Skip to main content

Feature Selection in Spectroscopy Brain Cancer Data

  • Conference paper
  • First Online:
  • 1409 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9414))

Abstract

In cancer diagnosis, classification of the different tumor types is of great importance. An accurate prediction of different tumor types provides better treatment and toxicity minimization on patients. Predicting cancer types using non-invasive information –e.g. \(^1\)H-MRS data– could avoid patients to suffer collateral problems derived from exploration techniques that require surgery. Two Feature Selection Algorithms specially designed to be use in \(^1\)H-MRS Proton Magnetic Resonance Spectroscopy data of brain tumors are presented. These two algorithms take advantage of two distinctive aspects: first, metabolite levels are quite different between types of tumors and two, \(^{1}\)H-MRS data possess a quasi-temporal series shape. Experimental readings on an international data set show highly competitive models in terms of accuracy, complexity and medical interpretability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Metabolites are resulting products of metabolic processes.

  2. 2.

    parts per million.

  3. 3.

    C and \(\sigma ^2\) are optimized via a grid search.

References

  1. Ala-Korpela, M., et al.: Artificial neural network analysis of 1H nuclear magnetic resonance spectroscopic data from human plasma. Neurocumputing 13–15, 3085–3097 (2009)

    Google Scholar 

  2. Bruhn, H., et al.: Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172, 541–548 (1989)

    Article  Google Scholar 

  3. Castillo, M., Kwock, L., Mukherji, S.: Clinical applications of proton MR spectroscopy. AJNR 17, 1–15 (1996)

    Google Scholar 

  4. Devos, A.: Quantification and classification of MRS data and applications to brain tumour recognition. Ph.D. Thesis, Katholieke Univ. Leuven (2005)

    Google Scholar 

  5. Farooqui, A., Ong, W., Horrocks, L.: Glutamate and Aspartate in Brain. Springer, New York (2008)

    Google Scholar 

  6. Garcia, J., et al.: On the use of long te and short TE SV MR. Spectroscopy to improve the automatic brain tumor diagnosis. Technical report (2007). ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/ida/reports/07-55.pdf

  7. Gonzalez, F., et al.: Feature and model selection with discriminatory visualization for diagnostic classification of brain tumors. Neurocomputing 73, 622–632 (2010)

    Article  Google Scholar 

  8. Govindaraju, V., Young, K., Maudsley, A.: Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 13(3), 129–153 (2000)

    Article  Google Scholar 

  9. Hansen, J., et al.: \(^{1}\)H-MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 246(2), 318–332 (2006)

    Google Scholar 

  10. Hollander, J., Stewart, C., Evanochko, W., Buchthal, S., Harrell, L., Zamrini, E., Brockington, J., Marson, D.: Elevated brain scyllo-inositol concentrations in patients with Alzheimer’s disease. NMR Biomed. 20(8), 706–716 (2007)

    Google Scholar 

  11. Huang, Y., Lisboa, P., El-Deredy, W.: Tumour grading from magnetic resonance spectroscopy: a comparison fo feature extraction with variable selection. Stat. Med. 22, 147–164 (2003)

    Article  Google Scholar 

  12. INTERPRET: International network for pattern recognition of tumours using magnetic resonance project (2002). http://azizu.uab.es/INTERPRET

  13. Ladroue, C.: Pattern Recognition Techniques for the Study of Magnetic Resonance Spectra of Brain Tumours. Ph.D. Thesis, St. George’s Hospital Medical School (2003)

    Google Scholar 

  14. Lisboa, P., et al.: Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre 1h-mrs database of brain tumors. In: ICMLA 2008: Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, pp. 613–618. IEEE Computer Society (2008)

    Google Scholar 

  15. Lisboa, P., et al.: Cluster based visualisation with scatter matrices. Pattern Recogn. Lett. 29(13), 1814–1823 (2008)

    Article  Google Scholar 

  16. Lukas, L., et al.: Brain tumor classification based on long echo proton MRS signals. Artif. Intell. Med. 31, 73–89 (2004)

    Article  Google Scholar 

  17. Luts, J., et al.: A combined MRI and MRSI based multiclass system from brain tumour recognition using LS-SVMs with class probabilities and feature selection. Artif. Intell. Med. 40, 87–102 (2007)

    Article  Google Scholar 

  18. Majos, C., et al.: Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. Am. J. Neuroradiol. 25, 1696–1704 (2004)

    Google Scholar 

  19. Nikulin, A., et al.: Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra. NMR Biomed. 11, 209–216 (1998)

    Article  Google Scholar 

  20. Romero, E., Vellido, A., Sopena, J.M.: Feature selection with single-layer perceptrons for a multicentre \(^\text{1 }\)H-MRS brain tumour database. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 1013–1020. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Sibtain, N.: The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin. Radiol. 62, 109–119 (2007)

    Article  Google Scholar 

  22. Tate, A., et al.: Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed. 19, 411–434 (2006)

    Article  Google Scholar 

  23. Usenius, J., et al.: Automated classification of human brain tumors by neural network analysis using in vivo 1H magnetic resonance spectroscopic metabolite phenotypes. Neuroreport 7(10), 1597–1600 (1996)

    Article  Google Scholar 

  24. Vellido, A., et al.: Outlier exploration and diagnostic classification of a multi-centre \(^1\)H-MRS brain tumour database. Neurocomputing 72, 3085–3097 (2009)

    Article  Google Scholar 

  25. Zamani, A.: Proton MR Spectroscopy. In: Minimal Invasive Neurosurgery, pp. 75–86. Humana Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix F. González-Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

González-Navarro, F.F., Belanche-Muñoz, L.A., Flores-Ríos, B.L., Ibarra-Esquer, J.E. (2015). Feature Selection in Spectroscopy Brain Cancer Data. In: Pichardo Lagunas, O., Herrera Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2015. Lecture Notes in Computer Science(), vol 9414. Springer, Cham. https://doi.org/10.1007/978-3-319-27101-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27101-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27100-2

  • Online ISBN: 978-3-319-27101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics