Skip to main content

Scalable Access Policy for Attribute Based Encryption in Cloud Storage

  • Conference paper
  • First Online:
  • 1854 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9530))

Abstract

Cloud storage provides outsourced storage services in a cost-effective manner. A key challenge in cloud storage is the security and integrity of outsourced data. A security mechanism known as Attribute-Based Encryption (ABE) represents the state-of-the-art in providing fine-grained access control for cloud storage. A critical issue in ABE is the managing of access policy. Policy managing may incur substantial computation and communication overhead in the ABE scheme with unscalable access policy. In this work, we propose a form of access policy named block Linear Secret Sharing Scheme (LSSS) matrix. The scalability of block LSSS matrix provides an efficient policy managing interface for ABE schemes. Thus, the ABE schemes use block LSSS matrix as access policy are light weight in computation and communication, as compared with other schemes during access policy managing. Furthermore, the block LSSS matrix enjoys advantages of efficiency, flexibility and security, bringing a number of improvements in various aspects of ABE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The detailed describing of node matrix is given in Sect. 3.2.

  2. 2.

    The detailed definition of LSSS matrix is given in [16].

References

  1. Blakley, G.R., Kabatianskii, G.A.: Linear algebra approach to secret sharing schemes. In: Chmora, A., Wicker, S.B. (eds.) Information Protection 1993. LNCS, vol. 829. Springer, Heidelberg (1994)

    Google Scholar 

  2. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, (ed.) Advances in Cryptology – CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990)

    Google Scholar 

  3. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 27–35. Springer, Heidelberg (1993)

    Google Scholar 

  4. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990)

    Google Scholar 

  5. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)

    Google Scholar 

  6. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Simonis, J., Ashikhmin, A.: Almost affine codes. Des. Codes Crypt. 14(2), 179–197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chellappa, R.: Intermediaries in Cloud-Computing: A New Computing Paradigm. INFORMS Annual Meeting, Dallas (1997)

    Google Scholar 

  9. Wu, J., et al.: Cloud storage as the infrastructure of cloud computing. In: International Conference on Intelligent Computing and Cognitive Informatics, pp. 380–383. IEEE (2010)

    Google Scholar 

  10. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: a case for cloud storage diversity. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 229–240. ACM (2010)

    Google Scholar 

  11. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Stadler, M.A.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

    Google Scholar 

  13. Nikov, V., Nikova, S.: New monotone span programs from old. IACR Cryptology ePrint Archive 2004, p. 282 (2004)

    Google Scholar 

  14. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, pp. 102–111 (1993)

    Google Scholar 

  15. Goyal, V., et al.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)

    Google Scholar 

  16. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Yang, K., et al.: Enabling efficient access control with dynamic policy updating for big data in the cloud. In: Proceedings of the IEEE Conference on INFOCOM 2014, pp. 2013–2021. IEEE (2014)

    Google Scholar 

  18. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Zhen, L., Cao, Z., Wong, D.S.: Efficient generation of linear secret sharing scheme matrices from threshold access trees. Cryptology ePrint Archive, Report 2010/374. http://eprint.iacr.org/2010/374

  20. Xavier, N., Chandrasekar, V.: Cloud computing data security for personal health record by using attribute based encryption. Bus. Manag. 7(1), 209–214 (2015)

    Google Scholar 

  21. Xhafa, F., et al.: Designing cloud-based electronic health record system with attribute-based encryption. Multimedia Tools Appl. 74(10), 3441–3458 (2015)

    Article  Google Scholar 

  22. Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg (2015)

    Google Scholar 

  23. Khedkar, S.V., Gawande, A.D.: Data partitioning technique to improve cloud data storage security. Int. J. Comput. Sci. Inf. Technol. 5(3), 3347–3350 (2014)

    Google Scholar 

  24. Wei, L., et al.: Security and privacy for storage and computation in cloud computing. Inf. Sci. 258, 371–386 (2014)

    Article  Google Scholar 

  25. Meenakshi, I.K., George, S.: Cloud server storage security using TPA. Int. J. Adv. Res. Comput. Sci. Technol. 2(1), 295–299 (2014)

    Google Scholar 

  26. Shetty, J., Anala, M.R., Shobha, G.: An approach to secure access to cloud storage service. Int. J. Res. 2(1), 364–368 (2015)

    Google Scholar 

  27. Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (No.61373040, No.61173137), The Ph.D. Programs Foundation of Ministry of Education of China (20120141110073), Key Project of Natural Science Foundation of Hubei Province (No. 2010CDA004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanhe Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, J., Huang, C., Wang, J. (2015). Scalable Access Policy for Attribute Based Encryption in Cloud Storage. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9530. Springer, Cham. https://doi.org/10.1007/978-3-319-27137-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27137-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27136-1

  • Online ISBN: 978-3-319-27137-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics