Skip to main content

Review of Control Strategies for Lower Limb Prostheses

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

Each year thousands of people lose their lower limbs, mainly due to three causes: wars, accidents and vascular diseases. The development of prostheses is crucial to improve the quality of millions of people’s lives by restoring their mobility. Lower limb prostheses can be divided into three major groups: passive, semi-active or variable damping and powered or intelligent. This contribution provides a literature review of the principal control strategies used in lower limb prostheses, i.e., the controllers used in energetically powered transfemoral and transtibial prostheses. We present a comparison of the presented literature review and the future trends of this important field. It is concluded that the use of bio-inspired concepts and continuous control combined with the other control approaches can be crucial in the improvement of prosthesis controllers, enhancing the quality of amputee’s lives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghasadeghi, N., Zhao, H., Hargrove, L.J., Ames, A.D., Perreault, E.J., Bretl, T.: Learning impedance controller parameters for lower-limb prostheses. In: 2013 IEEE/RSJ international conference on Intelligent robots and systems (IROS), pp. 4268–4274. IEEE (2013)

    Google Scholar 

  2. Alcaide-Aguirre, R.E., Morgenroth, D.C., Ferris, D.P.: Motor control and learning with lower-limb myoelectric control in amputees. J. Rehabil. Res. Dev. 50(5), 687–698 (2013)

    Article  Google Scholar 

  3. Au, S.K., Herr, H., Weber, J., Martinez-Villalpando, E.C.: Powered ankle-foot prosthesis for the improvement of amputee ambulation. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 3020–3026. IEEE (2007)

    Google Scholar 

  4. Bellman, R.D., Holgate, M., Sugar, T.G., et al.: Sparky 3: design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 511–516. IEEE (2008)

    Google Scholar 

  5. Borjian, R., Lim, J., Khamesee, M.B., Melek, W.: The design of an intelligent mechanical active prosthetic knee. In: 34th Annual Conference of IEEE Industrial Electronics, IECON 2008, pp. 3016–3021. IEEE (2008)

    Google Scholar 

  6. Chen, M.Y., Lin, Y., Xiong, H., Torrealba, R.R., Fernández-López, G., Grieco, J.C.: Towards the development of knee prostheses: review of current researches. Kybernetes 37(9/10), 1561–1576 (2008)

    Article  Google Scholar 

  7. Duvinage, M., Castermans, T., Hoellinger, T., Reumaux, J.: Human walk modeled by PCPG to control a lower limb neuroprosthesis by high-level commands. In: Proceedings of the 2nd International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC2011). Citeseer (2011)

    Google Scholar 

  8. Dzeladini, F., Van Den Kieboom, J., Ijspeert, A.: The contribution of a central pattern generator in a reflex-based neuromuscular model. Frontiers in Human Neuroscience 8 (2014)

    Google Scholar 

  9. Eilenberg, M.F., Geyer, H., Herr, H.: Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(2), 164–173 (2010)

    Article  Google Scholar 

  10. El-Sayed, A.M., Hamzaid, N.A., Abu Osman, N.A.: Technology efficacy in active prosthetic knees for transfemoral amputees: A quantitative evaluation. The Scientific World Journal 2014 (2014)

    Google Scholar 

  11. Geng, Y., Xu, X., Chen, L., Yang, P.: Design and analysis of active transfemoral prosthesis. In: Proceedings of the IECON, pp. 1495–1499 (2010)

    Google Scholar 

  12. Geng, Y., Yang, P., Xu, X., Chen, L.: Design and simulation of active transfemoral prosthesis. In: 2012 24th Chinese Control and Decision Conference (CCDC), pp. 3724–3728. IEEE (2012)

    Google Scholar 

  13. Gossard, J.P., Dubuc, R., Kolta, A.: A hierarchical perspective on rhythm generation for locomotor control. Breathe, Walk and Chew; The Neural Challenge: Part II, p. 151 (2011)

    Google Scholar 

  14. Gregg, R.D., Sensinger, J.W.: Biomimetic virtual constraint control of a transfemoral powered prosthetic leg. In: American Control Conference (ACC 2013), pp. 5702–5708. IEEE (2013)

    Google Scholar 

  15. Grimes, D., Flowers, W., Donath, M.: Feasibility of an active control scheme for above knee prostheses. Journal of Biomechanical Engineering 99(4), 215–221 (1977)

    Article  Google Scholar 

  16. Grosu, S., Cherelle, P., Verheul, C., Vanderborght, B., Lefeber, D.: Case study on human walking during wearing a powered prosthetic device: Effectiveness of the system human-robot. Advances in Mechanical Engineering 6, 365265 (2014)

    Article  Google Scholar 

  17. Guo, X., Chen, L., Zhang, Y., Yang, P., Zhang, L.: A study on control mechanism of above knee robotic prosthesis based on cpg model. In: 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 283–287. IEEE (2010)

    Google Scholar 

  18. Hargrove, L.J., Simon, A.M., Young, A.J., Lipschutz, R.D., Finucane, S.B., Smith, D.G., Kuiken, T.A.: Robotic leg control with emg decoding in an amputee with nerve transfers. New England Journal of Medicine 369(13), 1237–1242 (2013)

    Article  Google Scholar 

  19. Herr, H.M., Kornbluh, R.D.: New horizons for orthotic and prosthetic technology: artificial muscle for ambulation. In: Smart structures and materials. pp. 1–9. International Society for Optics and Photonics (2004)

    Google Scholar 

  20. Holgate, M., Sugar, T.G., Böhler, A.W., et al.: A novel control algorithm for wearable robotics using phase plane invariants. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3845–3850. IEEE (2009)

    Google Scholar 

  21. Huang, H., Kuiken, T., Lipschutz, R.D., et al.: A strategy for identifying locomotion modes using surface electromyography. IEEE Transactions on Biomedical Engineering 56(1), 65–73 (2009)

    Article  Google Scholar 

  22. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  23. Kuo, A.D.: The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control Champaign 6(2), 129–145 (2002)

    Google Scholar 

  24. Lambrecht, B.G., Kazerooni, H.: Design of a semi-active knee prosthesis. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 639–645. IEEE (2009)

    Google Scholar 

  25. Lawson, B.E., Varol, H.A., Huff, A., Erdemir, E., Goldfarb, M.: Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(3), 466–473 (2013)

    Article  Google Scholar 

  26. Liu, M., Zhang, F., Datseris, P., Huang, H.H.: Improving finite state impedance control of active-transfemoral prosthesis using dempster-shafer based state transition rules. Journal of Intelligent & Robotic Systems 76(3–4), 461–474 (2014)

    Article  Google Scholar 

  27. Martinez-Villalpando, E.C., Herr, H.: Agonist-antagonist active knee prosthesis: A preliminary study in level-ground walking. J. Rehabil. Res. Dev. 46(3), 361–374 (2009)

    Article  Google Scholar 

  28. Matos, V., Santos, C.P.: Towards goal-directed biped locomotion: Combining cpgs and motion primitives. Robotics and Autonomous Systems 62(12), 1669–1690 (2014)

    Article  Google Scholar 

  29. Nandi, G.C., Ijspeert, A., Nandi, A.: Biologically inspired CPG based above knee active prosthesis. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2368–2373. IEEE (2008)

    Google Scholar 

  30. Parsan, A., Tosunoglu, S.: A novel control algorithm for ankle-foot prosthesis. In: Florida conference on recent advances in robotics, Boca Raton (2012)

    Google Scholar 

  31. Reisman, D.S., Wityk, R., Silver, K., Bastian, A.J.: Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabilitation and neural repair 23(7), 735–744 (2009)

    Article  Google Scholar 

  32. Ronsse, R., Vitiello, N., Lenzi, T., van den Kieboom, J., Carrozza, M.C., Ijspeert, A.J.: Human-robot synchrony: flexible assistance using adaptive oscillators. IEEE Transactions on Biomedical Engineering 58(4), 1001–1012 (2011)

    Article  Google Scholar 

  33. Ronsse, R., Vitiello, N., Lenzi, T., Van Den Kieboom, J., Carrozza, M.C., Ijspeert, A.J.: Adaptive oscillators with human-in-the-loop: Proof of concept for assistance and rehabilitation. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 668–674. IEEE (2010)

    Google Scholar 

  34. Ryu, J.K., Chong, N.Y., You, B.J., Christensen, H.: Adaptive cpg based coordinated control of healthy and robotic lower limb movements. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2009, pp. 122–127. IEEE (2009)

    Google Scholar 

  35. Sup, F., Bohara, A., Goldfarb, M.: Design and control of a powered knee and ankle prosthesis. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4134–4139. IEEE (2007)

    Google Scholar 

  36. Sup, F., Varol, H.A., Mitchell, J., Withrow, T.J., Goldfarb, M.: Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE/ASME Transactions on Mechatronics 14(6), 667–676 (2009)

    Article  Google Scholar 

  37. Torrealba, R.R., Cappelletto, J., Fermín, L., Fernández-López, G., Grieco, J.C.: Cybernetic knee prosthesis: application of an adaptive central pattern generator. Kybernetes 41(1/2), 192–205 (2012)

    Article  Google Scholar 

  38. Torrealba, R.R., Pérez-D’Arpino, C., Cappelletto, J., Fermín-Leon, L., Fernández-López, G., Grieco, J.C.: Through the development of a biomechatronic knee prosthesis for transfemoral amputees: mechanical design and manufacture, human gait characterization, intelligent control strategies and tests. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2934–2939. IEEE (2010)

    Google Scholar 

  39. Tucker, M.R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., del R. Millán, J., Riener, R., Vallery, H., Gassert, R.: Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of Neuroengineering and Rehabilitation 12(1), 1 (2015)

    Article  Google Scholar 

  40. Wang, J., Kannape, O., Herr, H.M., et al.: Proportional emg control of ankle plantar flexion in a powered transtibial prosthesis. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–5. IEEE (2013)

    Google Scholar 

  41. Wu, S.K., Waycaster, G., Shen, X.: Electromyography-based control of active above-knee prostheses. Control Engineering Practice 19(8), 875–882 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferreira, C., Reis, L.P., Santos, C.P. (2016). Review of Control Strategies for Lower Limb Prostheses. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics