Skip to main content

Reconstructing Statistics of Promoter Switching from Reporter Protein Population Snapshot Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9271))

Abstract

The use of fluorescent reporter proteins is an established experimental approach for dynamic quantification of gene expression over time. Yet, the observed fluorescence levels are only indirect measurements of the relevant promoter activity. At the level of population averages, reconstruction of mean activity profiles from mean fluorescence profiles has been addressed with satisfactory results. At the single cell level, however, promoter activity is generally different from cell to cell. Making sense of this variability is at the core of single-cell modelling, but complicates the reconstruction task. Here we discuss reconstruction of promoter activity statistics from time-lapse population snapshots of fluorescent reporter statistics, as obtained e.g. by flow-cytometric measurements of a dynamical gene expression experiment. After discussing the problem in the framework of stochastic modelling, we provide an estimation method based on convex optimization. We then instantiate it in the fundamental case of a single promoter switch, reflecting a typical random promoter activation or deactivation, and discuss estimation results from in silico experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)

    Article  Google Scholar 

  2. Bowsher, C.G., Voliotis, M., Swain, P.S.: The fidelity of dynamic signaling by noisy biomolecular networks. PLoS Comput. Biol. 9(3), e1002965 (2013)

    Article  MathSciNet  Google Scholar 

  3. Cinquemani, E.: Reconstruction of promoter activity statistics from reporter protein population snapshot data. In: Accepted for the 54th IEEE Conference on Decision and Control (2015)

    Google Scholar 

  4. Cinquemani, E., Milias-Argeitis, A., Summers, S., Lygeros, J.: Local identification of piecewise deterministic models of genetic networks. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 105–119. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Cox, D., Isham, V.: Point Processes. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Taylor & Francis (1980)

    Google Scholar 

  6. Finkenstädt, B., Heron, E.A., Komorowski, M., Edwards, K., Tang, S., Harper, C.V., Davis, J.R.E., White, M.R.H., Millar, A.J., Rand, D.A.: Reconstruction of transcriptional dynamics from gene reporter data using differential equations. Bioinformatics 24(24), 2901–2907 (2008)

    Article  Google Scholar 

  7. Friedman, N., Cai, L., Xie, X.S.: Linking stochastic dynamics to population distribution: An analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006)

    Article  Google Scholar 

  8. Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000)

    Article  Google Scholar 

  9. Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P., Allgower, F.: Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinf. 12(1), 125 (2011)

    Article  MATH  Google Scholar 

  10. Hespanha, J.: Modelling and analysis of stochastic hybrid systems. IEE Proc. Control Theory Appl. 153(5), 520–535 (2006)

    Article  MathSciNet  Google Scholar 

  11. de Jong, H., Ranquet, C., Ropers, D., Pinel, C., Geiselmann, J.: Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC Syst. Biol. 4(1), 55 (2010)

    Article  Google Scholar 

  12. Kaern, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Gen. 6, 451–464 (2005)

    Article  Google Scholar 

  13. Komorowski, M., Finkenstädt, B., Harper, C., Rand, D.: Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinf. 10(1), 343 (2009)

    Article  Google Scholar 

  14. Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)

    Article  Google Scholar 

  15. Lindquist, A., Picci, G.: Linear Stochastic Systems - A Geometric Approach to Modeling, Estimation and Identification. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  16. Milias-Argeitis, A., Stewart-Ornstein, S.S.J., Zuleta, I., Pincus, D., El-Samad, H., Khammash, M., Lygeros, J.: In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechnol. 29, 1114–1116 (2011)

    Article  Google Scholar 

  17. Munsky, B., Trinh, B., Khammash, M.: Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol. 5, 318 (2009)

    Article  Google Scholar 

  18. Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339(6119), 584–587 (2013)

    Article  Google Scholar 

  19. Ocone, A., Haghverdi, L., Mueller, N.S., Theis, F.J.: Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31(12), i89–i96 (2015)

    Article  Google Scholar 

  20. Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 1831–1839. Curran Associates, Inc., (2010)

    Google Scholar 

  21. Parise, F., Ruess, J., Lygeros, J.: Grey-box techniques for the identification of a controlled gene expression model. In: Proceedings of the ECC (2014)

    Google Scholar 

  22. Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2(2), 157–175 (2005)

    Article  Google Scholar 

  23. Porreca, R., Cinquemani, E., Lygeros, J., Ferrari-Trecate, G.: Identification of genetic network dynamics with unate structure. Bioinformatics 26(9), 1239–1245 (2010)

    Article  MATH  Google Scholar 

  24. Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans. Model. Comput. Simul. 25(2), 8 (2015)

    Article  MathSciNet  Google Scholar 

  25. Ruess, J., Milias-Argeitis, A., Summers, S., Lygeros, J.: Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135(16), 165102 (2011)

    Article  Google Scholar 

  26. Samad, H.E., Khammash, M., Petzold, L., Gillespie, D.: Stochastic modelling of gene regulatory networks. Int. J. Robust Nonlin. Contr. 15, 691–711 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: Stochkit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)

    Article  Google Scholar 

  28. Stefan, D., Pinel, C., Pinhal, S., Cinquemani, E., Geiselmann, J., de Jong, H.: Inference of quantitative models of bacterial promoters from time-series reporter gene data. PLoS Comput. Biol. 11(1), e1004028 (2015)

    Article  Google Scholar 

  29. Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.: Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011)

    Article  Google Scholar 

  30. Taniguchi, Y., Choi, P.J., Li, G.W., Chen, H., Babu, M., Hearn, J., Emili, A., Xie, X.S.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010)

    Article  Google Scholar 

  31. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. PNAS 98(15), 8614–8619 (2001)

    Article  Google Scholar 

  32. Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S., Batt, G., Hersen, P.: Long-term model predictive control of gene expression at the population and single-cell levels. PNAS 109(35), 14271–14276 (2012)

    Article  Google Scholar 

  33. Wahba, G.: Spline models for observational data. In: SIAM (1990)

    Google Scholar 

  34. Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. PNAS 21(109), 8340–8345 (2012)

    Article  Google Scholar 

  35. Zechner, C., Unger, M., Pelet, S., Peter, M., Koeppl, H.: Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods 11, 197–202 (2014)

    Article  Google Scholar 

  36. Zulkower, V., Page, M., Ropers, D., Geiselmann, J., de Jong, H.: Robust reconstruction of gene expression profiles from reporter gene data using linear inversion. Bioinformatics 31(12), i71–i79 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Cinquemani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cinquemani, E. (2015). Reconstructing Statistics of Promoter Switching from Reporter Protein Population Snapshot Data. In: Abate, A., Šafránek, D. (eds) Hybrid Systems Biology. HSB 2015. Lecture Notes in Computer Science(), vol 9271. Springer, Cham. https://doi.org/10.1007/978-3-319-26916-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26916-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26915-3

  • Online ISBN: 978-3-319-26916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics