Skip to main content

Robot-Aided Interactive Design for Wind Tunnel Experiments

  • Conference paper
  • First Online:
Book cover Robot 2015: Second Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

  • 2686 Accesses

Abstract

The objective of this study is to investigate the effect of architectural geometry and materiality on airflow around buildings. For this purpose it is relevant to look for interactive design and analysis platforms that enable the analysis of architectural form and material variations while promoting the participation of designers in the analysis process. Today wind tunnel experiments are mostly deployed for design post-rationalization purposes, complicating the interaction between designers and the experimental environment, and constraining the number of design tests to be performed. The following research proposes to collapse the modeling and sensing processes within the wind tunnel with the aid of a robotic arm, to enable a real time design feedback informed by airflow analysis. Building geometry and surface studies have been conducted aided by robotic modeling and sensing, in a low speed and turbulence open circuit wind tunnel for a single building array and street canyon configuration. The recorded velocity profile variations reveal that mean flow statistics are sensitive to the texture variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oke, T.R.: The urban energy balance. Progress in Physical Geography 12(4), 471–508 (1988)

    Article  Google Scholar 

  2. Stewart, I.D., Oke, T.R.: Local climate zones for urban temperature studies. Bulletin of the American Meterological Society 93(12), 1879–1900 (2012)

    Article  Google Scholar 

  3. Berkowicz, R.: The European Research Network Trapos - Results and Achievements. Report, Loutraki, Greece (2001)

    Google Scholar 

  4. Rafailidis, S., Schatzmann, M.: Concentration measurements with different roof patterns in street canyons with aspect ratios B/H=1/2 and B/H1. Report, Metereology Institute, University of Hamburg (1995)

    Google Scholar 

  5. Rafailidis, S.: Influence of building areal density and roof shape on the wind characteristics above a town. Boundary-Layer Meteorology 85(2), 255–271 (1997)

    Article  Google Scholar 

  6. Kastner-Klein, P., Plate, E.J.: Wind-tunnel study of concentration fields in street canyons. Atmospheric Environment 33, 3973–3979 (1999)

    Article  Google Scholar 

  7. Kastner-Klein, P., Berkowicz, R., Britter, R.: The influence of street architecture on flow and dispersion in the street canyons. Meteorol. Atmos. Phys. 87, 121–131 (2004)

    Article  Google Scholar 

  8. Huang, Y., Hu, X., Zeng, N.: Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons. Building and Environment 44(12), 2335–2347 (2009)

    Article  Google Scholar 

  9. Theodoridis, G., Moussiopoulos, N.: Influence of building density and roof shape on the wind dispersion characteristics in an urban area: A numerical study. Environmental Monitoring and Assessment 65(1), 451–458 (2000)

    Google Scholar 

  10. Xie, X., Huang, Z., Wang, J., Xie, Z.: The impact of solar radiation and street layout on pollutant dispersion in street canyon. Building and Environment 40(2), 201–212 (2005)

    Article  Google Scholar 

  11. Yassin, M.F.: Impact of height and shape of building roof on air quality in urban street canyons. Atmospheric Environment 45(29), 5220–5229 (2011)

    Article  Google Scholar 

  12. Bruckmann, T., Hiller, M., Schramm, D.: An active suspension system for simulation of ship maneuvers in wind tunnels. Mechanisms and Machine Science 5, 537–544 (2013)

    Google Scholar 

  13. Bayati, I., Belloti, M., Ferrari, D., Fossati, F., Gilberti, H.: Design of a 6-DoF robotic platform for wind tunnel tests of floating wind turbines. Energy Procedia 53, 313–323 (2014)

    Article  Google Scholar 

  14. Kuka Industrial Robots: Robot guides probe in wind tunnel. http://www.kuka-robotics.com/usa/en/solutions/solutions_search/L_R198_Robot_guides_probe_in_wind_tunnel.htm (accessed January 15, 2014)

  15. Thorsheim, P.: Inventing Pollution: Coal, Smoke, and Culture in Britain since 1800. Ohio University Press, Ohio (2006)

    Google Scholar 

  16. Howard, L.: The Climate of London. Joseph Rickerby Printer, London, 2nd edn., available via IAUC (1833). http://www.urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf (accessed July 15, 2015)

  17. Eiffel, G.: Nouvelles recherches sur la résistance de l’air et l’aviation, faites au Laboratoire d’Auteuil. Librarie Aeronautique, E. Chiron, Paris (1919)

    Google Scholar 

  18. Olgyay, V., Sorenson, A.: Thermoheliodon. Laboratory machine for testing thermal behavior of buildings through model structures. Report, Princeton University, Princeton (1956)

    Google Scholar 

  19. Barber, D.A.:Climate and Region, The Post-War American Architecture of Victor and Aladar Olgyay. A Journal of American Architecture and Urbanism, 68–75 (2014)

    Google Scholar 

  20. NASA.: Open Return Wind tunnel. https://www.grc.nasa.gov/www/K-12/airplane/tunoret.html (accessed September 15, 2015)

  21. Højstrup, J.: A statistical data screening procedure. Meas. Sci. Technol. 4, 153–157 (1993)

    Article  Google Scholar 

  22. Vickers, D., Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology 14, 512–526 (1997)

    Article  Google Scholar 

  23. Rotach, M.W., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier, A., Voogt, J.A.: BUBBLE – an Urban Boundary Layer Meteorology Project. Theoretical and Applied Climatology 81(3), 231–261 (2005)

    Article  Google Scholar 

  24. Maurer, B., Ramm E.: Draw the language of the engineer, in karl culmann und die graphische statik, vol. 205. Ernst and Sohn, Berlin (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maider Llaguno Munitxa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Munitxa, M.L. (2016). Robot-Aided Interactive Design for Wind Tunnel Experiments. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics