amount of access to the unifoeasure orGr(B). In particular, the
upper approximatiold(|V'|, (1 4+ ¢)Q) will allow us to bound the total number of edges present irpicsf
graph, establishing sparsity for all sufficiently small gats. On the other hand, the lower approximation
G(|V], (1 — €)Q) will allow us to establish a lower bound on the number of edgeklent to each vertex
of each distance scale. Combined with the spatial unifgratiiorded by independence, this will allow us
to prove that navigability emerges as soon as the total nuofledges within each scale is large enough,
establishing navigability for all sufficiently large budge

Theorem 4. For every coherentost-geometry'(V, d, c), where|V | = n, there exist numberB* such that
if Er is a uniformly random element 6fi-(B) then:

— Forall B < B*, w.h.p.|Er| = O(n - poly(logn)). (Sparsity)
— Forall B > B~, for any substratdz,, w.h.p. the graptG(V, Ey U Er) is d-navigable.  (Navigability)

Note that Theorem 4 shows that navigability arises evelytua., for all B > B~, withoutanyfurther
assumptions on the cost function or geometry. The caveat think of B as increasing from 0, is that by
the time there are enough edges across all distance scele® > B~, the total number of edges may
be much greater than linear. This is because for an arbit@sy structure{c, }, by the time the “slowest
growing” distance scale has the required number of edgesotier scales may be replete with edges,
possibly many more than the requir@dn /poly log(n)). This is reflected in the ordering betwe8T and
BT that determines whether the sparsity and navigabilitynnegiare overlapping. In particular, we would
like B~ < BT and, ideally, the ratid? = B* /B~ > 0 to be large. Whether this is the case or not depends
precisely on the degree of adaptation of the cost-struditrgto the geometry as we discuss next.

2.3 Navigability as a Reflection of the Cost of Indexing

Recall that for every vertex in ay-coherent geometry and for every distance séate [K], the number
of vertices whose distance fromis in the k-th y-distance scale i®;(v) = (7). At the same time, (2)
asserts that the probability of each edge is exponentiatigllsn its cost. Thus, reconciling sparsity with
navigability boils down to balancing these two factors. Wk exhibit a class of cost functions that (i) have
an intuitive interpretation as theost of indexing(ii) achieve a ratioaR = B* /B~ > 0 thatgrowswith n,
i.e., a very wide range of budgets for which we have both rahilily and sparsity, and (iii) recover RBA as
a special case corresponding to a particular budget choice.

Consider a vertex that needs to forward a message to a neighbatrthek-th distance scale. To do so,
v needs to distinguish among all othei; (v) vertices at thé:-th distance scale, i.ev,needs to be able to
indexinto that scale. To do so, it is natural to assert thatust incur a cost 08 (log, P (v)) = O(k) (due
to coherence) bits to store the unique IDuadmong the other members of its equivalence class (in the eyes
of v). Motivated by this we consider cost functions where for sam> 0,

1

*
c=—k .
ET o

Theorem 5. For any coherent cost-geometfy(V, d, ¢*), where|V| = n, there existB~ < B™ such that:

1. Bt /B~ = w(polylogn).



2. Forall B e [B~, Bt],w.h.p.:

e |Ep(B)| = O(n polylogn)).
e The graphG (V, Ey U Er(B)) is d-navigable.

3. There exist®, € [B~, BT] such that in the approximation @ by G(|V|, Q), for every{u, v} €
E, Qi = O(N,(d(u,v))~1), i.e, Rank Based Augmentation is approximately recovered.

Part 1 of Theorem 5 is equivalent to a scaling windov@néf%) for the exponeni, within which
navigability holds with poly-logarithmic average degrekhis corroborates Kleinberg’'s work that gave a
unique exponent of = —1 in the context of RBA for the scaling (1) of probability. Netleeless, under
our framework this vanishing window for the highly senstiparamatep produces alivergingrange for
values of B, explaining the purported fragility of RBA to looking at perbations in thavrong scale In
fact, we can use this feature of our model to provide the firsbtetical explanation for the discrepancy
between theoretical results and empirical evidence [26]l8howing that real networks exhibit an exponent
B~ 0.8 < 1. Inour setting, exponents smaller than 1 corresporidgber average degree and thus we can
attribute this discrepancy to finite size effects (finijeand the densification [12] of networks.

3 Deriving a Product Measure Approximation: Proof of Theorem 3

We start with some definitions that will allow us to state th@mtheorem of [1]. A set of graphs C G,, is
symmetric with respect to a partitioh of the set of all possibleég) edges, if the characteristic function of
S depends only on the number of edges from each p&etlafit not on which edges.

Edge Profile. Given a partition? = (Py,...,Pk) of the set of all possiblég) edges, for a set of edges
E € G, and for eachk € [K], letmy(E) denote the number of edgesinhfrom P,. Theedge profileof £
ism(E) := (mi(E),...,mg(E)).

We denote the image of a symmetric $setinder the edge-profile aa(S). As before letP, = |Px| =
23" wev Piu(u) be the total number of edgesprtk of partitionP.

K
Edge Profile Entropy. Given an edge profile = (vy, ..., vx) the entropy of ISENT(v) = Z log (fk> .
k
k=1

The edge-profile entropy is used to express the number ohgrajth a particular edge profile as
exp(ENT(v)). Given any symmetric se¥ C G, the probability of observing an edge profdewhen
sampling an element uniformly at random frais then given byP5(v) = ﬁeENTM. Thus, in order to

analyze the distribution of a random edge-profile, and apnesetly of a random element 6f.(n, B), we
are going to exploit analytic properties of the entropy angbt of feasible edge profiles(.S).

Convexity. Let Conv(A) denote the convex hull of a sdt Say that &P-symmetric seb C G, is convex
iff the convex hull ofn(S) contains no new integer points, i.e.Gbnv(m(S)) N N¥ = m(S).

Entropic Optimizer. Given a symmetric s, let m* = m*(S) € IR* be the unique solution to

K
Vg Py, — vy,

N log (25 ) 4+ (P, — v) log [ 22—k . 3

veCom (ma(S)) Z {vk o8 <PI<:> (P =) Og( Py H ©

k=1



Given the maximizein*(S), the matrixQ* = Q*(S) is given by letting for all: € [K] the probability
of an edge: € Pj, be Q; := mj/P;. To state the theorem, we need the following parametersytrattify
the concentration of the uniform measure around its mode.

Thickness and Condition Number. Given a partition? and aP-symmetric seb, we define

Thickness: = u(S) = knelf% min{my, P, —mj} (4)

5K logn
()

We now state the main theorem employed in the proof.

(5)

Condition number: 7 =17(S) =

Theorem 6 ([1]). Let P be any edge-partition and le&f be anyP-symmetric convex set. For every>
\/127(S), the uniform measure ovéf is (e, §)-sandwichable fop = 2 exp [—M(S) (i—; - T(S)):|.

In our setting,S is the setGr(B) := {E C V xV : L3 _.c. < B} of graphs with bounded
average cost an® is the partition induced by the coherent cost funciiomhe setm(S) is then given by
m(S) = {v € N*: L% 0 < B}. Hence, itis easy to see th@f(B) is convex and symmetric,
according to the previous definition, for all values/®f To prove Theorem 3, we need to find:

() an analytic expression for the vectar* as a function ofB

(i) the range of values aB for which applying Theorem 6 gives high probability bounds.

3.1 Finding the Entropic Optimal Edge Profile

We start by introducing a slight reparametrization in teohthe average-degree profile. For an edgerset
define the vectoa(FE) := m(F)/n, where as beforen is the edge-profile. In the same spirit, fet= Py /n
denote the average number of edges in part (séal&)sing this parametrization and by explicitly writing
Conv(a(S)), we can equivalently express the optimization problem $§3) a

K
max H(a Z (pk — ag) log(px — ax) + ag log(ay)]
k=1

a

subject to Zakck <B
0<ay<pr, Vkel[K].

We will refer to the above optimization problem@s) and to its solution as* = a*(B). Towards obtaining
an analytic expression far*, we first show that no coordinatec [K] lies on the natural boundagy, py. }.

Lemma 1. The optimal profilea* € D(B) :={a € (0,p1) X ... x (0,pK) : Zf crar < B}.

Proof. We prove the lemma by contradiction. We show thai*ifis a solution of(A) such thata* ¢ D,
then there is am* € D for which objective functionf takes a higher value. Specifically, fer> 0
assume that there are indices< 7, j < K such that; = 0 andaj > 5(e)?, whered(e) = ec;/c;. Define

2For any nontrivial values o such an index can always be found.
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a*(e) = (aj,...,aj +¢,...,a;—6(e),...,a}). If h(e) = H(a") — H(a") is the difference in the objective
function between the assumed optimaland the perturbatioa*, then

Ci
h'(e) = —log(e) + log(p; — a; — €) + o (log(aj — d(e)) —log(p; — a; +d(¢€))) .
J
Observe, thalim,_,q h'(e) = o0, Since we have assumed th@t> 0. This shows that every maximizer
satisfiesa* > 0. The same argument establishes tfak py, for all & € [K]. Combining the two statements
we get that any maximizer belongsih O

As a consequence, since they are inactive at the optimumawemit separable inequalities from the
formulation. Further, defin® := 1 S| prcx the average cost of the solution to the unconstrained versio
of (A), i.e., wheren;, := pi/2. If B > B then the absolute maximum entropic painis still in D(B) and
thus the solution will be always; = a;, for every suchi.

Lemma 2. There is a unique function(B) that is one-to-one for al) < B < B and A\(B) = 0 for all
B > B, such that the unique solution @f) is given by:

* _ Pk
WP = o nEay E K ©6)

Proof. Uniqueness of the solution follows easily from convexitytled domain and concavity of the objec-
tive function. Further, by Lemma 1, we can reduce the opttion problem(A) to the following:

K
max — Z [(pr — ax) log(px — ax) + ax log(ag)]
k=1

subject to Zakck <B.

To obtain an analytical solution, we form the Lagrangianhef teduced problem

K
L(a,\) Z pr — a) log(pr, — ai) + ax log(ag)] + A (B Z%%)
k=1
with the additional constraint that > 0. The Karush-Kuhn-Tacker conditions read
L

8—:0 = log< 2k >=—>\Ck (7)

day, Pr — ag

oL

8/\_0 — Zakck—B. (8)

k=1
Solving the first equation faf;(\) we get
* Pk

ap =

)

1 + exp(Ack)

Substituting this expression in (8), we get the followingdtion of \:

K
_ b
N Z k 1+ exp(Aey) ©)



and the second constraint can now be writtery@y = B. The domain ofy is the set of non-negative
numbers on whicly is continuous and infinitely differentiable. Under pogstieosts{c;}, it is easy to see
thatg’(\) < 0 for all B < B, hencey is strictly decreasing in the intervéll, oo) andg(0) = B. Thus,
g :[0,00) — [0, B] is 1-to-1 and thus invertible. This means that every buduét,iB] is feasible and that
for each such budget there is a unigqueB) := ¢~ (B). For B > B, A(B) = 0. Therefore, we conclude
that the maximizer is always unique for any feasiBland implicitly given byg(\) = B. O

3.2 Thicknessu(B) of Gr(B) and Sandwiching

Our next step is to use the analytical solution to the optiin problem to instantiate the thickness param-
etery, defined in (4). Using (6), we can write:

. Pk
B) = = 10
HiB) = krg[l% mi=n- k:e[l% 1+ exp [A(B)ck) (10)

where we have used the facts that that= m; /n andaj(B) < 1/2 = mj < P, — mj. To get a more
convenient expression, sinfe< ¢, < oo we can write the cost ag, = /le log(px) where0 < g < oo

whenp, > 1. Thus, approximatefyfor largep, (eq. k) we haveu(B) ~ n - minge g [pk_A(B)/ﬁk}

Theorem 6, gives strong (non-constant) probability boussl$ong asr(B) < 1. For our purposes we
are going to consider that the maximurfiB) (respectively minimunB) that we allow isry = log™!(n)
(respectivelyBy). Substituting the above expression fatB) in (5), we get that the condition < 7, can
be rewritten as\(B) < Ao, where

. n log py, B ]
Ao = A , = 1 11
o = ol Ak} = in |log (SRR ) B ay
Using the functiory(\) defined in (9), we can express this constrainBas By := g(A 0)
To conclude the proof of Theorem 3 we see {@8) > 5K log?(n) andr(B) < log Toa () forall B > By.

Applying Theorem 6, fory = ,/% that is greater thag/127, we getthat < 2exp [M(B (1—3 —7( ))}
The proof is concluded by substituting the bounds in thedaptession.

4 Navigability via Reducibility

In this section we prove our results about navigability ohezrent geometries. We start by giving a slightly
more formal definition of coherence. Recall that given a getoynV, d) and a fixed (scale factor) > 1,
Pi.(v) denotes the number of verticeslinat “distance”(v*~1,+*] from v. Further, for fixed\ < 1 and
allt #v € V, letk, be the non-negative integer such théb, t) € (v*¢~1 ~*] and Dy (v,t) be the
vertices inV’ whose distance from is at mosty*t and whose distance froms at most\ - d(v,t). Thus,
|Dy(v,t)| is the number of nodes that could facilitate greedy routirge{pful), i.e., reduce the distance to
t by a constant factok < 1.

Coherence.Fix v > 1 and letK = [log. (|V])]. A geometryV, d) is y-coherentf:
(H1) Bounded GrowthdA > 1, > 0 such thatP;,(v) € v*[a, A], forall v € V andk € [K].
(H2) Isotropy:3¢ > 0,1 > A > 0 such that Dy (v, t)| > ¢y, forall s £t € V.

3When the approximation does not hold it means @) = Q(n) which trivially satisfies all the requirements we need for
“sandwiching” and navigability.
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For graphs on coherent geometries there are two requiresn@mavigability. The first basic require-
ment is deterministic and amounts to the ability to move Bldlinear rate) towards the target. In the graph
augmentation setting this was given by the fact that thélrset of edges formed a connected graph. On
the other hand in Kleinberg’s work on set systems, the degfeertices is set t®(log?(n)), so that the
probability of ever being stuck at a vertex is polynomialigadl. As mentioned in the introductiomve opt
to adopt the more natural approach of assumisglsstrate

Substrate. A set of edge#; forms asubstratdor a geometry(V, d), if for every(s,t) € V x V with s # ¢,
there is at least one vertexsuch that{s,v} € Ey andd(v,t) < d(s,t) — 1. If there are multiple such
vertices, we distinguish one arbitrarily and call it thecal ¢-connectionof s. A path starting froms and
ending tot using only locak-connections is called a locak, ¢)-path.

The second requirement is probabilistic and expresseathéhft for all distance scales and “directions”
there should be significant probability of observing an edddis property is satisfied by Rank Based
Augmentation and is essentially what was actually useddeepnavigability originally.

Uniform Richness. Given ay-coherent geometrl/, d) with parametersy, ¢ > 0 defineky := W

to be the distance scale of edges having dista@deg’(n)). A product measuré(n, Q) is then called
6-uniformly rich for (V, d) if there is a constanfi/ > 0 such that for every: > ky every edgds, j) with

- k=1 A~k fing). . 11
d(i,j) € (v",~"] satisfies));; > Mo (n) 7

In other words, since we are interested in routing in pobyalithmic time and slow traveling can be done

through the substrate (connected base graph), the prigtighiequirements concern only edges of longer
distance. As we show next these two requirements are suffitoe navigability to arise in the general
setting of random graphs of bounded cost.

4.1 Reducibility via Uniform Richness

We start by introducing a deterministic property of gragtet implies navigability, that ateducibility. The
main advantage of reducibility is that it allows us to sefmthe construction of the random graph from the
analysis of the algorithm.

Reducibility. Given a graphG(V, E), we will say that a pair(s,t) € V x V is p-reducibleif 3C" > 0
such that among the first'(log |V|)?P vertices of the locals, t)-path there is at least one vertexsuch
that (u,v) € E andd(v,t) < Ad(s,t). If every pair(s,t) € V x V is p-reducible we will say tha& is
p-reducible

Proposition 1. If G is p-reducible, greedy routing o6' takes at most 1¢'(log n)!*? steps.

Proof of Proposition 1.Given any arbitrary pair of vertices, t) with distance at most, the reducibility
property ofG guarantees us that after at m@stog? n steps we will obtain a new pafg’, t) with distance
reduced by a constant factor. Since, the new pair is gisglucible, we can repeat the process until we
reduce the distance again by a constant. After at iogst, » iterations we will reach the target. Since, the

pairs were arbitrary, this holds for all pairs and thus trapgris navigable in 1& (log n)' 7 steps. O

Lemma 3. Given avy-coherent geometryV, d) with a substratef, and a random edge séf, sampled
from ag-uniformly rich product measur€(n, Q), the graphG(V, Ey U E;) is (6 + 1)-reducible with high
probability.
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Proof. To prove that the graph i@ + 1)-reducible we will (i) prove that the ever,; that any fixed
source-destination pafs, t) is not(6 + 1)-reducible has very small probability und@(n, Q), and (ii) use
union-bound to argue that the probability that any pair is(fie+ 1)-reducible is small as well. To simplify
the proof, we first distinguish between pairs t) where within the firsiC' log?*!(n) steps of the-local
path there is a vertex with distance smaller tlign, ¢) by a constant factoh < 1 and where there is no
such vertex. Pairgs, ¢) that belong in the first case, afeé + 1)-reducible with probabilityl. Hence, we
only need to focus on the latter case, where all vertices efitst C' log(9+1)(n) steps are within the same
distance scalé; := [log, d(s,t)] ass from¢t. We will refer toks; ask to ease the notation. For each
such vertexv on thet-local path, property (H2) of coherent geometries tellshag there are at leasty*
candidate edges that would reduce the distance frbyna constant factok < 1. The probability@,,. of
each such good edde, z) is lower bounded b L %’“ since the measur@(n, Q) is #-uniformly

M 1og?+1(n)
rich. LetT'(s,t) be the set of all such good edges. We can write the probabiflitye eventBy; as:
1 ‘T(S,t)| _C’loge‘kl(nkb’yl'c Co
Po(B.;) = 1— <(1- - < e Mlogf(n)vk < nTFr
a(Bw)= ]I (1-Q)= ( Mlog“l(n)v’“) - -

e€T (s,t)

where we used thdfl'(s,t)| > Clog?**(n) - ¢v* due to (H2) and the definition of reducibility. For any
¢>0andC > (2 + )4 we get tha(By;) < n~ (9. To finish the proof, we perform a Union Bound
over all possible set&, t). Let B be the even that the grajgh(V, Ey U E;) is not(6 + 1)-reducible, then:

Po(B) = Po(| ) Ba) < Y Pq(By) < n?n~3+) = n~
st
for any/ > 0. Thus, the graplé/(V, Ey U E;) is d-navigable with high probability. 0

4.2 Analyzing the Product MeasureG(n, Q*(B))

Our next step will be to show that for a range of valuesBofthe product measure defined through (6) is
#-uniformly richfor somef > 0. In doing so, our previous result shows that such a produetsare leads

to navigable graphs. Recall th&*(B) is the matrix where for alk € [K] andij € P it holds that
Q=01+ exp(A\(B)cy)) "t andg(\(B)) is the expected budget corresponding to an element gederate
according to the product measu@s (B).

Proposition 2. For B > B, := max{By, g(\g)}, the product measuré(n, Q*(B)) is §-uniformly rich.

The numben is explicitly defined as({py}, {ce}) 1= ming, <p<x [1% (1 + 93@#)]

Proof. This follows easily by the definition ofy. In particular, consider an edgg ;) of scalek > hy:

-1 1
* — -1 6 > -
Q5(B) = L+ exp (@AB)]™ 2 [pulog’(n)| 2 g
where the last inequality follows from (H1). O
Proposition 3. For B < By := g(Ay) the product measuré(n, Q*(B)) hasO(n -log?**(n)) edges with
high probability. The numbety is explicitly defined ado({py}, {cr}) := maxy, <j<x [IM (1 - M)]

Ck log py
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Proof. For all By < B < B., by definition of Ay we have that for alk > ky:
* -1 —0 -1
Qii(B) = 11+ exp (e A(B))) " < [y log™ ()]
Thus, the expected number of edges is upper bounded by:

log?(n)
| Ak - K—k
n- |Akg - pr, + ( e)g%pk ”

] =n-0 (log log(n) log? (n) + log(n) 1og9(n)>

asky = O(loglogn), pr, = O(log’(n)) by (H1) andK = O(logn). Applying standard Chernoff
bounds [3] we get the required conclusion, as by definitianBo> By each class has at least a poly-
logarithmic number of edges at the maximizer and thus thearp value (under the product measure) of
the edges is tightly concentrated around the mean. O

4.3 Analyzing Graphs of Bounded Cost

Proof of Theorem 4For any B > By, considerQ*(B) the matrix corresponding to the optimal profile
(Lemma 2) and two random elemenis™ ~ G(n, (1 & €)Q*(B)). By Theorem 3, we get that far =
\/24/log(n) the probability of the everltV/, i.e. thatE~ C Er C E, is at leastl — n~>*. To prove
Theorem 4 we will condition on the above event and then useuaailysis of the product measure. To prove
Navigability we will use the relatiorE~ C FEr and the fact that Navigability is monotone property. Let
N4(E) be the event that that the grapiV, Ey U E) is notd-navigable, then:

P(Nd(Ec)) = ]P)(Nd(Ec) N W) + P(Nd(Ec) N W) (12)
< P(Na(E)|W) +B(W) (13)
< Pq-(Ng(E7)) +nK (14)
< ntypnoK (15)

where we used the law of total probability in the first eqyalBayes Theorem and monotonicity of the
probability measure in the second inequality , Theorem 3raadotonicity in the third, and Lemma 3 and
Proposition 2 in the last. This proves part (a) of the theorémprove part (b) we follow the same method
but for the evenf{ | Er| = w(npoly(log(n)))} and exploit the inequalitysr ¢ E*. Using Proposition 3
and Theorem 3 we get the required conclusion. O

4.4 Analysis of Indexing

Proof of Theorem 5We first start with the proof of part 3 of the Theorem. Insteddamsideringe;, o £
we can equivalently consider, due to (H&),o log py. Thus, for simplicityc; = élogpk. SetB, = g(a),
for suchB and an edgéu, v) of scalek, we have

1 1 1
1+exp(M(Ba)cp) 1+ exp(a®Be) 1+ py

a

Q=
uv T

Now, by property (H1) we know that for any vertexand every vertex within distance scalé from u,
Ny(d(u,v)) € [a, A]y*, thus we get that:

a 1 1 . 1 A 1
(ﬂ) N (d(u,v)) S 9apk = Quo(Ba) < = <5> Nu(d(u,v)) 4o
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Settingr = 2A/a proves part (b). To further see the correspondence betwaerddf Graphs of Bounded
Cost when the cost corresponds to indexing and Rank basedeattion, consider the; (5,) the average
number of edges of scaleper vertex. We have:

* . bk _
ai(By) = 7~ 1 k€ (K]

Thus, we see that the scale invariance property of RBA isvezeal. Furthermore, we have that in this case
B, = Zle at(B,)c; = O(log?(n)) and the average degree of a random graph of bounded caBt, fisr
O (log(n)).

To show the first two parts of the theorem we essentially oteatimates fo3* given in Theorem 4
for the special case where the cost is the cost of indexinhagea We have:

log 1

N = a<1+9°g Og”) (17)
log pr
log 1

Ay = a(l—HOg Og”> (18)
log px

By property (H1) we know thadbg px = ©(log n). Define as befor&s™ = g(Aj) andB~ = g(\}) . Then
for everyB~ < B < B or equivalently forAy < \(B) < Ay, we have that for som€ > 0:

0 (POgn_lggilr) 1 + exp]z];\(B)cZ) =0 <[10gnlgg9nr>

wherea; (B) = W;(B)cz) expresses the average number of edges of ¢cpég vertex. Thus, by (H1)
we get that:

K
1 1 /
Bt == *(BT)1 P * (BT = Q1 4+C0
azak( )ogm_aogpxax( ) (log(n) )

k=1
Further, B~ < B, = O(log®(n)). Hence, we obtain thaB*/B~ = Q(poly(logn)). The proof is
concluded by invoking Theorem 3. O

4.5 Rank Based Augmentation for Coherent Geometries
Recall that in RBA a single link is added for each verteto a random vertex with probability given by

1 1

Prga(u,v) Z [Ny (d(w, v))] (19)
whereN,(¢) := {t € V : d(u,t) < ¢} is the set of vertices that are within distanc&om u. Here we
show that the Kleinberg’s original proof can be applied vadse when instead of the semi-metric induced
by set-system, we have a semi-metric corresponding to aeathgeometry. There are basically two steps.
We first upper bound the normalizing constahand then lower bound the probability that for a given pair
(s,t) we find an edge in the firgt log?(n) steps of a path along the substrate that reduces the didtahce
by a constant factor.

Proposition 4 (Bounded Growth) For a coherent geometr{}/, d), 3C' < oo such thatZ (1) < C'log(n).
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Proof. For a given vertex, we divide vertices depending on their distance skate{0, . .., log. (n)} from
u. Fork > 0, we know from property (H1) that there are at mdst* such vertices. Further, we also know

thatt| By (u)| = Y-0=) Pu(u) > aZ=!. Using these two facts we have:
log(n) log(n)
A A A y—1 A
Fal a Bil < Tt g |
D2 S ) nl B S 2t & o S (o loss (@)

O
Finally, to complete the proof, we are going to employ oncaimgeducibility.

Proof of Theorem 2Fix any two vertices, t, the probability of finding a long-range edgesaeducing the
distance by a constant factor is at least:

Del 1 . 1 et o 1
Z  Pu(s) — Clogn Ayk  AClogn

Thus, the probability of the ever; that no such edge exists aftéflog?(n) trials is at most:

’ 2
b 1 C’ log“(n)
< 7
P(Bu) < (1 AC logn>

For C’ large enough and a union bound over é@:2) possible pairs of vertices, we get thatfif; is the
random set of edges added through RBA d#idis a substrate for the coherent geometvyd), then the
graphG(V, Ey U Ey) is d-navigable with high probability. O

sC’ ¢
< e aclen < p=ac?

5 Set-Systems are Coherent Geometries

We begin by recalling the definitions of set-systems fronj.[11

Definition 1 (Set System)Let V' be a finite set of vertices and I& = {S,,...,S,,} be a collection of
subsets of/. If a setS contains a vertex we will say thatS is ¢-bound
Fix0 < A < landp > 1. We say thak is a (), 3)-set system if all the following hold:

(K1) V e x.
(K2) If |S| > 1, then for every € S, there is at-boundS’ C S of size|S’| > min{\|S]|, |S| — 1}.
(K3) If S1.(v) is the union of sets that containand have size at moét > 2, then|S.(v)| < L.
Given a set systerl on a set of vertice¥’, we define the distance (semi-metric) between two vertices.

Definition 2. For any two vertices:,v € V, their distancein 3, denoted byix.(u, v), is the size of the
smallest set irt containing both verticeminus 1.i.e. dsx(u,v) = mingex{|S| — 1 : u,v € S}.

The goal of this section is to show that the geomélrydy,) is coherent for any ), 5)-set system,
i.e., prove that the semi-metrit; satisfies properties (H1) and (H2) for a suitable- 1. Towards that
direction, the main hurdle is obtaining for all € V' upper and lower bounds oR;(v), the number of
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vertices at distance ifn*~',v*] from v. The basic observation that guides the proof is that for aihd
k>1
Py(v) = |B(v)| = [Bi-1(v)| (20)

whereB,(v) is the set of all vertices having distance framat mosty*. This representation is very conve-
nient because the properties of set systems are direciied=lo| By (v)|. In particular, if we get good upper
and lower bound fofBy(v)| then we can obtain upper and lower bounds®pfv) and prove(H1), which
comprises the main challenge.

Obtaining the upper bound is trivial, since it is directlyen by (K3). However, the lower bound on
By (v) requires more thought as it needs to be tight enough so than whbstituting both bounds in (4)
(in order to obtain a lower bound oA (v)) the difference is strictly positive. It turns out that theest
property depends on the particular values of the paramgtérsWe show that it is always possible to select
v = v(B,A) > 1 such that the last property holds. The main observationwiibprovide a lower bound
on |By(v)| is that the existence of a s&twith size in(y*~!, +*] implies that| By (v)| > |S| for all v € S.
This is because all vertices i have distance at mos$| — 1 from v. Thus, what remains is to show the
existence of such st for all v € V andk. To that end, we need the following axillary lemma that was
implicitly stated and used in Kleinberg's original work [[11

Proposition 5 (Shrinkage) For everyS € ¥ with |S| > 1/(\ — A2) and for everyt € S, there exists a
t-bound sets” € ¥ with \2[S| < 9’| < A[S].

Proof of Proposition 5.Assume, for the sake of contradiction, that there existd & sad a vertex € S
such that the proposition does not hold. If we start vithnd invoke (K2) iteratively until we readhwe get
asequencé = 51 D Sy --- D S =t of t-bound subsets &f. Since|S| > A|S|, there is a largest index
such thatS;| > A|S|, and|S;| > 2 sinceA|S| > 1. Therefore, we can apply (K2) 8, yielding at-bound
set of size at least = min{\|S;], |S;| — 1}. For the hypothesis to hold it must be that \%|S], for if
z > M| S| we contradict the maximality of But havingz < \2|S| is impossible since the fags;| > A|S]|
implies A\|S;| > A\%|S|, while combined with the fadtS| > 1/(\ — A?) itimplies |S;| — 1 > A?|S]. O

This lemma will be used to show that for all verticesne can start from the sét, that belongs irt
by (K1), and inductively apply Lemma 5 to deduce the existenicsetsS containingv at all scales. More
specifically, given &), 3)-set systent, let M be the smallest integer such that>’ > |V|. We partition
the range of possible set-sizesirasZ = (Iy, ..., Iy) by letting I, = (A\=2+:=1_ X\=2] for k € [M]. The
partition Z implicitly partitions all pairs of vertices into groups,@uthat all pairs in a group have roughly
the same distance i, i.e., up to a factor oA?. We show that for every vertex and for every interval of the
partition, there is a set with size in that interval that eams the vertex.

Proposition 6. For everyt € V, for everyk € [M], there exists @-bound setS € ¥ with |S| € I.

Proof of Proposition 6.Assume, for the sake of contradiction, that there existsrgexe for which the
proposition does not hold. Lét) € [M] be the largest integer such that there ig+#mund setS’” € 3 with
|S’| € Iy,. If we start withV and invoke (K2) iteratively until we reach we get a sequencé = S; D
Sy .-+ D Sy =t of t-bound sets. Lef, be the largest indeksuch thatsS;| € Ij,.1. The maximality ofk,
impIies\SikOH] € Iy,—1. Butinvoking Proposition 5fOSik0 impIies]SZ-kOH\ € Iy,, a contradiction. [

TreatingZ as a distance scale, our next goal is to obtain for each vertgxper and lower bounds on
the number of vertices that lie at each distance-scale frohe achieve this we need to consider a coarser
partition of the set sizes thah To do that it will be beneficial to use a partition built outtddcks ofZ, thus
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allowing us to utilize Proposition 6, proven f@r. In particular, the existence oftabound set of each size
will be the basis for obtaining lower bounds on the numberesfiges at each new distance scale friom

We letr = r(8,\) > 2 denote the smallest integer such that("—Y > 3 and consider the partition
that results by grouping together evergonsecutive intervals af. That is, fory(3,\) = A=2(5Y we
define the partitiond = A(v) consisting of the intervals, = (v*~1,4*], k € [K], where K is the
smallest integer such thaf® > |V| - 1. Having defined4, we now letP, (v) denote the number of vertices
whose distance from lies in the set4;, and we letP, = % > vey Pr(v) denote the total number of pairs of
vertices whose distance lies ih..

Lemma 4 (Bounded Growth) Letar = (A2 — 3/) > 0andA = (3 — \?/v). Forall k € [K] andv € V,
a-7* < P(v) <A-AN

Proof of Lemma 4 First observe that is a coarsening df sincey = A~2" andr > 2 is an integer. Next,
let Bi.(v) = >, Px(v) be the number vertices i whose distance fromliesin A; U---U A, i.e., isno
more tham*. Condition (K3) asserts thdk,(v) < 3+*. On the other hand, by Proposition 6, we know that
for anyv € V there is a-bound setS € I,,, C A,. Since, all vertices it$ have distance at mog$| < +*
from v, we get thatBy,(v) > |S| > A~2("k=1) = k)2, Therefore, for alk € [K],

NA" < By(v) < 89" (21)
Using the representation (20) and invoking (21), we get
A2k — ByE Tl < Py(v) < By — AP
which is equivalent to the claimed statement. The fact 0 is implied by our choice of. O

Thus we have shown property (H1). Proceeding further, wel neeshow that the semi-metriéy;, satis-
fies also the isotropy property (Section 4), i.e. that the sizthe setD,(s,t) = {v € V : d(s,v) <
~kst andd(v,t) < Md(s,t)} is proportional toy*st, wherek,, is the scale ofi(s,t). To do that we are
going to show something stronger. Given any two verticest € V, consider a5, € X of minimal size
such that boths, ¢ € S. Then for allk < k, define the following seGy(s,t) = {v € Ss : d(s,v) €
Ay andd(v,t) < A\|S|} of vertices inSg; whose distance fromlies in the interval4,, (scalek) and whose
distance front is no more tham\|S|.

Lemma 5 (Isotropy) For everys # t € V with |Sy;| > 1/(\ — A?), we have that

G (5 U Gra ()] = () b
Proof of Lemma 5Proposition 5 implies that there istébound setS’ € ¥ with \2|Sy| < [S7] < A|Sg.
Thus, a)? fraction of the vertices irb; have distance from at least a facton less that|S;|. Having
established an abundance of “good” verticesSip, we are left to show that a constant fraction of them
are in the top two distance scalkg, ks, — 1 from s (recall that|Ss| € Ag,). We start by noting that
Z =% .1 |1Gi(s,t)] > |S’|, as the sum must count the vertices3h SinceS, € |A,,| and|S'| >
A\2|S,|, we getZ > A2ykst=1 On the other hand, the good vertices in the bottgm— 2 distance scales
from s are a subset of all vertices containiagat those distance scales, a quantity bounded by (K3) as
S icn_o |Gi(s, )| < By*t=2. Therefore |Gy, (s,t) U Gy, —1(s,t)| > A2ykst =1 — gykst=2, O
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Proof of Theorem 1In order to prove that the set system defines a coherent gggnwetneed to show that
properties(H1) and(H2) hold for somey > 1. Our two lemmas achieve exactly that. The first property
follows from Lemma 4 and the second property follows from lbean5 sinceGy, (s,t) U Gi,,—1(s,t) C

Dy (s,t). ]

References

[1] Dimitris Achlioptas and Paris Siminelakis. Product raeiee approximation of symmetric graph prop-
erties. submitted 2014.

[2] Lada A. Adamic and Eytan Adar. How to search a social neétw8ocial Networks27:2005, 2005.

[3] Dana Angluin and Leslie G Valiant. Fast probabilistigalithms for hamiltonian circuits and match-
ings. InProceedings of the ninth annual ACM symposium on Theory wipating pages 30-41.
ACM, 1977.

[4] James Aspnes, Zoé Diamadi, and Gauri Shah. Faultaiolenouting in peer-to-peer systems. In
Proceedings of the twenty-first annual symposium on Priesipf distributed computingages 223—
232. ACM, 2002.

[5] lan Clarke, Oskar Sandberg, Brandon Wiley, and Theoddrélong. Freenet: A distributed anony-
mous information storage and retrieval system. Warkshop on Design Issues in Anonymity and
Unobservability pages 46—66, 2000.

[6] Aaron Clauset and Cristopher Moore. How do networks bezoavigable?, 2003.

[7] P. Fraigniaud, E. Lebhar, and Z. Lotker. A lower bound fetwork navigability. SIAM Journal on
Discrete Mathematic24(1):72-81, 2010.

[8] Jon Kleinberg. The small-world phenomenon: an alganimerspective. IfProceedings of the thirty-
second annual ACM symposium on Theory of compu8i@C '00, pages 163-170, New York, NY,
USA, 2000. ACM.

[9] Jon Kleinberg. Complex networks and decentralizeddealgorithms. IrProceedings oh the Interna-
tional Congress of Mathematicians: Madrid, August 22-300&: invited lecturespages 1019-1044,
2006.

[10] Jon M. Kleinberg. Navigation in a small worltNature 406(6798):845, August 2000.

[11] Jon M. Kleinberg. Small-world phenomena and the dyrmarof information. I'NIPS pages 431-438,
2001.

[12] Jure Leskovec, Jon Kleinberg, and Christos FaloutS&oaphs over time: densification laws, shrinking
diameters and possible explanations. Fimceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data minpages 177-187. ACM, 2005.

[13] David Liben-Nowell, Jasmine Novak, Ravi Kumar, PrakdraRaghavan, and Andrew Tomkins. Ge-
ographic routing in social network$roceedings of the National Academy of Sciences of the dUnite
States of Americal02(33):11623-11628, 2005.

18



[14] Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know tigighbor’s neighbor: the power of
lookahead in randomized p2p networks.Proceedings of the thirty-sixth annual ACM symposium on
Theory of computingSTOC '04, pages 54-63, New York, NY, USA, 2004. ACM.

[15] Aleksandrs Slivkins. Distance estimation and objecation via rings of neighbors. Froceedings of
the twenty-fourth annual ACM symposium on Principles dfitlisted computingPODC '05, pages
41-50, New York, NY, USA, 2005. ACM.

[16] Jeffrey Travers and Stanley Milgram. An experimentaty of the small world problemSociometry
32:425-443, 1969.

[17] D.J. Watts.Six Degrees: The Science of a Connected Agew. Norton, 2003.

[18] Jianyang Zeng, Wen-Jing Hsu, and Jiangdian Wang. Ngt#mal routing in a small-world network
with augmented local awareness.Farallel and Distributed Processing and Applicatiopages 503—
513. Springer, 2005.

[19] Hui Zhang, Ashish Goel, and Ramesh Govindan. Using thallsworld model to improve freenet
performance Computer Network16(4):555 — 574, 2004.

19



	1 Introduction
	2 Our Contribution
	2.1 The two Basic Requirements and a Unifying Framework for RBA
	2.2 Navigability from Organic Growth
	2.3 Navigability as a Reflection of the Cost of Indexing

	3 Deriving a Product Measure Approximation: Proof of Theorem ??
	3.1 Finding the Entropic Optimal Edge Profile
	3.2 Thickness (B) of G(B) and Sandwiching

	4 Navigability via Reducibility
	4.1 Reducibility via Uniform Richness
	4.2 Analyzing the Product Measure G(n,Q*(B))
	4.3 Analyzing Graphs of Bounded Cost
	4.4 Analysis of Indexing
	4.5 Rank Based Augmentation for Coherent Geometries

	5 Set-Systems are Coherent Geometries

