Skip to main content

EvoSphere: The World of Robot Evolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9477))

Abstract

In this paper I describe EvoSphere, a tangible realization of the general Evolution of Things concept. EvoSphere can be used as a research platform to study the evolution of intelligent machines for practical as well as theoretical purposes. On the one hand, it can be used to develop robots that are hard to obtain with traditional design and optimization techniques and it can deliver original solutions that are unlikely to be conceived by a human designer. On the other hand, EvoSphere forms an evolving ecosystem that enables fundamental research into evolution and embodied intelligence. The use of real hardware is a pivotal feature as it avoids the reality gap and guarantees that the evolved solutions are physically feasible. On the long term, EvoSphere technology can pave the way for robot populations that evolve ‘in the wild’ and can adapt to unforeseen and changing circumstances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://tedxtalks.ted.com/video/TEDxDanubia-2011-goston-Eiben-T.

  2. 2.

    https://www.cyberbotics.com.

  3. 3.

    There exist systems that mix the two in a certain way. The idea is that the principal method is a traditional digital EA with simulated fitness evaluations, but every now and then an individual in the population is physically constructed and evaluated in the real world.

  4. 4.

    The paper [11] illustrated the components of this framework one by one using the modular robots of the Symbrion project. However, Symbrion was not aiming at physically evolving morphologies and the components of the ToL have not been integrated.

  5. 5.

    The alternative is offline evolution during the design stage of the robots. See [8] and Chap. 17 in [10] for a discussion.

  6. 6.

    http://www.karlsims.com/evolved-virtual-creatures.html.

  7. 7.

    A simple example is to use NN controllers with inheritable topology and learnable weights.

  8. 8.

    These steps may need to be revised for radically different types of robots, for instance soft robots with novel forms of control and actuation, but there will always be a list of such steps.

References

  1. Auerbach, J.E., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P.R., Loshchilov, I., Daler, L., Floreano, D.: Robogen: robot generation through artificial evolution. In: Sayama, H., Rieffel, J., Risi, S., Doursat, R., Lipson, H. (eds.) Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 136–137. The MIT Press (2014)

    Google Scholar 

  2. Auerbach, J.E., Bongard, J.C.: Environmental influence on the evolution of morphological complexity in machines. PLOS Comput. Biol. 10(1), e1003399 (2014)

    Article  Google Scholar 

  3. Bentley, P., Corne, D.: Creative Evolutionary Systems. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  4. Bentley, P.J. (ed.): Evolutionary Design by Computers. Morgan Kaufmann, San Francisco (1999)

    MATH  Google Scholar 

  5. Bongard, J.C., Lipson, H.: Evolved machines shed light on robustness and resilience. Proc. IEEE 302(5), 899–914 (2014)

    Article  Google Scholar 

  6. Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-Functional Machines: The New Species, pp. 237–258. Springer, Tokyo (2003)

    Chapter  Google Scholar 

  7. Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS One 10(6), e0128444 (2015)

    Article  Google Scholar 

  8. Eiben, A.E.: In Vivo Veritas: towards the evolution of things. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 24–39. Springer, Heidelberg (2014)

    Google Scholar 

  9. Eiben, A.E., Kernbach, S., Haasdijk, E.: Embodied artificial evolution - artificial evolutionary systems in the 21st century. Evol. Intell. 5(4), 261–272 (2012)

    Article  Google Scholar 

  10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series, 2nd edn. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  11. Eiben, A.E., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell, A.M., Winfield, A.: The triangle of life: evolving robots in real-time and real-space. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances In Artificial Life, ECAL 2013, pp. 1056–1063. MIT Press, (2013)

    Google Scholar 

  12. Eiben, A.E., Smith, J.: From evolutionary computation to the evolution of things. Nature 521(7553), 476–482 (2015)

    Article  Google Scholar 

  13. Floreano, D., Keller, L.: Evolution of adaptive behaviour in robots by means of darwinian selection. PLOS Biol. 8(1), e1000292 (2010)

    Article  Google Scholar 

  14. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) Advances in Artificial Life. Lecture Notes in Computer Science, pp. 704–720. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  15. Komosinski, M.: The framsticks system: versatile simulator of 3d agents and their evolution. Kybernetes 32(1/2), 156–173 (2003)

    Article  Google Scholar 

  16. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)

    Article  Google Scholar 

  17. Long, J.: Darwin’s Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology. Basic Books, New York (2012)

    Google Scholar 

  18. Lund, H.: Co-evolving control and morphology with LEGO robots. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species, pp. 59–79. Springer, Tokyo (2003)

    Chapter  Google Scholar 

  19. Nehmzow, U.: Physically embedded genetic algorithm learning in multi-robot scenarios: the pega algorithm. In: Prince, C.G., Demiris, Y., Marom, Y., Kozima, H., Balkenius, C. (eds.) Proceedings of The Second International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Number 94 in Lund University Cognitive Studies, LUCS, Edinburgh, UK, August 2002

    Google Scholar 

  20. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think. MIT Press, Cambridge (2006)

    Google Scholar 

  21. Simoes, E.D.V., Dimond, K.R.: An evolutionary controller for autonomous multi-robot systems. In: IEEE International Conference on Systems, Man, and Cybernetics, 1999. IEEE SMC 1999 Conference Proceedings, vol. 6, pp. 596–601. IEEE (1999)

    Google Scholar 

  22. Sims, K.: Evolving 3D morphology and behavior by competition. In: Artificial Life IV, pp. 28–39 (1994)

    Google Scholar 

  23. Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots - mechanical design of self-reconfiguring modular robots for adaptive furniture. In: IEEE International Conference on Robotics and Automation (ICRA 2009), pp. 4259–4264. IEEE (2009)

    Google Scholar 

  24. Usui, Y., Arita, T.: Situated and embodied evolution in collective evolutionary robotics. In: Proceedings of the 8th International Symposium on Artificial Life and Robotics, pp. 212–215 (2003)

    Google Scholar 

  25. Waibel, M., Floreano, D., Keller, L.: A quantitative test of Hamilton’s rule for the evolution of altruism. PLOS Biol. 9(5), e1000615 (2011)

    Article  Google Scholar 

  26. Watson, R., Ficici, S., Pollack, J.B.: Embodied evolution: distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39(1), 1–18 (2002)

    Article  Google Scholar 

  27. Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.E.: A robotic ecosystem with evolvable minds and bodies. In: 2014 IEEE International Conference on Evolvable Systems (ICES), pp. 165–172. IEEE (2014)

    Google Scholar 

  28. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7039), 163–164 (2005)

    Article  Google Scholar 

  29. Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H.: Evolved and designed self-reproducing modular robotics. IEEE Trans. Robot. 23(2), 308–319 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Eiben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Eiben, A.E. (2015). EvoSphere: The World of Robot Evolution. In: Dediu, AH., Magdalena, L., Martín-Vide, C. (eds) Theory and Practice of Natural Computing. TPNC 2015. Lecture Notes in Computer Science(), vol 9477. Springer, Cham. https://doi.org/10.1007/978-3-319-26841-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26841-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26840-8

  • Online ISBN: 978-3-319-26841-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics