Skip to main content

Monte-Carlo Workspace Calculation of a Serial-Parallel Biped Robot

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

This paper presents the Monte-Carlo calculation of the work-space of a biped redundant robot for climbing 3D structures. The robot has a hybrid serial-parallel architecture since each leg is composed of two parallel mechanisms connected in series. First, the workspace of the parallel mechanisms is characterized. Then, a Monte-Carlo algorithm is applied to compute the reachable workspace of the biped robot solving only the forward kinematics. This algorithm is modified to compute also the constant-orientation workspace. The algorithms have been implemented in a simulator that can be used to study the variation of the workspace when the geometric parameters of the robot are modified. The simulator is useful for designing the robot, as the examples show.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alciatore, D., Ng, C.: Determining manipulator workspace boundaries using the Monte Carlo method and least squares segmentation. ASME Robotics: Kinematics, Dynamics and Controls 72, 141–146 (1994)

    Google Scholar 

  2. Aracil, R., Saltaren, R.J., Reinoso, O.: A climbing parallel robot: a robot to climb along tubular and metallic structures. IEEE Robotics & Automation Magazine 13(1), 16–22 (2006)

    Article  Google Scholar 

  3. Balaguer, C., Giménez, A., Pastor, J.M., Padrón, V.M., Abderrahim, M.: A climbing autonomous robot for inspection applications in 3D complex environments. Robotica 18(3), 287–297 (2000)

    Article  Google Scholar 

  4. Bohigas, O., Manubens, M., Ros, L.: A complete method for workspace boundary determination on general structure manipulators. IEEE Transactions on Robotics 28(5), 993–1006 (2012)

    Article  Google Scholar 

  5. Bonev, I.A., Gosselin, C.M.: Analytical determination of the workspace of symmetrical spherical parallel mechanisms. IEEE Transactions on Robotics 22(5), 1011–1017 (2006)

    Article  Google Scholar 

  6. Cao, Y., Lu, K., Li, X., Zang, Y.: Accurate numerical methods for computing 2D and 3D robot workspace. Int. J. of Advanced Robotic Systems 8(6), 1–13 (2011)

    Article  Google Scholar 

  7. Figliolini, G., Rea, P., Conte, M.: Mechanical design of a novel biped climbing and walking robot. In: Parenti-Castelli, V., Schiehlen, W. (eds.) ROMANSY 18 Robot Design, Dynamics and Control, pp. 199–206. Springer, Vienna (2010)

    Chapter  Google Scholar 

  8. Guan, Y., Jiang, L., Zhu, H., Zhou, X., Cai, C., Wu, W., Li, Z., Zhang, H., Zhang, X.: Climbot: a modular bio-inspired biped climbing robot. In: Proceedings of the 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1473–1478, September 2011

    Google Scholar 

  9. Guan, Y., Kazuhito, Y., Zhang, X.: Numerical methods for reachable space generation of humanoid robots. Int. J. of Robotics Research 27(8), 935–950 (2008)

    Article  Google Scholar 

  10. Kong, X., Gosselin, C.M.: Generation and Forward Displacement Analysis of R\({\underline{\rm P}}\)R-PR-R\({\underline{\rm P}}\)R Analytic Planar Parallel Manipulators. ASME J. Mech. Design 124(2), 294–300 (2002)

    Google Scholar 

  11. Merlet, J.P.: Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries. Int. J. of Robotics Research 18(9), 902–916 (1999)

    Article  Google Scholar 

  12. Shvalb, N., Moshe, B.B., Medina, O.: A real-time motion planning algorithm for a hyper-redundant set of mechanisms. Robotica 31(8), 1327–1335 (2013)

    Article  Google Scholar 

  13. Silva, V.G., Tavakoli, M., Marques, L.: Optimization of a Three Degrees of Freedom DELTA Manipulator for Well-Conditioned Workspace with a Floating Point Genetic Algorithm. Int. J. Natural Computing Research 4(4), 1–14 (2014)

    Article  Google Scholar 

  14. Tavakoli, M., Marques, L., De Almeida, A.T.: 3DCLIMBER: Climbing and manipulation over 3D structures. Mechatronics 21(1), 48–62 (2011)

    Article  Google Scholar 

  15. Tavakoli, M., Zakerzadeh, M.R., Vossoughi, G.R., Bagheri, S.: A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. Industrial Robot: An International Journal 32(2), 171–178 (2005)

    Article  Google Scholar 

  16. Wang, Q., Wang, D., Tan, M.: Characterization of the analytical boundary of the workspace for 3–6 SPS parallel manipulator. In: Proceedings of the 2001 IEEE Int. Conf. on Robotics and Automation, pp. 3755–3759 (2001)

    Google Scholar 

  17. Yoon, Y., Rus, D.: Shady3D: a robot that climbs 3D trusses. In: Proceedings of the 2007 IEEE Int. Conf. on Robotics and Automation, pp. 4071–4076 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Peidró .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Peidró, A., Gil, A., Marín, J.M., Berenguer, Y., Payá, L., Reinoso, O. (2016). Monte-Carlo Workspace Calculation of a Serial-Parallel Biped Robot. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics