Skip to main content

A Simple Bio-Inspired Model for Synaptogenesis in Artificial Neural Networks

  • Conference paper
  • First Online:
  • 1195 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9413))

Abstract

Neural network morphology in Artificial Neural Networks (ANN) is typically designed depending on specific learning purposes. Biological neural networks, on the contrary, generate their morphology using biochemical markers secreted by each neuron. Specific features such as molecular signalling, electrochemical alphabet and neurite propagation rules are genetically encoded. However, the environment plays also a critical role in network morphology. Neurites are propagated through tissues to reach target neurons, following paths defined by the diffusion of molecular markers. Neurite paths are affected among other phenomena by competence for synaptic resources and volumetric economy.

Along this paper we observe some of the mechanisms of biological morphogenesis and their mathematical models. We analyze neurite navigation in short distances using local random propagation rules. Then, using reaction-difussion patterns, the process of molecular signalling and its influence in network morphology is studied. Finally we combine both strategies to generate morphology in ANN’s.

J. Gomez Perdomo—Universidad Nacional de Colombia. ALIFE research group.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achacoso, T.B., Yamamoto, W.S.: Ay’s Neuroanatomy of C. Elegans for Computation. CRC Press, Boca Raton (1991)

    Google Scholar 

  2. Bauer, R.: Axon Guidance Using Turing Patterns in the Cortex. PhD thesis, Institute of Neuroinformatics (INI) (2008)

    Google Scholar 

  3. Bauer, R., Zubler, F., Hauri, A., Muir, D.R., Douglas, R.J.: Developmental origin of patchy axonal connectivity in the neocortex: a computational model. Cereb. Cortex 24(2), 487–500 (2012)

    Article  Google Scholar 

  4. Braitenberg, V., Schüz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, Heidelberg (1998)

    Book  Google Scholar 

  5. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Comput. Neurosci. 8(3), 183–208 (2000)

    Article  MATH  Google Scholar 

  6. Cartwright, J.H.E.: Labyrinthine turing pattern formation in the cerebral cortex. Theoret. Biol. 217, 97–103 (2002)

    Article  MathSciNet  Google Scholar 

  7. Douglas, J., Russell, T.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garvie, M.R., Maini, P.K., Trenchea, C.: An efficient and robust numerical algorithm for estimating parameters in turing systems. Comput. Phys. 229(19), 7058–7071 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kibernetik 12(1), 30–39 (1972)

    Article  Google Scholar 

  10. Gierer, A.: Directional cues for growing axons forming the retinotectal projection. Development 101, 479–489 (1987)

    Google Scholar 

  11. Graham, B.P., van Ooyen, A.: Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neurosci. 7, S9 (2006)

    Article  Google Scholar 

  12. Grossberg, S.: On the development of feature detectors in the visual cortex with applications to learning and reaction-diffusion systems. Biol. Cybern. 21(3), 145–159 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaiser, M., Hilgetag, C.C., van Ooyen, A.: A simple rule for axon outgrowth and synaptic competition generate realistic connection lengths and filling fractions. Cereb. Cortex 19(12), 3001–3010 (2009)

    Article  Google Scholar 

  14. Kamranian, M., Dehghan, M.: The finite point method for reaction-diffusion systems in developmental biology. CMES Comput. Model. Eng. Sci. 82(1), 1–27 (2011)

    MathSciNet  Google Scholar 

  15. Kim, T., Sewall, J., Sud, A., Lin, M.: Fast simulation of laplacian growth. IEEE Comput. Graph. Appl. 27(2), 68–76 (2007)

    Article  Google Scholar 

  16. Luczak, A.: Spatial embedding of neuronal trees modeled by diffusive growth. Neurosci. Methods 157(1), 132–141 (2006)

    Article  Google Scholar 

  17. Maskery, S.M., Buettner, H.M.: Simulation of growth cone pathfinding. In: IEEE Conference Publications (ed.) First International IEEE EMBS Conference on Neural Engineering, pp. 237–240 (2003)

    Google Scholar 

  18. McAllister, A.K.: Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10(10), 963–973 (2000)

    Article  Google Scholar 

  19. Murray, C.D.: The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A. 12(3), 207–214 (1926)

    Article  Google Scholar 

  20. Podhajsky, R.J., Myers, R.R.: A diffusion-reaction model of nerve regeneration. Neurosci. Methods 60(1–2), 79–88 (1995)

    Article  Google Scholar 

  21. Rust, A.G., Adams, R., Bolouri, H.: Evolutionary neural topiary: growing and sculpting artificial neurons to order (2000)

    Google Scholar 

  22. Tepass, U., Truong, K., Godt, D., Ikura, M., Peifer, M.: Cadherins in embryonic and neural morphogenesis. Nat. Rev. Mol. Cell Biol. 2, 91–100 (2000)

    Article  Google Scholar 

  23. Thompson, D.M., Buettner, H.M.: Simulation and analysis of nerve growth cone-target encounter. In: Twenty-Second Annual Northeast Bioengineering Conference Proceedings, pp. 34–35. IEEE (1996)

    Google Scholar 

  24. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 327, 37–72 (1952)

    Article  Google Scholar 

  25. van Ooyen, A., Graham, B.P., Ramakers, G.J.A.: Competition for tubulin between growing neurites during development. Neurocomputing 38(40), 73–78 (2001)

    Article  Google Scholar 

  26. Zubler, F., Douglas, R.: An instruction language for the explicit programming of axonal growth patterns. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–4 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank ALIFE research group at the Universidad Nacional de Colombia for their support in developing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Espinosa Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Espinosa Garcia, A., Gomez Perdomo, J. (2015). A Simple Bio-Inspired Model for Synaptogenesis in Artificial Neural Networks. In: Sidorov, G., Galicia-Haro, S. (eds) Advances in Artificial Intelligence and Soft Computing. MICAI 2015. Lecture Notes in Computer Science(), vol 9413. Springer, Cham. https://doi.org/10.1007/978-3-319-27060-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27060-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27059-3

  • Online ISBN: 978-3-319-27060-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics