
PUDA – Privacy and Unforgeability for Data
Aggregation

Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

EURECOM, Sophia Antipolis, France
{firstname.lastname}@eurecom.fr

Abstract. Existing work on data collection and analysis for aggregation is mainly
focused on confidentiality issues. That is, the untrusted Aggregator learns only
the aggregation result without divulging individual data inputs. In this paper we
extend the existing models with stronger security requirements. Apart from the
privacy requirements with respect to the individual inputs, we ask for unforge-
ability for the aggregate result. We first define the new security requirements of
the model. We also instantiate a protocol for private and unforgeable aggregation
for multiple independent users. I.e, multiple unsynchronized users owing to per-
sonal sensitive information without interacting with each other, contribute their
values in a secure way: The Aggregator learns the result of a function without
learning individual values, and moreover, it constructs a proof that is forwarded
to a verifier that will convince the latter for the correctness of the computation.
Our protocol is provably secure in the random oracle model.

1 Introduction

With the advent of the Big Data era, research on privacy preserving data collection
and analysis is culminating. Users continuously produce data that can be considered as
valuable whenever an Aggregator is interested in aggregating users’ data. We therefore
consider a scenario whereby an Aggregator collects individual data from multiple users
who do not interact with each other and executes a function which outputs an aggregate
value. This result is further forwarded to the Data Analyzer who can finally extract
useful information about the entire population. Various motivating examples under for
the aforementioned generic scenario exist in the real-world:

– The analysis of different user profiles and the derivation of statistics can help rec-
ommendation engines provide targeted advertisements. In such scenarios a service
provider would collect data from each individual user (i.e: on-line purchases), thus
acting as an Aggregator, and compute an on-demand aggregate value upon receiv-
ing a request from the advertisement company. The latter will further infer some
statistics acting as a Data Analyzer, in order to send the appropriate advertisements
to each category of users.

– Data aggregation is a promising tool in the field of healthcare research. Different
types of data, sensed by body sensors (eg. blood pressure), are collected in large
scale in data enclaves who can be considered as Aggregators. Health scientists who
act as Data Analyzers are interested in inferring some statistical information from



2 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

these data without having access to each individual input (for privacy and perfor-
mance reasons). An aggregate value computed over a large population would give
very useful information for deriving statistical models, evaluating therapeutic per-
formance or learning the likelihood of upcoming patients’ diseases.

Unfortunately, existing solutions only focus on the problem of data confidentiality
and consider the Aggregator to be honest-but-curious: the Aggregator is curious in dis-
covering the content of each individual data, but performs the aggregation operation
correctly. In this paper we consider a more powerful security model and assume that
the Aggregator is untrusted : The Aggregator may provide a bogus aggregate value to
the Data Analyzer. In order to protect against such a malicious behavior, we propose
that along with the aggregate value, the Aggregator provides a proof of the correctness
of the computation of the aggregate result.

The underlying idea of our solution is that each user encrypts its data according
to Shi et al. [15] scheme using its own secret encryption key, and sends the resulting
ciphertext to the untrusted Aggregator. Users, also homomorphically tag their data us-
ing two layers of randomness with two different keys and they forward the tags to the
Aggregator. The latter computes the sum by applying operations on the ciphertexts and
it also computes a proof for the correctness of the result from the tags. The Aggrega-
tor finally sends the result and the proof to the Data Analyzer. The latter verifies the
correctness of the computation. We also require the Data Analyzer not to be able to
communicate with each user and the result to be publicly verifiable. Moreover, simi-
larly to the existing solutions, the proposed protocol assures obliviousness against the
Aggregator and the Data Analyzer in the multi-user setting; meaning that neither the
Data Analyzer nor the Aggregator learns individual data inputs.

To the best of our knowledge we are the first to define a model for Privacy and
Unforgeability for Data Aggregation (PUDA). We also instantiate a PUDA scheme
which mainly pursues the following three objectives:

– Multi-user setting where multiple users produce personal sensitive data without
interacting with each other.

– Public verifiability of the aggregate value.
– Privacy of individual data for all participants.

2 Problem Statement

We are envisioning a scenario whereby a set of users U = {Ui}ni=1 are producing sensi-
tive data inputs xi,t at each time interval t. These individual data are first encrypted into
ciphertexts ci,t and further forwarded to an untrusted Aggregator A. Aggregator A ag-
gregates all the received ciphertexts, decrypts the aggregate and forwards the resulting
plaintext to a Data Analyzer DA together with a cryptographic proof that assures the
correctness of the aggregation operation, which in this paper corresponds to the sum of
the users’ individual data. An important criterion that we aim to fulfill in this paper is to
ensure that Data Analyzer DA verifies the correctness of the Aggregator’s output with-
out compromising users’ privacy. Namely, at the end of the verification operation, both
Aggregator A and Data Analyzer DA learn nothing, but the value of the aggregation.



PUDA – Privacy and Unforgeability for Data Aggregation 3

While homomorphic signatures proposed in [4, 10] seem to answer the verifiability re-
quirement, authors in those papers only consider scenarios where a single user generates
data.

In the aim of assuring both individual user’s privacy and unforgeable aggregation,
we first come up with a generic model for privacy preserving and unforgeable aggre-
gation that identifies the algorithms necessary to implement such functionalities and
defines the corresponding privacy and security models. Furthermore, we propose a
concrete solution which combines an already existing privacy preserving aggregation
scheme [15] with an additively homomorphic tag designed for bilinear groups.

Notably, a scheme that allows a malicious Aggregator to compute the sum of users’
data in privacy preserving manner and to produce a proof of correct aggregation will
start by first running a setup phase. During setup, each user receives a secret key that
will be used to encrypt the user’s private input and to generate the corresponding au-
thentication tag; the Aggregator A and the Data Analyzer DA on the other hand, are
provided with a secret decryption key and a public verification key, respectively. After
the key distribution, each user sends its data encrypted and authenticated to Aggregator
A, while making sure that the computed ciphertext and the matching authentication tag
leak no information about its private input. On receiving users’ data, AggregatorA first
aggregates the received ciphertexts and decrypts the sum using its decryption key, then
uses the received authentication tags to produce a proof that demonstrates the correct-
ness of the decrypted sum. Finally, Data Analyzer DA verifies the correctness of the
aggregation, thanks to the public verification key.

2.1 PUDA Model

A PUDA scheme consists of the following algorithms:

– Setup(1κ) → (P,SKA, {SKi}Ui∈U,VK): It is a randomized algorithm run by a
trusted dealer KD, which on input of a security parameter κ outputs the public
parametersP that will be used by subsequent algorithms, the AggregatorA’s secret
key SKA, the secret keys SKi of users Ui and the public verification key VK.

– EncTag(t,SKi, xi,t) → (ci,t, σi,t): It is a randomized algorithm which on inputs
of time interval t, secret key SKi of user Ui and data xi,t, encrypts xi,t to get a
ciphertext ci,t and computes a tag σi,t that authenticates xi,t.

– Aggregate(SKA, {ci,t}Ui∈U, {σi,t}Ui∈U)→ (sumt, σt): It is a deterministic algo-
rithm run by the Aggregator A. It takes as inputs Aggregator A’s secret key SKA,
ciphertexts {ci,t}Ui∈U and authentication tags {σi,t}Ui∈U, and outputs in cleartext
the sum sumt of the values {xi,t}Ui∈U. Moreover, it computes a proof σt assessing
the correctness of sumt, using the authentication tags {σi,t}Ui∈U.

– Verify(VK, sumt, σt) → {0, 1}: It is a deterministic algorithm that is executed by
the Data AnalyzerDA. It outputs 1 if Data AnalyzerDA is convinced that the sum
sumt =

∑
Ui∈U{xi,t}; and 0 otherwise.

2.2 Security Model

In this paper, we only focus on the adversarial behavior of Aggregator A. The ratio-
nale behind this is that Aggregator A is the only party in the protocol that sees all the



4 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

messages exchanged during the protocol execution: Namely, Aggregator A has access
to users’ ciphertexts and it is the party that interacts directly with the Data Analyzer.
It follows that by ensuring security properties against the Aggregator, one by the same
token, ensures these security properties against both Data Analyzer DA and external
parties.

In accordance with previous work [11, 15], we formalize the property of Aggregator
obliviousness, which ensures that at the end of a protocol execution, AggregatorA only
learns the sum of users’ inputs xi,t and nothing else. Also, we enhance the security
definitions of data aggregation with the notion of aggregate unforgeability. As the name
implies, aggregate unforgeability guarantees that Aggregator A cannot forge a valid
proof σt for a sum sumt that was not computed correctly from users’ inputs (i.e. cannot
generate a proof for sumt 6=

∑
xi,t).

Aggregator Obliviousness Aggregator obliviousness ensures that when users Ui pro-
vide AggregatorA with ciphertexts ci,t and authentication tags σi,t, AggregatorA can-
not reveal any information about individual inputs xi,t, other than the sum value

∑
xi,t.

We extend the existing definition of Aggregator Obliviousness (cf. [11, 12, 15]) so as
to capture the fact that Aggregator A not only has access to ciphertexts ci,t, but also
has access to the authentication tags σi,t that enable Aggregator A to generate proofs
of correct aggregation.

Similarly to the work of [11, 15], we formalize Aggregator obliviousness using an
indistinguishability-based game in which AggregatorA accesses the following oracles:

– OSetup: When called by AggregatorA, this oracle initializes the system parameters;
it then gives the public parameters P , the Aggregator ’s secret key SKA and public
verification key VK to A.

– OCorrupt: When queried by AggregatorAwith a user Ui’ s identifier uidi, this oracle
provides Aggregator A with Ui’s secret key denoted SKi.

– OEncTag: When queried with time t, user Ui’s identifier uidi and a data point xi,t,
this oracle outputs the ciphertext ci,t and the authentication tag σi,t of xi,t com-
puted using Ui’s secret key SKi.

– OAO: When called with a subset of users S ⊂ U and with two time-series
(Ui, t, x0i,t)Ui∈S and (Ui, t, x1i,t)Ui∈S such that

∑
x0i,t =

∑
x1i,t, this oracle flips a

random coin b ∈ {0, 1} and returns an encryption of the time-serie (Ui, t, xbi,t)Ui∈S
(that is the tuple of ciphertexts {cbi,t}Ui∈S) and the corresponding authentication
tags {σbi,t}Ui∈S.

Aggregator A is accessing the aforementioned oracles during a learning phase (cf.
Algorithm 1) and a challenge phase (cf. Algorithm 2). In the learning phase, A calls
oracle OSetup which in turn returns the public parameters P , the public verification key
VK and the Aggregator ’s secret key SKA. It also interacts with oracle OCorrupt to learn
the secret keys SKi of users Ui, and oracle OEncTag to get a set of ciphertexts ci,t and
authentication tags σi,t.

In the challenge phase, Aggregator A chooses a subset S∗ of users that were
not corrupted in the learning phase, and a challenge time interval t∗ for which it
did not make an encryption query. Oracle OAO then receives two time-series X 0

t∗ =



PUDA – Privacy and Unforgeability for Data Aggregation 5

(Ui, t∗, x0i,t∗)Ui∈S∗ and X 1
t∗ = (Ui, t∗, x1i,t∗)Ui∈S∗ from A, such that

∑
x0i,t∗ =∑

Ui∈S∗ x
1
i,t∗ . Then oracle OAO flips a random coin b $←{0, 1} and returns to A the

ciphertexts {cbi,t∗}Ui∈S∗ and the matching authentication tags {σbi,t∗}Ui∈S∗ .
At the end of the challenge phase, Aggregator A outputs a guess b∗ for the bit b.
We say that Aggregator A succeeds in the Aggregator obliviousness game, if its

guess b∗ equals b.

Algorithm 1: Learning phase of the obliviousness game

(P,SKA,VK)← OSetup(1
κ);

// A executes the following a polynomial number of times
SKi ← OCorrupt(uidi);
// A is allowed to call OEncTag for all users Ui
(ci,t, σi,t)← OEncTag(t, uidi, xi,t);

Algorithm 2: Challenge phase of the obliviousness game
A → t∗, S∗;
A → X 0

t∗ ,X 1
t∗ ;

(cbi,t∗ , σ
b
i,t∗)Ui∈S∗ ← OAO(X 0

t∗ ,X 1
t∗);

A → b∗ ;

Definition 1 (Aggregator Obliviousness). Let Pr[AAO] denote the probability that
Aggregator A outputs b∗ = b. Then an aggregation protocol is said to ensure Ag-
gregator obliviousness if for any polynomially bounded Aggregator A the probability
Pr[AAO] 6 1

2 + ε(κ), where ε is a negligible function and κ is the security parameter.

Aggregate Unforgeability We augment the security requirements of data aggregation
with the requirement of aggregate unforgeability. More precisely, we assume that Ag-
gregator A is not only interested in compromising the privacy of users participating in
the data aggregation protocol, but also interested in tampering with the sum of users’
inputs. That is, Aggregator A may sometimes have an incentive to feed Data Analyzer
DA erroneous sums. Along these lines, we define aggregate unforgeability as the se-
curity feature that ensures that Aggregator A cannot convince Data Analyzer DA to
accept a bogus sum, as long as users Ui in the system are honest (i.e. they always sub-
mit their correct input and do not collude with the Aggregator A).

In compliance with previous work [7, 10] on homomorphic signatures, we formalize
aggregate unforgeability via a game in which AggregatorA accesses oraclesOSetup and
OEncTag. Furthermore, given the property that anyone holding the public verification
key VK can execute the algorithm Verify, we assume that Aggregator A during the
unforgeability game runs the algorithm Verify by itself.

As shown in Algorithm 3, Aggregator A enters the aggregate unforgeability game
by querying the oracle OSetup with a security parameter κ. Oracle OSetup accordingly



6 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

Algorithm 3: Learning phase of the aggregate unforgeability game
P,VK← OSetup(1

κ);
// A executes the following a polynomial number of times
// A is allowed to call OEncTag for all users Ui
(ci,t, σi,t)← OEncTag(t, uidi, xi,t);

Algorithm 4: Challenge phase of the aggregate unforgeability game
(t∗, sumt∗ , σt∗)← A

returns public parameters P , verification key VK and the secret key SKA of Aggregator
A. Moreover, Aggregator A calls oracle OEncTag with tuples (t, uidi, xi,t) in order to
receive the ciphertext ci,t encrypting xi,t and the matching authenticating tag σi,t, both
computed using user Ui’s secret key SKi. Note that for each time interval t, Aggregator
A is allowed to query oracle OEncTag for user Ui only once. In other words, Aggregator
A cannot submit two distinct queries to oracle OEncTag with the same time interval t
and the same user identifier uidi. Without loss of generality, we suppose that for each
time interval t, Aggregator A invokes oracle OEncTag for all users Ui in the system.

At the end of the aggregate unforgeability game (see Algorithm 4), Aggre-
gator A outputs a tuple (t∗, sumt∗ , σt∗). We say that Aggregator A wins the
aggregate unforgeability game if one of the following statements holds:

1. Verify(VK, sumt∗ , σt∗) → 1 and Aggregator A never made a query to oracle
OEncTag that comprises time interval t∗. In the remainder of this paper, we denote
this type of forgery Type I Forgery.

2. Verify(VK, sumt∗ , σt∗)→ 1 and AggregatorA has made a query to oracleOEncTag

for time t∗, however the sum sumt∗ 6=
∑
Ui xi,t∗ . In what follows, we call this type

of forgery Type II Forgery.

Definition 2 (Aggregate Unforgeability). Let Pr[AAU] denote the probability that Ag-
gregator A wins the aggregate unforgeability game, that is, the probability that Ag-
gregator A outputs a Type I Forgery or Type II Forgery that will be accepted by
algorithm Verify.

An aggregation protocol is said to ensure aggregate unforgeability if for any poly-
nomially bounded adversary A, Pr[AAU] 6 ε(κ), where ε is a negligible function in
the security parameter κ.

3 Idea of our PUDA protocol

In an extended model with an untrusted Aggregator, it is of utmost importance to design
a solution in which the untrusted Aggregator cannot provide bogus results to the Data
Analyzer. Such a solution will use a proof system that enables the Data Analyzer to
verify the correctness of the computation. Yet verifiability should be achieved without



PUDA – Privacy and Unforgeability for Data Aggregation 7

sacrificing privacy. Towards this goal, we propose a protocol that relies on the following
techniques:

– A homomorphic encryption algorithm that allows the Aggregator to compute the
sum without divulging individual data.

– A homomorphic tag that allows each user to authenticate the data input xi,t, in
such a way that the Aggregator can use the collected tags to construct a proof that
demonstrates to the Data Analyzer DA the correctness of the Aggregator sum.

Concisely, a set of non-interacting users are connected to personal services and de-
vices that produce personal data. Without any coordination, each user chooses a random
tag key tki and sends an encoding thereof, tki to the key dealer. After collecting all en-
coded keys tki by users, the key dealer publishes the public verification key VK of this
group of users. This verification key is computed as a function of the encodings tki.
Later, the key dealer gives to each user in the system an encryption key eki that will be
used to compute the user’s ciphertexts. Accordingly, the secret key of each user SKi is
defined as the pair of tag key tki and encryption key eki. Finally, the key dealer provides
the Aggregator with secret key SKA computed as the sum of encryption keys eki and
goes off-line.

Now at each time interval t, each user employs its secret key SKi to compute a
ciphertext based on the encryption algorithm of Shi et al. [15] and a homomorphic tag
on its sensitive data input. When the Aggregator collects the ciphertexts and the tags
from all users, it computes the sum sumt of users’ data and a proof σt for the sum, and
forwards the sum and the proof to the Data Analyzer. At the final step of the protocol,
the Data Analyzer verifies with the verification key VK and proof σt the validity of the
result sumt. Although the modification seems straightforward, the proof for Type II
Forgery turns out to be challenging.

Thanks to the homomorphic encryption algorithm of Shi et al. [15] and the way in
which we construct our homomorphic tags, we show that our protocol ensures Aggrega-
tor obliviousness. Moreover, we show that the Aggregator cannot forge bogus results.
Finally, we note that the Data Analyzer DA does not keep any state with respect to
users’ transcripts be they ciphertexts or tags, but it only holds the public verification
key, the sum sumt and the proof σt.

4 PUDA Instantiation

Let G1,G2,GT be cyclic groups of large prime order p and g1, g2 generators of G1,G2

accordingly. We say that e is a bilinear map, if the following properties are satisfied:

1. bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab, where g1, g2 ∈ G1 ×G2 and a, b ∈ Zp.
2. Computability: there exists an efficient algorithm that computes e(ga1 , g

b
2) where

g1, g2 ∈ G1 ×G2 and a, b ∈ Zp.
3. Non-degeneracy: e(g1, g2) 6= 1.

For encryption and sum computation we employ the discrete logarithm based en-
cryption scheme of Shi et al. [15]:



8 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

4.1 Shi-Chan-Rieffel-Chow-Song Scheme

– Setup(1κ): Let G1 be a group of large prime order p. A trusted key dealer KD
selects a hash function H : {0, 1}∗ → G1 . Furthermore, KD selects secret en-
cryption keys eki ∈ Zp, uniformly at random. KD distributes to each user Ui the
secret key eki and it also sends the secret key skA = −

∑n
i=1 eki to the Aggregator.

– Encrypt(eki, xi,t): Each user Ui encrypts the value xi,t by using its secret encryp-
tion key eki and outputs the corresponding ciphertext ci,t = H(t)ekig

xi,t

1 ∈ G1.
– Aggregate({ci,t}Ui∈U, {σi,t}Ui∈U,SKA): Upon receiving all the cipher-

texts {ci,t}ni=1, the Aggregator computes: Vt = (
∏n
i=1 ci,t)H(t)skA =

H(t)
∑n

i=1 ekig
∑n

i=1 xi,t

1 H(t)−
∑n

i=1 eki = g
∑n

i=1 xi,t

1 ∈ G1. Finally A learns
the sum sumt =

∑n
i=1 xi,t ∈ Zp by computing the discrete logarithm of Vt on the

base g1. The sum computation is correct as long as
∑n
i=1 xi,t < p.

4.2 PUDA Scheme

In what follows we describe our PUDA protocol:

– Setup(1κ):KD outputs (p, g1, g2,G1,G2,GT ) for an efficient computable bilinear
map e : G1 × G2 → GT , where g1 and g2 are two random generators for the
multiplicative groups G1 and G2 respectively and p is a prime number that denotes
the order of all the groups G1,G2 and GT . Moreover a secret key a is selected by
KD. Each Ui selects a random tag key tki ∈ Zp independently and forwards gtki2

to KD. KD publishes the verification key VK = (vk1, vk2) = (g
∑n

i=1 tki
2 , ga2 ) and

distributes to each user Ui ∈ U the secret key ga1 ∈ G1 through a secure channel.
Thus the secret keys of the scheme are SKi = (eki, tki, g

a
1 ). After publishing the

public parameters P = (H, p, g1, g2,G1,G2,GT ) and the verification key VK,KD
goes off-line and it does not further participate in any protocol phase.

– EncTag(t,SKi = (eki, tki, g
a
1 ), xi,t): At each time interval t each user Ui en-

crypts the data value xi,t with its secret encryption key eki, using the encryption
algorithm, described in section 4.1, which results in a ciphertext

ci,t = H(t)ekig
xi,t

1 ∈ G1

Ui also constructs a tag σi,t ∈ G1 with its secret tag key (tki, g
a
1 ):

σi,t = H(t)tki(ga1 )
xi,t ∈ G1

Finally Ui sends (ci,t, σi,t) to A.
– Aggregate(SKA, {ci,t}Ui∈U, {σi,t}Ui∈U): Aggregator A computes the sum
sumt =

∑n
i=1 xi,t by using the Aggregate algorithm presented in section 4.1.

Moreover, A aggregates the corresponding tags as follows:

σt =

n∏
i=1

σi,t =

n∏
i=1

H(t)tki(ga1 )
xi,t = H(t)

∑
tki(ga1 )

∑
xi,t

A finally forwards sumt and σt to data analyzer DA.



PUDA – Privacy and Unforgeability for Data Aggregation 9

– Verify(VK, sumt, σt): During the verification phase DA verifies the correctness of
the computation with the verification key VK = (vk1 = g

∑
tki

2 , vk2 = ga2 ), by
checking the following equality:

e(σt, g2)
?
= e(H(t), vk1)e(g

sumt
1 , vk2)

Verification correctness follows from bilinear pairing properties:

e(σt, g2) = e(

n∏
i=1

σi,t, g2) = e(

n∏
i=1

H(t)tkig
axi,t

1 , g2) =

e(H(t)
∑n

i=1 tkig
a
∑n

i=1 xi,t

1 , g2) = e(H(t)
∑n

i=1 tki , g2)e(g
a
∑n

i=1 xi,t

1 , g2) =

e(H(t), g
∑n

i=1 tki
2 )e(g

∑n
i=1 xi,t

1 , ga2 ) =

e(H(t), g
∑n

i=1 tki
2 )e(gsumt

1 , ga2 ) = e(H(t), vk1)e(g
sumt
1 , vk2)

5 Analysis

5.1 Aggregator Obliviousness

Theorem 1. The proposed solution achieves aggregator obliviousness in the random
oracle model under the decisional Diffie-Hellman (DDH) assumption in G1.

Proof. Assume there is an aggregator A which breaks the obliviousness of the PUDA
scheme with a non-negligible advantage ε. We build in what follows an adversaryB who
uses A as a subroutine to break the aggregator obliviousness of the private streaming
aggregation (PSA) protocol presented in [15], which is guaranteed under DDH. Without
loss of generality we call the oracles that the adversary B has access to from the PSA
scheme as follows: OPSA

Setup, OPSA
Corrupt, OPSA

Encrypt, and OPSA
AO .

We consider in PSA as in PUDA that there are n users Ui and each one of these
users possesses a secret encryption key eki. In the following, we show how an adversary
B simulates the aggregator obliviousness game presented in Algorithms 1 and 2 to
aggregator A and how therewith breaks the aggregator obliviousness of PSA.
Learning phase: In the learning phase, adversary B proceeds as following: Whenever
A calls oracle OSetup with a security parameter κ, B queries oracle OPSA

Setup with the
same security parameter. Oracle OPSA

Setup in turn outputs the public parameters that are
composed of a hash function H : {0, 1}∗ → G1, a generator g1 of the group G1 of safe
prime order p, and the aggregator’s secret key SKA = −

∑n
i=1 eki. B then selects the

parameters of a bilinear pairing (e, g1, g2,G1,G2,GT ). B chooses uniformly at random
a, {ri}Ui∈U such and defines the verification key VK as follows:

VK = (g
aSKA+

∑n
i=1 ri

2 , ga2 ) = (g
a
∑n

i=1 eki+
∑n

i=1 ri
2 , ga2 ) = (g

∑n
i=1 aeki+ri

2 , ga2 )

This entails that tki is defined as: aeki + ri. Finally B forwards to A the public
parameters:P = (H, p, g1, g2,G1,G2,GT ), the verification keys VK = (g

∑n
i=1 tki

2 , ga2 )
and the secret key of the Aggregator skA.



10 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

Whenever A calls oracle OCorrupt with a user’s identifier uidi, B relays the query
uidi to OPSA

Corrupt of the PSA scheme which in turns outputs the secret encryption key eki
of user Ui. B then returns secret key SKi = (eki, tki) = (eki, aeki + ri).

Whenever A calls oracle OEncTag with query (t, uidi, xi,t), B forwards
the query to the OPSA

Encrypt oracle which returns the appropriate ciphertext
ci,t = H(t)ekig

xi,t

1 . B computes then the tag associated with ciphertext ci,t as
σi,t = (ci,t)

aH(t)ri = H(t)aeki+rig
axi,t

1 = H(t)tkig
axi,t

1 and transmits toA ciphertext
ci,t and tag σi,t.
Challenge phase: In the challenge phaseA chooses a set of users S∗ that have not been
corrupted during the learning phase and a time interval t∗ for which A did not make a
query to oracle OEncTag. A then submits two time-series X ∗0 = (Ui, t∗, x0i,t∗)Ui∈S∗ and
X ∗1 = (Ui, t∗, x1i,t∗)Ui∈S∗ to OAO, such that

∑
x0i,t∗ =

∑
x1i,t∗ . B simulates this oracle

as follows:

It forwards the series X ∗0 and X ∗1 to OPSA
AO which chooses uniformly at random a

bit b $←{0, 1} and returns to B the ciphertexts {cbi,t∗}Ui∈S∗ encrypting time-serie X ∗b .

Next, B constructs for all Ui in S∗ the tag σbi,t∗ corresponding to ciphertext cbi,t∗
by computing:

σbi,t∗ = (cbi,t)
aH(t∗)ri = (H(t∗)ekig

xb
i,t∗

1 )aH(t∗)ri

= H(t∗)aeki+rig
axb

i,t∗

1 = H(t∗)tkig
axb

i,t∗

1

Note that σbi,t∗ corresponds to a correctly computed tag for input xbi,t∗ . Finally, B
forwards to A {(cbi,t∗ , σbi,t∗}Ui∈S∗ . At this point, the simulated view of aggregator A is
computationally indistinguishable from its view in an actual aggregator obliviousness
game as defined in Algorithms 1 and 2. This leads to correct verification of the sum
computed by A, more precisely:

e(
∏
i∈S∗

σbi,t∗ , g2) = e(

n∏
i=1

H(t∗)tkig
axb

i,t∗

1 , g2)

= e(H(t∗), g
a
∑n

i=1 eki+
∑n

i=1 ri
2 )e(g

∑n
i=1 x

b
i,t∗

1 , ga2 ) = e(H(t∗), vk1)e(g
∑n

i=1 x
b
i,t∗

1 , vk2)

It follows that if aggregator A is able to output a correct guess b∗ for the bit b with
a non-negligible advantage ε: (i.e. is able to break the aggregator obliviousness of our
scheme), then B will break the aggregator obliviousness of the PSA scheme with the
same non-negligible advantage ε by outputting the guess b∗.

As such PSA scheme ensures aggregator obliviousness under the DDH assump-
tion in G1, we can conclude that our scheme also ensures aggregator obliviousness:
Pr[AAO] 6 1

2 + ε(κ) as long as DDH holds in G1.



PUDA – Privacy and Unforgeability for Data Aggregation 11

5.2 Aggregate Unforgeability

We first introduce a new assumption that is used during the security analysis of our
PUDA instantiation. Our new assumption named hereafter as LEOM is a variant of the
LRSW assumption [14] which is proven secure in the generic model [16] and it used
for the construction of the CL signatures [5]. W.l.g we assume a set I of size n and an
index t. The OLEOM oracle chooses {γi}ni=1,∀i ∈ I, δ ∈ Zp uniformly and at random
which are kept secret. It also gives the public key (g

∑n
i=1 γi

2 , gδ2) to the adversary and
chooses α ∈ G1 at random. Adversary makes bulk queries (i, t, {xi,t}ni=1),∀i ∈ I
and the OLEOM oracle, chooses βt ∈ Zp uniformly and at random and replies with
{(α, βt, βγit αδxi,t)}ni=1 for each different t.OLEOM aborts if it receives a bulk query for
a t for which there is i′ ∈ I : i = i′ for which xi,t 6= x′i,t. In the end the adversary

succeeds if it outputs a tuple (t, z, α, βt, β
∑n

i=1 γi
t αδz) for a t in which

∑n
i=1 xi,t 6= z.

Theorem 2. (LEOM Assumption) Let G be an algorithm that on input the security pa-
rameter κ outputs the parameters of a bilinear group G = (e,G1,G2, g1, g2, p). Define
∆ = gδ2, Γ = g

∑n
i=1 γi

2 ∈ G2
2 for δ, γi ∈ Zp,∀i ∈ I . Consider an oracle OLEOM that on

input a set of queries (i, t, {xi,t}ni=1) responds with (α, βt, β
γi
t α

xi,tδ) for a uniformly
at random element α ∈ G1, βt ∈ Zp.

Then for all probabilistic polynomial time adversaries A the probability:

Pr[G← G(1κ); δ, γi ∈ Zp; (Γ = gδ2, ∆ = g
∑n

i=1 γi
2 );

(t, z, a, b, c)← AOLEOM(i,t,{xi,t}ni=1) :

(z 6=
n∑
i=1

xi,t, t) ∧ a = α ∧ b = βt ∧ c = β
∑n

i=1 γi
t αzδ] ≤ ε2(κ)

Due to space limitations, the security evidence of the LEOM is deferred in the Appendix
section.

We show in our analysis that a Type I Forgery implies a break of the BCDH as-
sumption and next that a Type II Forgery implies a break of the LEOM assumption.

Theorem 3. Our scheme achieves aggregate unforgeability against a Type I Forgery
under BCDH assumption in the random oracle model.

Proof. We show how to build an attacker B that solves BCDH in (G1,G2,GT ).
Let g1 and g2 be two generators for G1 and G2 respectively. B receives the chal-
lenge (g1, g2, g

a
1 , g

b
1, g

c
1, g

a
2 , g

b
2) from the BCDH oracle OBCDH and is asked to output

e(g1, g2)
abc ∈ GT . B simulates the interaction withA in the two phases (Setup, Learn-

ing) as follows:
Setup:

– To simulate the OASetup oracle B selects uniformly at random 2n keys {ki}ni=1,
{yi}ni=1 ∈ Zp and outputs the public parameters P = (κ, p, g1, g2,G1,G2) the
verification key VK = (vk1, vk2) = (g

b
∑n

i=1 ki
2 , ga2 ) and the secret key of the Ag-

gregator SKA = −
∑n
i=1 yi.



12 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

Learning phase

– A is allowed to query the random oracle H for any time interval . B constructs a
H− list and responds to A query as follows:
1. If query (t) already appears in a tuple H-tuple〈t : rt, coin(t), H(t)〉 of the

H− list it responds to A with H(t).
2. Otherwise it selects a random number rt ∈ Zp and flips a random

coin
$←{0, 1}. With probability p, coin(t) = 0 and B answers with H(t) =

grt1 . Otherwise if coin(t) = 1 then B responds with H(t) = gcrt1 and updates
the H− list with the new tuple H-tuple〈t : rt, coin(t), H(t)〉.

– WheneverA submits a query (t, uidi, xi,t) to theOAEncTag, B constructs a T− list

and responds as follows:
1. If at time interval t A has never queried before the OAEncTag oracle then:

(a) B initializes variable Σt = 0.
(b) B calls the simulated random oracle, receives the result for H(t) and ap-

pends the tuple H-tuple〈t : rt, coin(t), H(t)〉 to the H− list.
(c) If coin(t) = 1 then B stops the simulation.
(d) Otherwise it chooses the secret tag key ki where i = uidi to be used as

secret tag key from the set of {ki} keys, chosen by B in the Setup phase.
(e) B sends to A the tag σi,t = grtbki1 g

axi,t

1 = H(t)bkig
axi,t

1 , which is a valid
tag for the value xi,t. Notice that B can correctly compute the tag without
knowing a and b from the BCDH problem parameters ga1 , g

b
1.

(f) B chooses also a secret encryption key yi ∈ {yi}ni=1 ∈ Zp and computes
the ciphertext as ci,t = H(t)yig

xi,t

1 . The simulation is correct since A can
check that the sum

∑n
i=1 xi,t corresponds to the ciphertexts given by B

with its decryption key SKA = −
∑n
i=1 yi, considering the attacker has

made distinct encryption queries for all the n users in the scheme at a time
interval t.

(g) B sets Σt = Σt + xi,t and updates the T− list with the tuple:
〈t, uidi, xi,t, σi,t〉

2. Else if T− list contains i′ = uidi and xi,t = x′i,t then B fetches the corre-
sponding σi,t from the list and forwards it to A.

3. Else if T− list contains i′ = uidi and xi,t 6= x′i,t then B aborts.
4. Otherwise (0 < cntt < n), B looks to the H− list list for the tuple indexed

by t in order to get 〈t : rt, coin(t), H(t)〉. If the tuple does not exist then B
tosses a random coin and if coin(t) = 1 then B aborts. If coin(t) = 0 then
B computes the tag identically as in 1(d)(e)(f)(g) steps: It chooses a key ki
where i = uidi from the selected keys {ki}. It constructs the tag as σi,t =

grtbki1 g
axi,t

1 = H(t)bkig
axi,t

1 and the ciphertext as ci,t = H(t)yig
xi,t

1 . Finally
B sets Σt = Σt+xi,t, updates the T− list with the tuple: 〈t, uidi, xi,t, σi,t〉.

Now, when B receives the forgery (sumt
∗, σt

∗) at time interval t = t∗, it continues
if sumt

∗ 6= Σt. B first queries the H-tuple for time t∗ in order to fetch the appropriate
tuple.

– If coin(t∗) = 0 then B aborts.



PUDA – Privacy and Unforgeability for Data Aggregation 13

– If coin(t∗) = 1 then since A outputs a valid forged σt∗ at t∗, it is true that the
following equation should hold:

e(σt
∗, g2) = e(H(t∗), vk1)e(g

sumt
∗

1 , vk2)

which is true when A makes n queries for time interval t∗ for distinct users to the
OAEncTag oracle during the Learning phase. As such σt∗ = g

crtb
∑

ki
1 gasumt

∗

1

Finally B outputs:

e((
σt
∗

gasumt
∗

1

)
1

rt
∑

ki , ga2 ) = e((
g
crtb

∑
ki

1 gasumt
∗

1

gasumt
∗

1

)
1

rt
∑

ki , ga2 )

= e((g
crtb

∑
ki

1 )
1

rt
∑

ki , ga2 ) = e(gbc1 , g
a
2 ) = e(g1, g2)

abc

LetAAU1 the event whenA successfully forges a Type I forgery σt for our PUDA
protocol that happens with some non-negligible probability ε′. Then Pr[BBCDH] =
Pr[event0] Pr[event1] Pr[AAU2] = p(1 − p)qH−1ε′, for qH random oracle queries
with the probability Pr[coin(t) = 0] = p. As such we ended up in a contradiction as-
suming the hardness of the BCDH assumption and finally Pr[AAU1] ≤ ε1, where ε1 is
a negligible function.

Theorem 4. Our scheme guarantees aggregate unforgeability against a Type II
Forgery under the LEOM assumption in the random oracle model.

Proof. (Sketch) TheOAEncTag oracle behaves equivalently as the oracle in the LEOM as-
sumption. B chooses secret encryptions keys {eki}ni=1 and sends toA the secret decryp-
tion key SKA = −

∑n
i=1 eki. B receives also the public key (vk1 = g

∑n
i=1 γi

2 , vk2 = gδ2)
from the OLEOM oracle and forwards it to A along with the public parameters P =
(κ, p, g1 = α, g2,G1,G2). For a random oracle query H(t) the simulator B queries the
OLEOM with input (i 3 I, t, xi,t

$← Zp) which replies with (a = α ∧ b = βt ∧ c =
βγit α

xi,tδ). Finally B forwards to A, H(t) = βt. For queries (i = uid, t, xi,t) to the
OAEncTag oracle the simulator B returns σi,t = βγit α

δxi,t from the OLEOM oracle, as a
tag, and constructs the ciphertext as ci,t = βeki

t g
xi,t

1 . A is able to correctly verify the
sum, more precisely:

e(

n∏
i=1

σi,t, g2) = e(

n∏
i=1

βγit α
δxi,t , g2) = e(β

∑n
i=1 γi

t αδ
∑n

i=1 xi,t , g2)

= e(βt, g
∑n

i=1 γi
2 )e(α

∑n
i=1 xi,t , gδ2) = e(βt, vk1)e(α

∑n
i=1 xi,t , vk2)

Therefore, from the point of view of A, the tags σi,t = βγit α
δxi,t correspond to well

formed verifiable tags. Notice that if there is some non-negligible probability that A
outputs a valid Type II Forgery, then B breaks the LEOM assumption with some non-
negligible probability. This leads to a contradiction under the LEOM assumption and
accordingly, Pr[AAU2] ≤ ε2 for a negligible function ε2. We conclude that our scheme
guarantees aggregate unforgeability for a Type II Forgery under the LEOM assumption
in the random oracle model.



14 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

Participant Computation Communication

User 2 EXP+1MUL 2 · l
Aggregator (n− 1)MUL 2 · l
Data Analyzer 3PAIR+1 EXP+1MUL+1HASH -

Table 1: Performance of tag computation, proof construction and verification operations. l denotes the bit-size of the prime
number p.

To conclude with the analysis the success probabilities for the aggregate unforgeability
game Pr[AAU], are taken over the union of the success probabilities for the two type
of forgeries. As such

Pr[AAU] = Pr[AAU1] + Pr[AAU2] ≤ ε1(κ) + ε2(κ)

where ε1 and ε2 are negligible functions.

5.3 Performance Evaluation

In this section we analyze the extra overhead of ensuring the aggregate unforgeability
property in our PUDA instantiation scheme. First, we consider a theoretical evaluation
with respect to the mathematical operations a participant of the protocol be it user, Ag-
gregator or Data Analyzer has to perform with respect to the verifiability transcripts.
That is, the computation of the tag by each user, the proof by the Aggregator and the
verification of the proof by the Data Analyzer. We also present an experimental evalua-
tion that shows the practicality of out scheme.

To allow the Data analyzer to verify the correctness of computations performed
by an untrusted Aggregator each user selects uniformly and at random a secret key
tki ∈ Zp. The key dealer distributes to each user ga1 ∈ G1 and publishes ga2 ∈ G2,
which calls for two exponentiations: one in G1 and one in G2. At each time interval t
each user computes σi,t = H(t)tki(ga1 )

xi,t ∈ G1, which entails two exponentiations
and one multiplication in G1. For the computation of the σt the Aggregator is involved
in n − 1 multiplications in G1 :

∏n
i=1 σi,t. Finally the data analyzer verifies by check-

ing the equality: e(σt, g2)
?
= e(H(t), vk1)e(g

sumt
1 , vk2), which asks for three pairing

evaluations, one hash in G1, one exponentiation in G1 and one multiplication in GT
(see table 1). The efficiency of PUDA stems from the constant time verification with
respect to the size of the users. This is of crucial importance since the Data Analyzer
may not own computational power.

We implemented the verification functionalities of PUDA with the Charm cryp-
tographic framework [1, 2]. For pairing computations, it inherits the PBC [13] library
which is also written in C. All of our benchmarks are executed on Intel Core i5 CPU M
560 @ 2.67GHz× 4 with 8GB of memory, running Ubuntu 12.04 32bit. Charm uses 3
types of asymmetric pairings: MNT159, MNT201, MNT224. We run our benchmarks with
these three different types of asymmetric pairings. The timings for all the underlying
mathematical group operations are summarized in table 3. There is a vast difference on
the computation time of operations between G1 and G2 for all the different curves. The
reason is the fact that the bit-length of elements in G2 is much larger than in G1.



PUDA – Privacy and Unforgeability for Data Aggregation 15

XXXXXXXOperation
Pairings

MNT159 MNT201 MNT224

Tag 1.2ms 1.8ms 2.2ms
Verify 28.3ms 42.7ms 53.5ms

Table 2: Computational cost of PUDA operations with re-
spect to different pairings.

PPPPPOp.
Curve

MNT159 MNT201 MNT224

HASH in G1 0.139ms 0.346ms 0.296ms
HASH in G2 25.667ms 41.628ms 48.305ms
MUL in G1 0.004ms 0.0006ms 0.006ms
MUL in G2 0.040ms 0.051ms 0.054ms
MUL in GT 0.012ms 0.015ms 0.016ms
EXP in G1 0.072ms 0.092ms 0.099ms
EXP in G2 0.615ms 0.757ms 0.784ms
PAIR 7.077ms 10.674ms 13.105ms

Table 3: Average computation overhead of the underlying
mathematical group operations for different type of curves.

As shown in table 2, the computation of tags σi,t implies a computation overhead at
a scale of milliseconds with a gradual increase as the bit size of the underlying elliptic
curve increases. The data analyzer is involved in pairing evaluations and computations
at the target group independent of the size of the data-users.

6 Related Work

In [6], authors proposed a solution which is based on homomorphic message authen-
ticators in order to verify the computation of generic functions on outsourced data.
Each data input is authenticated with an authentication tag. A composition of the tags is
computed by the cloud in order to verify the correctness of the output of a program P .
Thanks to the homomorphic properties of the tags the user can verify the correctness of
the program. The main drawback of the solution is that the user in order to verify the
correctness of the computation has to be involved in computations that take exactly the
same time as the computation of the function f . Backes et al. [3] proposed a generic
solution for efficient verification of bounded degree polynomials in time less than the
evaluation of f . The solution is based on closed form efficient pseudorandom function
PRF . Contrary to our solution both solutions do not provide individual privacy and
they are not designed for a multi-user scenario.

Catalano et al. [8] employed a nifty technique to allow single users to verify com-
putations on encrypted data. The idea is to re-randomize the ciphertext and sign it with
a homomorphic signature. Computations then are performed on the randomized cipher-
text and the original one. However the aggregate value is not allowed to be learnt in
cleartext by the untrusted aggregator since the protocols are geared for cloud based
scenarios.

In the multi-user setting, Choi et al. [9] proposed a protocol in which multiple users
are outsourcing their inputs to an untrusted server along with the definition of a func-
tionality f . The server computes the result in a privacy preserving manner without
learning the result and the computation is verified by a user that has contributed to the
function input. The users are forced to operate in a non-interactive model, whereby they
cannot communicate with each other. The underlying machinery entails a novel proxy
based oblivious transfer protocol, which along with a fully homomorphic scheme and
garbled circuits allows for verifiability and privacy. However, the need of fully homo-



16 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

morphic encryption and garbled circuits renders the solution impractical for a real world
scenario.

7 Concluding Remarks

In this paper we designed and analyzed a protocol for private and unforgeable aggre-
gation. First we modeled its security and privacy requirements. In this setting a set of
trustworthy users submit data coupled with unforgeable tags. The purpose of the pro-
tocol is to allow a data analyzer to verify the correctness of computation performed by
a malicious Aggregator, without discovering the underlying data. The challenge of the
verification in aggregation protocols that we tackled with the PUDA protocol is the
fact that the privacy from the authentication tags is guaranteed by multiple indepen-
dent users. Our PUDA instantiation allows for public verification in constant time and
is provably secure under the DDH,BCDH and the new LEOM assumption in bilinear
pairing groups in the random oracle model.

Bibliography

[1] J. A. Akinyele, M. Green, and A. D. Rubin. Charm: A tool for rapid cryptographic
prototyping. http://www.charm-crypto.com/Main.html.

[2] J. A. Akinyele, M. Green, and A. D. Rubin. Charm: A framework for rapidly
prototyping cryptosystems. IACR Cryptology ePrint Archive, 2011:617, 2011.
http://eprint.iacr.org/2011/617.pdf.

[3] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In ACM Conference on Computer and Communications Security,
pages 863–874, 2013.

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

[5] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In Advances in Cryptology - CRYPTO 2004, 24th Annual
International CryptologyConference, Santa Barbara, California, USA, August 15-
19, 2004, Proceedings, pages 56–72, 2004.

[6] D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In
EUROCRYPT, pages 336–352, 2013.

[7] D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient
verification for polynomial functions. In Advances in Cryptology–CRYPTO 2014,
pages 371–389. Springer Berlin Heidelberg, 2014.

[8] D. Catalano, A. Marcedone, and O. Puglisi. Authenticating computation on
groups: New homomorphic primitives and applications. In Advances in Cryp-
tology - ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, pages 193–212, 2014.

[9] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifi-
able computation. In Proceedings of the 10th Theory of Cryptography Conference
on Theory of Cryptography, TCC’13, pages 499–518, Berlin, Heidelberg, 2013.
Springer-Verlag.



PUDA – Privacy and Unforgeability for Data Aggregation 17

[10] D. M. Freeman. Improved security for linearly homomorphic signatures: A
generic framework. In Public Key Cryptography - PKC 2012 - 15th International
Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Ger-
many, May 21-23, 2012. Proceedings, pages 697–714, 2012.

[11] M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of
time-series data. In Financial Cryptography, 2013.

[12] I. Leontiadis, K. Elkhiyaoui, and R. Molva. Private and dynamic time-series data
aggregation with trust relaxation. In Cryptology and Network Security - 13th
International Conference, CANS 2014, Heraklion, Crete, Greece, October 22-24,
2014. Proceedings, pages 305–320, 2014.

[13] B. Lynn. The stanford pairing based crypto library. http://crypto.
stanford.edu/pbc.

[14] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys
and C. Adams, editors, Selected Areas in Cryptography, volume 1758 of Lecture
Notes in Computer Science, pages 184–199. Springer Berlin Heidelberg, 2000.

[15] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving
aggregation of time-series data. In NDSS, 2011.

[16] V. Shoup. Lower bounds for discrete logarithms and related problems. In Ad-
vances in Cryptology - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceeding, pages 256–266, 1997.

A Security evidence for the LEOM Assumption

In this section we provide security evidence for the hardness of the new LEOM assump-
tion by presenting bounds on the success probabilities of an adversary A, which pre-
sumably breaks the assumption. We follow the theoretical generic group model (GGM)
as presented in [16]. Namely under the GGM framework an adversary A has access to
a black box that conceptualizes the underlying mathematical group G in which the as-
sumption takes place. A without knowing any details about the underlying group apart
from its order p is asking for encodings of its choice and the black box replies through
a random encoding function ξ that maps elements from G → Ξ as random bit strings
of size dlog2 pe. Since our construction operates on asymmetric bilinear pairing groups
G1,G2,GT we make use of three random encoding functions ξc, c ∈ [1, 2, T ] where
ξc : Gc → {0, 1}dlog2 pe.

Theorem 5. Suppose A is a polynomial probabilistic time adversary that solves the
LEOM assumption, making at most qG oracle queries for the underlying group oper-
ations on G1,G2,GT and the OLEOM oracle, all counted together. All the encodings
ξc, c ∈ [1, 2, T ] and δ, {γu}nu=1 ∈ Zp are chosen at random. Then the probability
ε2 that A on input (p, ξ1(1), ξ2(1), ξ1(a), ξ1(b), ξ1(c), ξ2(δ), ξ2(

∑n
i=1 γi)) to output

a tuple (ξ1(a), ξ1(b), ξ1(cf = ξ1(βt
∑n
u=1 γu + αδ

∑n
u=1 xu,t))) for which neither

xu′,t′ 6= xu,t nor A has made more than n distinct queries for a fixed time interval t, is
bounded as:

ε2 ≤
(qG + 16)2

p



18 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva

.

Proof. We assume a polynomial time simulator B that interacts with adversary A and
simulates the black box for the underlying groups G1,G2,GT . B maintains 3 lists of
tuples:

– L1 = {(F1,i, ξ1,i) : i = 1, · · · , τ1}
– L2 = {(F2,i, ξ2,i) : i = 1, · · · , τ2}
– LT = {(FT,i, ξT,i) : i = 1, · · · , τT }

where F1,i ∈ Zp[A,B, {Γu}nu=1, ∆,X], F2,i,Zp[∆,E] and FT,i ∈
Zp[A,B, {Γu}nu=1, ∆,E,X] are multivariate polynomial on the indeterminants
A,B, {Γu}nu=1, ∆,E,X . Hereafter we will denote inteterminants for polynomi-
als with capital letters and coefficients with lowercase. The random encodings
ξc,i, c ∈ [1, 2, T ] of each list Lc, c ∈ [1, 2, T ] are provided to the adversary A at each
step τ , where τ = τ1 + τ2 + τT + 4. The lists are initialized at step τ = 0 by setting
τ1 = 1, τ2 = 3, τT = 0 and assigning F1,1 = 1, F2,1 = 1, F2,2 =

∑n
u=1 Γu, F2,3 = ∆,

that corresponds to the generators g1, g2 and the public information g
∑n

u=1 γu
2 , gδ2 . A

has access to the random encodings ξ1,1, ξ2,1, ξ2,2, ξ2,3 respectively.
In what follows we describe how B simulates the groups operations in G1,G2,GT

and the oracle responses to OLEOM. We first assume that before A queries the oracle or
asks for group operations it has already asked for the random encodings of the elements
involved in the operations. Consequently whenA asks for operations in Gc, c ∈ [1, 2, T ]
for some operands ξc, c ∈ [1, 2, T ], B checks if ξc, c ∈ [1, 2, T ] already exists in Lc, c ∈
[1, 2, T ] and aborts if this happens.

– Group operations: A provides B two operands ξc,1, ξc,2, c ∈ [1, 2, T ] and a bit
defining multiplication or division. B starts by incrementing τc+ = 1, c ∈ [1, 2, T ].
It the computes F1,τc = F1,i + F1,j , where 1 ≤ i, j ≤ τc if the operation bit
is for multiplication or Fc,τc = F1,i − F1,j , where 1 ≤ i, j ≤ τc if it is for
division. If the new polynomial Fc,τc is equal to another polynomial Fc,l for some
l ≤ τc, c ∈ [1, 2, T ] in listLc, c ∈ [1, 2, T ] thenB fetches the corresponding ξc,l and
forwards it to A, otherwise it chooses a fresh random ξc,τc ∈ {0, 1}log2 p and gives
it to A. B finally appends to Lc, c ∈ [1, 2, T ] the pair (Fc,τc , ξc,τc), c ∈ [1, 2, T ].

– Pairing: A pairing operation in GT consists of two random encodings ξ1,i, ξ2,j with
1 ≤ i ≤ τ1 and 1 ≤ j ≤ τ2. B first increments the counter τT+ = 1. Afterwards it
computes the pairing as the multiplication of the appropriate polynomials: FT,τT =
F1,τ1 ·F2,τ2 . If the same polynomial already exists inLT : FT,τT = FT,l, 1 ≤ l ≤ τT
then B clones the random string ξT,l, otherwise it chooses a fresh random ξT,τT ∈
{0, 1}log2 p and gives it to A. B finally appends to LT the pair (FT,τT , ξT,τT ).

– OLEOM: B increments a counter τO by 1 and sets τ1+ = 3. A inputs (u, t, xu,t).
B computes the polynomials F1,τ1−2

= At, F1,τ1−1
= At(Y ), F1,τ1 = (BΓu +

A∆X) for the indeterminants B,Γu, A,∆,X . If any of the F1,τ1−2 , F1,τ1−1 , F1,τ1

already exists in L1 then B clones the associated random encodings ξ1,l
for some l ∈ [1, · · · , τ1]. Otherwise it creates three random encodings
ξ1,τ1−2

, ξ1,τ1−1
, ξ1,τ1 ∈ {0, 1}log2 p and forwards them to A. It also stores the pairs

(F1,τ1−2
, ξ1,τ1−2

), (F1,τ1−1
, ξ1,τ1−1

), (F1,τ1 , ξ1,τ1) in L1 list.



PUDA – Privacy and Unforgeability for Data Aggregation 19

Eventually A outputs a forgery (mf , ξ1,fa, ξ1,fy, ξ1,fxy). If A’s forgery is valid
then it must hold:

e(
∏
ct, g2)

e(βt, g
∑n

u=1 γu
2 )e(a

∑n
u=1mu , gδ2)

= 1 ∈ GT (1)

We show now that this does not happen always. Indeed w.l.o.g we have the follow-
ing form for each polynomial in the three lists:

– F1,i = z0,i + z1,ihBΓu,i + z2,iA∆X , for coefficients z0,i, z1,i, h, z2,i.
– F2,i = w0,i + w1,i∆+ w2,iE, for coefficients w0,i, w1,i, w2,i.
– FT,i = y0,i + η1,i∆hBΓu,i + η2,iEhBΓu,i + ρ1,iA∆

2X + ρ2,iA∆XE, for coef-
ficients y0,i, η1,i, h, η2,i, ρ1,i, ρ2,i.

Equation (1) following the aforementioned presentation of each polynomial can be
rewritten as

Ff = FT,k − FT,lFT,o (2)

for indexes k, l, o. Simplifying the equation, since it is equal to 0, then the second part
consists of a polynomial with determinants (∆Γ )2, (EΓ )2, A∆4X2, (A∆XE)2 and
the first part with determinants (∆Γ,EΓ,A∆2X,A∆XE). Since there are no common
terms, then all are canceled out and we are left with y0,k = y0,ly0,o. As such Ff = 0
only when y0,k = y0,ly0,o.
B assigns random values (α, β, γ, δ, e, x) for the indeterminants A,B, Γ,∆,E,X

and in order for A to win in the game, it should find two identical polynomial in any of
the lists L1,L2,LT or Ff = 0. As such the success probability of A is bounded by the
probability that one at least of the following equations holds:

1. F1,i(α, β, γ, δ, x)− F1,j(α, β, γ, δ, x) = 0 : i 6= j
2. F2,i(δ, e)− F2,j(δ, e) = 0 : i 6= j
3. FT,i(α, β, γ, δ, x)− FT,j(α, β, γ, δ, x) = 0 : i 6= j
4. Ff,i(α, β, γ, δ, e, x)− Ff,j(α, β, γ, δ, e, x) = 0 : i 6= j

F1,i degree is at most 3, F2,i at most 1, and FT,i at most 4. . As such they vanish with
probability 3

p ,
1
p ,

4
p respectively, from the Schwartz-Zippel theorem. As such summing

for all possible pairs i, j for each of the aforementioned polynomials the success prob-
ability of A is bounded by:

ε2 ≤
(
τ1
2

)
3

p
+

(
τ2
2

)
1

p
+

(
τT
2

)
4

p
+

4

p
≤ (τ1 + τ2 + τT + 12)2

p

As τ1 + τ2 + τT ≤ qG + 4 then ε2 ≤ (qG+16)2

p


