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ABSTRACT
When designing genetic circuits, the typical primitives used
in major existing modelling formalisms are gene interaction
graphs, where edges between genes denote either an acti-
vation or inhibition relation. However, when designing ex-
periments, it is important to be precise about the low-level
mechanistic details as to how each such relation is imple-
mented. The rule-based modelling language Kappa allows
to unambiguously specify mechanistic details such as DNA
binding sites, dimerisation of transcription factors, or co-
operative interactions. However, such a detailed description
comes with complexity and computationally costly execu-
tion. We propose a general method for automatically trans-
forming a rule-based program, by eliminating intermediate
species and adjusting the rate constants accordingly. Our
method consists of searching for those interaction patterns
known to be amenable to equilibrium approximations (e.g.
Michaelis-Menten scheme). The reduced model is efficiently
obtained by static inspection over the rule-set, and it rep-
resents a particular theoretical limit of the original model.
The Bhattacharyya distance is proposed as a metric to esti-
mate the reduction error for a given observable. The tool is
tested on a detailed rule-based model of a λ-phage switch,
which lists 96 rules and 16 agents. The reduced model has
11 rules and 5 agents, and provides a dramatic reduction in
simulation time of several orders of magnitude.

1. INTRODUCTION
One of the main goals of synthetic biology is to design and
control genetic circuits in an analogous way to how elec-
tronic circuits are manipulated in human made computer
systems. The field has demonstrated success in engineering
simple genetic circuits that are encoded in DNA and perform
their function in the cellular environment [20], [24]. How-
ever, there remains a need for rigorous quantitative charac-
terisation of such small circuits and their mutual compati-
bility [33], which in electronic circuits is easily guaranteed
by impedance matching. The important ingredient towards
such characterisation is having an appropriate language for

capturing model requirements, for prototyping the circuits,
and for predicting their quantitative behaviour before com-
mitting to the time-intensive experimental implementation.

Quantitative modelling of biomolecular systems is particu-
larly challenging, because one deals with stochastic, highly
dimensional, non-linear dynamical systems. For these rea-
sons, modellers often immediately apply ad-hoc simplifica-
tions which neglect the mechanistic details, but allow to pre-
dict (simulate) the system’s behaviour as a function of time.
For example, the fact that protein A activates protein P is
often modelled immediately in terms of a reactionA→ A+P

with the Hill kinetic coefficient (e.g. k[A]n

1+k[A]n
), while the

mechanism in fact includes the formation of a macromolec-
ular complex and its binding to a molecular target. While
such models are easier to execute, the simplification makes
models hard to edit or refine. For example - a new exper-
imental insight about an interaction mechanism cannot be
easily integrated properly into the model, since several mech-
anistic steps are merged into a single kinetic rate. Moreover,
an abstract model does not provide precise enough design
guide for circuit synthesis, and sometimes, only the more
detailed models explain certain behaviours (e.g., in [15], it is
shown that only when incorporating the mRNA, the model
explains certain experimentally observed facts).

Rule-based languages, such as Kappa [18] or BioNetGen [4],
are designed to naturally capture the protein-centric and
concurrent nature of biochemical signalling: the internal
protein structure is maintained in form of a site-graph, and
interactions can take place upon testing only patterns, local
contexts of molecular species. A site-graph is a graph where
each node contains different types of sites, and edges can
emerge from these sites. Nodes typically encode proteins
and their sites are the protein binding-domains or modi-
fiable residues; the edges indicate bonds between proteins.
Then, every species is a connected site-graph, and a reaction
mixture is a multi-set of connected site-graphs. The execu-
tions of rule-based models are traces of a continuous-time
Markov chain (CTMC), defined according to the principles
of chemical kinetics. In general, rule-based models are ad-
vantageous to the classical reaction models (Petri nets) for
two major reasons. First, the explicit graphical represen-
tation of molecular complexes makes models easy to read,
write, edit or compose (by simply merging two collections
of rules). For example, the reaction of dimerization between
two lambda CI molecules is classically written 2CI → CI2,
where the convention is that CI represents a free monomer,
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and CI2 represents a free dimer. On the other hand, the
same reaction written in Kappa amounts to:

’CI2:’ CI(ci,or), CI(ci,or)↔ CI(ci!1,or), CI(ci!1,or)@k2+, k2−,

where the binding sites ci and or are binding sites of the
protein CI, and CI(ci!1,or) denotes that the identifier of the
rule-based bond account for the physical interaction between
the two CI monomers, is 1. Secondly, a rule set can be exe-
cuted, or subjected to formal static analysis: for example, it
provides efficient simulations [11], [29] automated answers
about the reachability of a particular molecular complex
[13], or about causal relations between rule executions [10].

The downside of incorporating too many mechanistic details
in the model, is that they lead to computationally costly
execution. For this reason, we define and implement an effi-
cient method for automatically detecting and applying equi-
librium approximations. As a result, one obtains a smaller
model, where some species are eliminated, and the kinetic
rates are appropriately adjusted. In this way, the experimen-
talist can choose to obtain the predictions more efficiently
but less accurately, however without losing track of the un-
derlying low-level mechanisms.

To the best of our knowledge, there exist no efficient meth-
ods to quantify the error induced by time-scale separation
approximations for biochemical reaction networks. The bot-
tleneck is the complexity of the original system, whose be-
haviour is computationally costly to analyse - often even
to run a single simulation trace. The correctness of our ap-
proach relies on the fact that the approximate model is equal
to the original one, in the artificial limit where certain reac-
tions happen at a sufficiently larger time-scale than others,
and they are seemingly equilibrated shortly upon the reac-
tions initiate. Faced with designing or modelling biological
circuits with many connections and highly heterogeneous
hardware, the ability of predicting solutions that lack a pre-
cise error measurement is of secondary importance. What
is desirable is to have a prototype or model of a circuit that
displays the desired behaviour at a qualitative level, which
later on can be further improved. Furthermore, most ki-
netic rates are rarely precisely determined experimentally,
and hence precise quantitative error estimates are not nec-
essarily relevant and on top are time consuming, when faced
with imprecise input characteristics of the underlying pro-
totype model.

Implementation and testing. The tool is implemented
in OCaml, and it is tested on a detailed rule-based model of
a λ-phage switch [37], [38]. Simulations were carried out on
the complete chemical reaction genetic circuit model which
contains 96 rules, 16 agents and 61 species. The model is
reduced to only 11 rules and 5 agents. It is worthwhile em-
phasising that our reduction method is general – applicable
to any rule-set, and that the reduced model is obtained al-
most instantaneously.

Related work. Our method is inspired from the work pre-
sented in [36] and [32], with the adaptations which arise
due to the differences between the reaction lists and the
rule-based language. Apart from rule-based models, other
formalisms were proposed for characterisation of synthetic
devices, such as, e.g., linear temporal logic [2]. In a broader
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T(a!1),Op(x!1) $ T(a!1), Op(x!1), P()

Figure 1: An example of a rule-based model. The
transcription factor T binds to the operator and ini-
tiates the production of protein P .

context, the principle of obtaining conclusions about sys-
tem’s dynamics by analyzing their model description, origi-
nates from, and is exhaustively studied in the field of formal
program verification and model checking [7], [6], while it
is recently gaining recognition in the context of programs
used for modeling biochemical networks. An example is the
related work of detecting fragments for reducing the deter-
ministic or stochastic rule-based models [16], [19], [17], de-
tecting the information flow for ODE models of biochemical
signaling [26, 5], or the reaction network theory [8]. Related
works on systematic model reduction techniques are based
on separating time-scales [28, 39, 30, 23, 29], or they propose
numerical algorithms which focus of efficiently obtaining the
evolution of the probability distribution over time (the mas-
ter equation) [34, 27].

Paper outline. Section 2 introduces two concepts: (i) the
classical stochastic and deterministic model of chemical re-
action networks, and (ii) the rule-based modelling language
Kappa. Section 3 illustrates the equilibrium approximation
schemes (the generalized Michaelis-Menten and fast dimeri-
sation) and discusses the theoretical guarantees about the
approximate system. In Section 4, we outline the algorithms
for detecting the approximation schemes (operator site re-
duction and dimerisation reduction). Finally, in Section 5,
we describe the λ-phage model and we compare the results
and the CPU time for the original and approximate model.

2. PRELIMINARIES
2.1 Stochastic chemical reaction networks
For a well-mixed reaction system with molecular species S =
{S1, . . . , Sn}, the state of a system can be represented as a
multi set of those species, denoted by x = (x1, ..., xn) ∈ Nn.
The dynamics of such as system is determined by a set of
reactions R = {r1, . . . , rr}. Each reaction is a triple rj ≡
(aj ,νj , cj) ∈ Nn ×Nn ×R≥0, written down in the following
form:

a1jS1, . . . , anjSn
kj→ a′1jS1, . . . , a

′
njSn,

such that a′ij = aij + νij .

The vectors aj and a′j are often called respectively the con-
sumption and production vectors due to reaction rj , and kj is
the kinetic rate of reaction rj . If the reaction rj occurs, after
being in state x, the next state will be x′ = x+νj . This will
be possible only if xi ≥ aji for all i = 1, . . . , n. Under certain
physical assumptions [21], the species multiplicities follow
a continuous-time Markov chain (CTMC) {X(t)}, defined



over the state space S = {x | x is reachable from x0 in R}.
Hence, the probability of moving to the state x +νj from x
after time ∆ is

P(X(t+ ∆) = x + νk | X(t) = x) = λj(x)∆ + o(∆),

with λj the propensity of jth reaction, assumed to follow
the principle of mass-action: λj(x) = kj

∏n
i=1

(
xi
aij

)
. The

binomial coefficient
(
xi
aij

)
reflects the probability of choosing

aij molecules of species Si out of xi available ones.

2.2 Deterministic limit
In the continuous, deterministic model of a chemical reaction
network, the state z(t) = (z1, . . . , zn)(t) ∈ Rn is represented
by listing the concentrations of each species. The dynamics
is given by a set of differential equations in form

d

dt
zi = νij

r∑
j=1

cj

n∏
i=1

zi(t)
aij , (1)

where cj is a deterministic rate constant, computed from
the stochastic one and the volume N from cj = kjN

|aj |−1

(|x| denotes the 1-norm of the vector x). The deterministic
model is a limit of the stochastic model when all species in a
reaction network are highly abundant. Denote by Rj(t) the
number of times that the j-th reaction had happened until
the time t. Then, the state of the stochastic model at time
t is

X(t) = X(0) +

r∑
j=1

Rj(t)νj . (2)

The value of Rj(t) is a random variable, that can be de-
scribed by a non-homogenous Poisson process, with parame-
ter
∫ t
0
λj(X(s))ds, that is, Rj(t) = ξj(

∫ t
0
λj(X(s))ds). Then,

the evolution of the state X(t) is given by the expression

X(t) = X(0) +

r∑
j=1

ξj

(∫ t

0

λj(X(s))ds

)
νj . (3)

By scaling the species multiplicities with the volume: Zi(t) =
Xi(t)/N , adjusting the propensities accordingly, in the limit
of infinite volume N → ∞, the scaled process Z(t) follows
an ordinary differential equation (1) [31].

It is worth mentioning here that the above scaling from
stochastic to the deterministic model is a special case of
a more general framework presented in [30], referred to as
the multiscale stochastic reaction networks. Intuitively, the
deterministic model is a special case where all species are
scaled to concentrations and reaction rates are scaled always
in the same way, depending on their arity. The reductions
shown in this paper will be based on a variant of multiscale
framework, where some species are scaled to concentrations
and others are kept in copy numbers, and where reaction
rates have varying scales as well.

2.3 Rule-based Models
In this section, we introduce the rule-based modeling lan-
guage Kappa, which is used to specify chemical reaction
networks, by explicitly denoting chemical species in form
of site-graphs. A simple example of a Kappa model is pre-
sented in Fig. 1.

For the stochastic semantics of Kappa, that is a continuous-
time Markov chain (CTMC) assigned to a rule-based model,
we refer to [12] or [17]. Intuitively, any rule-based system can
be expanded to an equivalent reaction system (with poten-
tially infinitely many species and reactions). The stochastic
semantics of a Kappa system is then the CTMC {X(t)} as-
signed to that equivalent reaction system. Even though the
semantics of a Kappa system is defined as the semantics
of the equivalent reaction system, in practice, using Kappa
models can be advantageous for several reasons - they are
easy to read, write, edit or compose, they can compactly
represent potentially infinite set of reactions or species, and,
most importantly, they can be symbolically executed.

We present Kappa in a process-like notation. We start with
an operational semantics.

Given a set X, ℘(X) denotes the power set of X (i.e. the set
of all subsets of X). We assume a finite set of agent names
A, representing different kinds of proteins; a finite set of sites
S, corresponding to protein domains; a finite set of internal
states I, and Σι, Σβ two signature maps from A to ℘(S),
listing the domains of a protein which can bear respectively
an internal state and a binding state. We denote by Σ the
signature map that associates to each agent name A ∈ A
the combined interface Σι(A) ∪ Σβ(A).

Definition 1. (Kappa agent) A Kappa agent A(σ) is de-
fined by its type A ∈ A and its interface σ. In A(σ),
the interface σ is a sequence of sites s in Σ(A), with in-
ternal states (as subscript) and binding states (as super-
script). The internal state of the site s may be written as
sε, which means that either it does not have internal states
(when s ∈ Σ(A) \ Σι(A)), or it is not specified. A site that
bears an internal state m ∈ I is written sm (in such a case
s ∈ Σι(A)). The binding state of a site s can be specified as
sε, if it is free, otherwise it is bound (which is possible only
when s ∈ Σβ(A)). There are several levels of information
about the binding partner: we use a binding label i ∈ N
when we know the binding partner, or a wildcard bond −
when we only know that the site is bound. The detailed
description of the syntax of a Kappa agent is given by the
following grammar:

a ::= N(σ) (agent)
N ::= A ∈ A (agent name)
σ ::= ε | s,σ (interface)
s ::= nλι (site)
n ::= x ∈ S (site name)
ι ::= ε | m ∈ I (internal state)
λ ::= ε | − | i ∈ N (binding state)

We generally omit the symbol ε.

Definition 2. (Kappa expression) Kappa expression E is
a set of agents A(σ) and fictitious agents ∅. Thus the syntax
of a Kappa expression is defined as follows:

E ::= ε | a , E | ∅ , E.

The structural equivalence ≡, defined as the smallest binary
equivalence relation between expressions that satisfies the



rules given as follows

E , A(σ,s,s′,σ′) , E′ ≡ E , A(σ,s′,s,σ′) , E′

E , a , a′ , E′ ≡ E , a′ , a , E′

E ≡ E , ∅
i, j ∈ N and i does not occur in E

E[i/j] ≡ E
i ∈ N and i occurs only once in E

E[ε/i] ≡ E

stipulates that neither the order of sites in interfaces nor the
order of agents in expressions matters, that a fictitious agent
might as well not be there, that binding labels can be injec-
tively renamed and that dangling bonds can be removed.

Definition 3. (Kappa pattern,mixture and species)
A Kappa pattern is a Kappa expression which satisfies the
following five conditions: (i) no site name occurs more than
once in a given interface; (ii) each site name s in the interface
of the agent A occurs in Σ(A); (iii) each site s which occurs
in the interface of the agent A with a non empty internal
state occurs in Σι(A); (iv) each site s which occurs in the
interface of the agent A with a non empty binding state
occurs in Σλ(A); and (v) each binding label i ∈ N occurs
exactly twice if it does at all — there are no dangling bonds.
A mixture is a pattern that is fully specified, i.e. each agent
A documents its full interface Σ(A), a site can only be free
or tagged with a binding label i ∈ N, a site in Σι(A) bears an
internal state in I, and no fictitious agent occurs. A species
is a connected mixture, i.e. for each two agents A0 and A
there is a finite sequence of agents A1, . . . , Ak s.t. there is a
bond between a site of Ak and of A and for i = 0, 1, . . . , k−1,
there is a site of agent Ai and a site of agent Ai+1.

Definition 4. (species occurring in a pattern) Given Kappa
patterns Es and Ep, if Es defines a Kappa species, and Es
is a substring of Ep, we say that a species Es occurs in a
pattern Ep.

Definition 5. (Kappa rule) A Kappa rule r is defined by
two Kappa patterns E` and Er, and a rate k ∈ R≥0, and is
written: r = E` → Er@k.

A rule r is well-defined, if the expression Er is obtained
from E` by finite application of the following operations:
(i) creation (some fictitious agents ∅ are replaced with some
fully defined agents of the form A(σ), moreover σ documents
all the sites occurring in Σ(A) and all site in Σι(A) bears
an internal state in I), (ii) unbinding (some occurrences of
the wild card and binding labels are removed), (iii) deletion
(some agents with only free sites are replaced with fictitious
agent ∅), (iv) modification (some non-empty internal states
are replaced with some non-empty internal states), (v) bind-
ing (some free sites are bound pair-wise by using binding
labels in N).

In our static inspection of rules, we will test species (fully
defined connected mixtures). To this end, we adopt the
terminology of reactant, modifier and product from [32].

Definition 6. (reactant, modifier, product) Given a rule
(El, Er), a Kappa species s is called

a) b)

c)

Figure 2: Example shown in Fig. 1. The mean
protein expression for one hundred sampled traces,
before and after the enzymatic catalysis reduction.
a) Parameters k1 = 0.2156, k2 = 1, k3 = 0.014 and there
are initially 50 transcription factors. The mean and
standard deviation (not shown) are computed for
each time point, for the original (full line) and re-
duced model (dotted line). b) Parameters k2, k3,
and the initial number of transcription factors T are
scaled up by factor N = 10. Same notation as for a)
c) The Bhattacharyya distance between the distri-
butions of the protein level with a model before and
after the reduction. Red plot refers to the param-
eter values shown in a), and the green plot to the
scaled parameter values shown in b).

• a reactant, if it occurs in pattern El and does not occur
in pattern Er ,

• a modifier, if the number of occurrences in pattern El
equals the number of occurrences in pattern Er ,

• a product, if it does not occur in pattern El, and it
occurs in pattern Er.

Definition 7. (Kappa system) A Kappa system R(x0,O,
{r1, . . . , rn}) is given by an initial mixture x0, a set of Kappa
patternsO called observables, and a finite set of rules {r1, . . . , rn}.

3. MODEL APPROXIMATION
In this section, we present the mathematical analysis under-
lying the approximation algorithms presented in Section 4.
Our reductions will be based on three reduction schemes:
enzymatic catalysis reduction, generalized enzymatic catal-
ysis reduction and fast dimerization reduction.

3.1 Enzymatic reduction
Assume the elementary enzymatic transformation from a
substrate S to a product P , through the intermediate com-
plex E : S:

E + S
k1−⇀↽−
k2

E : S
k3→ E + P, (4)



which our algorithm will convert to the well-known Michaelis-
Menten form

S

k3ET K
1+KxS→ P, (5)

where ET = xE(t) +xE:S(t) denotes the total concentration
of the enzyme, and K = k1

k2+k3
.

The above approximation is generally considered to be suf-
ficiently good under different assumptions, such as, for ex-
ample, that the rate of dissociation of the complex to the
substrate is much faster than its dissociation to the product
(i.e. k2 � k3), also known as the equilibrium approxima-
tion. Even if the equilibrium condition is not satisfied, it
can be compensated in a situation where the total number
of substrates significantly outnumbers the enzyme concen-
tration - xS(0) +K � ET , known as the quasi-steady-state
assumption.

Whenever one of the above assumptions holds, the quantity
of the intermediate complex can be assumed to be rapidly
reaching equilibrium, that is, d

dt
xE:T (t) = 0. Then, it is

straightforward to derive the rate of direct conversion from
substrate to product:

d

dt
xP =

k3ETK

1 +KxS
xS ,

which exactly corresponds to the equation for the rule (5).

The informal terminology of being ‘significantly faster’, mo-
tivated the rigorous study of the limitations of the approx-
imations based on separating time scales. While the enzy-
matic (Michaelis-Menten) approximation has been first in-
troduced and subsequently studied in the context of deter-
ministic models (e.g. [35], Ch.6), it was more recently that
the time-scale separation was investigated in the stochastic
context [39], [25], [9], [28], [40], [22]. Notably, the following
result from [14] (also shown as a special case of the multi
scale stochastic analysis from [30]), shows that, under an ap-
propriate scaling of species’ abundance and reaction rates,
the original model and the approximate model converge to
the same process.

Theorem 1. (Darden [14], Kang [30]). Consider the re-
action network (4) (equivalently the rule-based system de-
picted in Fig. 2), and denote by XS(t), XE(t), XE:S(t) and
XP (t) the copy numbers of the respective species due to the
random-time change model (2). Denote by ET = XE:S(t) +

XE(t) and VE(t) =
∫ t
0
N−1XE(s)ds and assume that N =

O(XS). Assume that k1 → γ1, k2/N → γ2, k3/N → γ3,

N → ∞, and XS(0)
N

→ xS(0). Then (XS(t)
N

, VE(t)) con-
verges to (xS(t), vE(t)) and

d

dt
vE(s) =

ET

1 + K̂xE(s)
and

d

dt
xS = −ET γ3K̂xS(t)

1 + K̂xS(t)
,

where K̂ = γ1
γ2+γ3

.

The assumptions listed in the theorem capture the that: (i)
XS and XP are scaled to concentrations, while XE and XE:S

remain in copy numbers; (ii) the stochastic reaction rate k1
is an order of magnitude smaller than the rates k2 and k3

(as a consequence of being related to the bimolecular, and
not unimolecular reaction).

A complete proof is provided in [30]. We here outline the
general idea. Let N > 0 be a natural number, and let
ZS(t) = XS(t)/N , ZE(t) = XE(t), ZS:E(t) = XS:E(t),
ZP (t) = XP (t)/N . Writing out the scaled random time-
change model for the substrate gives:

ZS(t) = ZS(0)−N−1ξ1(N

∫ t

0

γ1ZS(s)ZE(s)ds)

+N−1ξ2(N

∫ t

0

γ2ZS:E(s)ds),

and writing out the scaled random time-change model for
the complex gives:

ZE:S(t) = ZE:S(0) + ξ1(N

∫ t

0

γ1ZS(s)ZE(s)ds)

− ξ2(N

∫ t

0

γ2ZS:E(s)ds)

− ξ3(N

∫ t

0

γ3ZS:E(s)ds).

After dividing the latter with N , and applying the law of
large numbers, we obtain the balance equations analogous
to assuming that the complex is at equilibrium. This equa-
tion implies the expression for d

dt
vE(s). The equation for

d
dt
xS follows from the model of ZS(t): we first use the con-

servation law ZS:E(s) = N−1ET−ZE(t) and then substitute
the obtained value of d

dt
vE(s).

In order to confirm that the reduction is appropriate, our
goal is now to show that the scaled versions of the original
model (4) and the reduced model (5) are equivalent in the
limit when N → ∞. Let ZP (t) := N−1XP (t) be the scaled
random time change for the product in the original model,
and ẐP (t) := N−1X̂P (t) in the reduced model. Notice that,
from the balance equations, d

dt
xP = − d

dt
xS . According to

the reduced system (5), the random time change for the
product is given by

ẐP (t) = ẐP (0) +N−1ξ(

∫ t

0

k3ETK

1 +KNẐS(s)
NẐS(s)ds)

= ẐP (0) +N−1ξ(

∫ t

0

N
γ3ET K̂

1 + K̂ẐS(s)
ẐS(s)ds).

Passing to the limit, we obtain the desired relation d
dt
ẑP (t) =

d
dt
zP (t).

The above Theorem does not provide the means of com-
puting the approximation error, or an algorithm which sug-
gests which difference in time-scales is good enough for an
approximation to perform well. Rather, this result shows
that the enzymatic approximation is justified in the limit
when the assumptions about the reaction rates and species’
abundance are met. In other words, when N → ∞, the



scaled versions of the original and reduced models – e.g.
ZP (t) = N−1XP (t) and ẐP = N−1X̂P – both converge to
at the same, well-behaved process. This provides confidence
that the actual process X̂P is a good approximation of the
process XP .

In our reduction algorithm (Section 4), we will apply the
reduction whenever the pattern (4) is detected. In order to
ensure the validity of the approximation in the context of
other rules, we will additionally check that the enzyme E
(resp. complex E : S) have initially low copy number (zero
resp.), and that they don’t appear in any other rule (unless
it is another enzymatic catalysis scheme).

Example 1. To illustrate the meaning of the Theorem 1,
we apply our reduction method on a small example shown
in Fig. 1. We plot the mean and we compute the standard
deviation of the protein level for the original and for the re-
duced model. Then, we scale up the parameters k2 and k3,
as well as the initial concentration of transcription factor T ,
in order to mimic the effect of choosing a larger N in The-
orem 1. The deviation between the curves is decreased, as
can be seen in Fig. 2. In order to obtain the error of using
the reduced system instead of the original one, we compute
the Bhattacharyya distance for each time point, for the ac-
tual parameter set and for the scaled parameter set. As ex-
pected, the distance is overall smaller in the scaled system.
Especially in the scaled system (green line), we can observe
that initially, the distance is larger, and then it decreases
with time. This is because the original system takes time to
reach the equilibrium state which is, in the reduced system,
assumed immediately.

3.2 Generalised enzymatic reduction
The enzymatic approximation can be generalized to a sit-
uation where many sets of substrates compete for binding
to the same enzyme. Consider a sub-network of n reactions
where the i-th such reaction reads:

E + Si,1 + . . .+ Si,mi

ki−⇀↽−
k−i

E : Si,1 : . . . : Si,mi

k̂i→ E + Pi.

The resulting approximation is

Si,1 + . . .+ Si,mi

k̂iET K1xSi
Z→ Pi,

where xSi =
∏
j∈{1,...,mi} xSi,j , Z = 1+

∑
j∈{1,...,n} xSj and

ET = xE(t) +
∑n
i=1 xE:Si,1:...:Si,mi

(t). The latter expression

follows from d
dt
xE:Si,1:...:Si,mi

(t) = 0 for all i = 0, . . . , n.

The correctness of the generalized enzymatic reduction can
be shown with the same technique as Theorem 1. Each
substrate and product should be scaled to concentrations,
while all intermediate complexes and the enzyme remain in
copy numbers. The relations between the reaction rates are
equivalent.

3.3 Fast dimerization reduction
Consider now the dimerisation reactionM+M

k−⇀↽−
k−

M2. As-

suming that both rates k and k− are fast comparing to other
reactions involving M or M2, it is common to assume that

Input : A Kappa system R = (x0,O, {r1, . . . , rn}).
Output: A Kappa system R′ = (x′0,O, {r′1, . . . , r′m}).

1 R←− ME(R), R←− SRC(R)
2 R←− Fast dimerization reduction(R)
3 R←− ME(R), R←− SRC(R)
4 R←− Generalized enzymatic catalysis reduction (R)
5 R←− ME(R), R←− SRC(R)

Algorithm 1: Approximation algorithm. ‘ME’ is a short-
hand for ‘modifier elimination’ and ‘SRC’ is shorthand for
similar rule composition. The exact reductions are per-
formed before and after each of the two other reductions.

the reaction is equilibrated, that is, kxM (t)2−k−xM2(t) = 0,
where xM (t) and xM2(t) denote the copy number at time t,
of monomers and dimers respectively. Such assumption al-
lows us to eliminate the dimerization reactions, and only
the total amount of molecules M needs to be tracked in the
system. The respective monomer and dimer concentrations
can be expressed as fractions of the total concentration:

xM (t) =
1

4K

(√
8KMT (t) + 1− 1

)
, and

xM2(t) =
MT (t)

2
− 1

2
xM (t),

where K = k
k− and MT (t) = xM (t) + 2xM2(t).

The correctness of the generalized enzymatic and dimeriza-
tion reduction can be shown with the same technique as
Theorem 1. In the context of multiscale stochastic reaction
networks, both reaction rates should be treated as fast.

4. REDUCTION ALGORITHM
The idea of the reduction is to transform a Kappa system
R to a Kappa system R′ with fewer rules and fewer agents,
while still capturing the observables and the relevant dy-
namics. Our algorithm statically analyzes the rule-set, in
search for one of the following mechanistic schemes:

• the modifier elimination and similar rule composition,
that are the patterns amenable to the exact reduction
(providing the equivalent rule-based model with fewer
rules), as well as

• the generalized enzymatic catalysis, enzymatic cataly-
sis and fast dimerization reductions, three interaction
patterns amenable to approximate reduction based on
time-scale separation (Section 3).

Recall that the generic framework for time-scale separation
in biochemical reaction networks is shown in [30]. A special
case of this framework is Theorem 1, which confirms that
using the classical enzymatic approximation in stochastic
setting is adequate. After detecting one of the five interac-
tion patterns, our algorithms, similarly as in [32], perform
additional checks, in order to avoid the situations where the
equilibrium assumptions are violated due to interleavings
with the rest of the reaction network.

The top-level algorithm is shown in Alg. 1. We next describe
each of the five interaction patterns in more detail.



4.1 Similar rule composition
In similar rule composition scheme, rules have the same re-
actants, modifiers and products, but different rates. Our
algorithm combines them into a single rule, by summing
their rate laws. Notice that this reduction is exact, that is,
applying the similar rule composition does not change the
semantics of the rule-based system.

4.2 Modifier elimination
This reduction can be applied when a species only appears
as a modifier throughout a rule-based system. Such a species
will never change its copy number throughout the dynamics,
and therefore, its quantity will be constant. The species be-
ing always a modifier does affect the dynamics of the system,
and all the rule rates where the species was involved need
to be adapted. Concretely – after the species is eliminated,
each rate law will be multiplied by the initial copy number
of this species. Notice that modifier elimination reduction
is exact, that is, applying the modifier elimination does not
change the semantics of the rule-based system.

4.3 Fast dimerization reduction
The algorithm searches for dimerisation rules. Suppose that
a pair of reversible reactions M +M ↔M2 is detected. Be-
fore proceeding to the reduction, we check whether a dimer
is produced elsewhere, or if the monomer is a modifier else-
where. These checks are necessary because they prevent
from deviating from the assumed equilibrium. Finally, if
all checks passed, the dimerization reaction can be elimi-
nated. A new species MT is introduced, and, wherever the
monomer M or dimer M2 were involved, they are replaced
by the species MT , and the rate is adapted accordingly, by
the expressions shown in Section 3.3.

4.4 Generalised enzymatic reduction
The algorithm searches for the scheme described in Sec-
tion 3.2, by searching for candidate enzymes. Each pattern
is tested as to whether it is catalyzing some enzymatic re-
duction. If a pattern s indeed is an enzyme (operator) in
an enzymatic reaction scheme, a set of all patterns c which
compete to bind to s is formed, as well as the set of their
complexes sc. Then, before proceeding with the reduction,
additional tests must be performed: (i) pattern s must be a
species, and it is not an observable, (ii) s must be small in
copy number, that is, its initial copy number is smaller than
a threshold, (iii) s can neither be produced, nor degraded,
(iv) complex sc is not an observable and is never appearing
in another rule of R and has initially zero abundance. Then,
the patterns s and sc can be eliminated from the rule-set and
the reaction rates are adjusted according to the description
in Section 3.2.

Often times, enzymatic catalysis reduction is appropriate to
eliminate the binding of the transcription factor to the op-
erator site. In this context, the operator site takes the role
of the enzyme, and transcription factor(s) the role of the
substrate. Whenever a candidate enzyme is detected, and
the other algorithm checks pass, the rates are appropriately
scaled. The competitive enzymatic reduction is suitable in a
situation when more transcription factors compete for bind-
ing the enzyme, each in a different reaction. In other words,
the algorithm finds k rules where k different substrates com-
pete for the same enzyme.

Example 2. We illustrate the competitive enzymatic trans-
formation on a small subnetwork of the λ-phage model, which
will be introduced in Section 5. The four rules presented be-
low model the binding of the agent RNAP to the operator site
of the agent PRE and subsequent production of protein CI.
Agent PRE binds either only RNAP (at rate k1+ and k1−), or
simultaneously with CII (at rate k2+ and k2−). The pro-
tein can be produced whenever PRE and PRE are bound, but
the rates will be different depending on whether only RNAP is
bound to the operator (rate kb), or, in addition, CII is bound
to the operator (rate ka):

PRE(cii,rnap), RNAP(p1,p2)

↔ PRE(cii,rnap!1), RNAP(p1!1,p2)@k1+, k1−

PRE(cii,rnap), CII(pre), RNAP(p1,p2)

↔ PRE(cii!1,rnap!2), CII(pre!1), RNAP(p1!2,p2)@ka+, ka−

PRE(cii,rnap!1), RNAP(p1!1,p2)

→ PRE(cii,rnap!1), RNAP(p1!1,p2), 10CI(ci,or)@kb

PRE(cii!1,rnap!2), CII(pre!1), RNAP(p1!2,p2)

→ PRE(cii!1,rnap!2), CII(pre!1), RNAP(p1!2,p2), 10CI(ci,or)@ka

After the competitive enzymatic reduction, the operator PRE

is eliminated from each of the two competing enzymatic catal-
ysis patterns. Finally, the production of CI is modelled only
as a function of RNAP and CII, and the rate is appropriately
modified:

RNAP(p1,p2), CII(pre)

→ RNAP(p1,p2), CII(pre), 10CI(pr,ci)@ knew.

5. CASE STUDY: λ-PHAGE
The phage λ is a virus that infects E.coli cells, and replicates
using one of the two strategies: lysis or lysogeny. In the ly-
sis strategy, phage λ uses the machinery of the E.coli cell
to replicate itself and then lyses the cell wall, killing the cell
and allowing the newly formed viruses to escape and infect
other cells, while in the lysogeny scenario, it inserts its DNA
into the host cell’s DNA and replicates through normal cell
division, remaining in a latent state in the host cell (it can
always revert to the lysis strategy). The decision between
lysis and lysogeny is known to be influenced by environmen-
tal parameters, as well as the multiplicity of infection and
variations in the average phage input [1].

The key element controlling the decision process is the OR
operator (shown in Fig. 5), which is composed of three op-
erator sites (OR1, OR2, OR3) to which transcription factors
can bind, in order to activate or repress the two promoters
(PRM and PR) overlapping the operator sites. When RNAP
(RNA polymerase, an enzyme that produces primary tran-
script RNA) binds to PRM , it initiates transcription to the
left, to produce mRNA transcripts from the cI gene; RNAP
bound to the PR promoter, on the other hand, initiates tran-
scription to the right, producing transcripts from the cro
gene. The two promoters form a genetic switch, since tran-



Figure 3: Average trace of 10 simulations of the orig-
inal model (red) and the reduced model (green) after
the reduction, for initially 10 λ phage cells (multi-
plicities of infection – MOI’s). The simulation time
for one simulation trace of the original model is ≈ 40
minutes of CPU time, and of the reduced model is 5
seconds of CPU time. The initial number of proteins
CI, Cro, CII and CIII and N is set to 100.

scripts can typically only be produced in one direction at a
time.

The cI gene codes for the CI protein, also known as the λ
repressor : in its dimer form (two CI monomers react to form
a dimer, CI2), it is attracted the the OR operator sites in the
phage’s DNA, repressing the PR promoter from which Cro
production is initiated and further activating CI production.
Similarly, the cro gene codes for the Cro protein, which also
dimerizes in order to bind to OR operator sites and prevent
production from PRM , or even its own production.

While CI2 and Cro2 can bind to any of the three operator
sites at any time, they have a different affinity to each site.
The CI2 has its strongest affinity to the OR1 operator site,
next to the OR2 site, and finally to the OR3 site (in other
words, CI2 first turns off PR , then activates PRM , and
finally, represses its own production), while Cro2 has the
reverse affinity (it first turns off CI production, then turns
off its own production).

The feedback through the binding of the products as tran-
scription factors coupled with the affinities described makes
the OR operator behave as a genetic bistable switch. In
one state, Cro is produced locking out production of CI.
In this state, the cell follows the lysis pathway since genes
downstream of Cro produce the proteins necessary to con-
struct new viruses and lyse the cell. In the other state, CI is
produced locking out production of Cro. In this state, the
cell follows the lysogeny pathway since proteins necessary to
produce new viruses are not produced. Instead, proteins to
insert the DNA of the phage into the host cell are produced.

What’s more, in the lysogeny state, the cell develops an im-

Figure 4: Comparison of the probability of
lysogeny before and after the reduction of the
model (lysogeny profile is detected if there are 328
molecules of CI before there are 133 molecules of
Cro). The profile was obtained by running 1000 sim-
ulations of the model for one cell cycle (2100 time
units), for MOIs ranging from 1 to 10. Simulation
times are as reported in Fig. 3.

Figure 5: CI monomers are produced from the cI
gene; two monomers can form a dimer, that can
bind to one of the OR operator sites (the Figure is
taken from [36]).

munity to further infection: the cro genes found on the DNA
inserted by further infections of the virus are also shut off by
CI2 molecules that are produced by the first virus to com-
mit to lysogeny. Once a cell commits to lysogeny, it becomes
very stable and does not easily change over to the lysis path-
way. An induction event is necessary to cause the transition
from lysogeny to lysis. For example, lysogens (i.e., cells with
phage DNA integrated within their own DNA) that are ex-
posed to UV light end up following the lysis pathway.

5.1 Results and discussion
We applied our reduction algorithm to a Kappa model of
the phage λ decision circuit that we built using the reaction-
based model presented in [36], [32].

5.1.1 Intermediate tests
Intermediate tests were carried out on the portion of the
circuit that is involved in CI production from the he PRE



promoter and in CII production from the PR promoter. Ini-
tially, this model contained 10 rules, 5 proteins and 4 species;
after applying the reduction algorithm, it was reduced to 4
rules and 3 proteins.

5.1.2 Full model
Simulations were carried out on the complete chemical reac-
tion genetic circuit model which contains 96 rules, 16 pro-
teins and 61 species (the contact map is shown in Fig. 7).
After applying the reduction, the Kappa model is reduced
to 11 rules and 5 proteins.

In Fig. 3, we plot the mean for the CI copy number obtained
from 10 runs of the original and of the reduced model, and
the graphs show agreement.

In Fig. 4, we compared the probability of lysogeny before
and after the reduction of the model (lysogeny profile is de-
tected if there are 328 molecules of CI before there are 133
molecules of Cro). The graphs show overall agreement in
predicting the lysogeny profile. More precisely, for two and
less MOI’s (multiplicities of infection), the probability of
lysogeny is almost negligible; For three MOIs, both graphs
show that lysogeny and lysis are equally probable (the re-
duced model reports slightly larger probability), and for five
or more MOI’s, both graphs show that lysogeny is highly
probable. While one simulation of the original model takes
about 40 mins, one simulation of the abstracted model takes
about 5 seconds. Once again, the results are similar, with a
significant improvement in simulation speed.

The tool is available for download [3].

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a method for automated reduc-
tion of rule-based models. The reduction is based on equi-
librium approximations: certain rules and species are elim-
inated and the rates are approximated accordingly. More
concretely, a number of reaction patterns known to be amenable
to equilibrium approximations are recognised by static in-
spection of the rules. The crucial aspect of the presented
approach is that each approximation step can be retrieved
at any time, and no information about the original, detailed
model is lost. The presented method can be seen as the first
step towards a systematic time-scale separation of stochastic
rule-based models. The guarantees of the presented reduc-
tion method are given for the asymptotic behaviour. Bhat-
tacharyya distance is proposed as a metric to quantify the
reduction error with respect to the observable. We plan to
further investigate how to practically access the approxima-
tion error. To this end, the error can be measured with
respect to a given observable, or, more generally, with re-
spect to a given property specified in, for example, linear
temporal logic (LTL).

We implemented the tool and evaluated it on a case study
of a lambda phage bistable switch. The simulation of one
cell cycle was improved from 40min CPU time to 5sec, and
the profiles of the observables show agreement. We plan
to extend the set of approximation patterns so to obtain
good reductions for complex models of signaling pathways.
More precisely, while our tool is applicable to any rule-based
model, the chosen set of approximation patterns are tailored
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Figure 6: a) The ratio of dimerisation events
vs. total events in lambda phage model. The
number of dimerisation events takes roughly half
of the total events over the whole cell cycle. b)
The ratio of dimerisation events vs. total events in
EGFR/insulin model. The number of dimerisation
events takes only a small fraction of the total events
over the whole cell cycle.

Figure 7: The contact map of the full λ-phage model.
The model consists of 96 rules, 16 proteins and 61
species. The reduced model has 11 rules and 5 pro-
teins.

for GRNs and may not provide significant reductions when
applied to the signaling pathways. To illustrate this, we
applied the reduction to the EGF/insuling crosstalk model,
and we observe that the number of dimerisation events does
not take the significant portion of all events (see Fig. 6), at
least not as radically as it was the case with the lambda
phage example. To this end, we plan to include more pat-
terns for reducing signaling pathways, by, for example, ap-
proximating multiple phosphorylation events.
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