Skip to main content

Force-Sensorless Friction and Gravity Compensation for Robots

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

In this paper we present two controllers for robots that combine terms for the compensation of gravity forces, and the forces of friction of motors and gearboxes. The Low-Friction Zero-Gravity controller allows a guidance of the robot without effort, allowing small friction forces to reduce the free robot motion. It can serve to aid users providing kinesthetic demonstrations while programming by demonstration. In the present, kinesthetic demonstrations are usually aided by pure gravity compensators, and users must deal with friction. A Zero-Friction Zero-Gravity controller results in free movements, as if the robot were moving without friction or gravity influence. Ideally, only inertia drives the movements when zeroing the forces of friction and gravity. Coriolis and centrifugal forces are depreciated. The developed controllers have been tuned and tested for 1 DoF of a full-sized humanoid robot arm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calinon, S., D’halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: Learning and reproduction of gestures by imitation. IEEE Robotics & Automation Magazine 17(2), 44–54 (2010)

    Article  Google Scholar 

  2. Billard, A.G., Calinon, S., Guenter, F.: Discriminative and adaptive imitation in uni-manual and bi-manual tasks. Robotics and Autonomous Systems 54(5), 370–384 (2006)

    Article  Google Scholar 

  3. Akgun, B., Cakmak, M., Yoo, J.W., Thomaz, A.L.: Trajectories and keyframes for kinesthetic teaching: a human-robot interaction perspective. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 391–398. ACM (2012)

    Google Scholar 

  4. Guizzo, E., Ackerman, E.: The rise of the robot worker. IEEE Spectrum 49(10), 34–41 (2012)

    Article  Google Scholar 

  5. Olsson, H., Åström, K.J., de Wit, C.C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. European Journal of Control 4(3), 176–195 (1998)

    Article  MATH  Google Scholar 

  6. Bona, B., Indri, M.: Friction compensation in robotics: an overview. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC 2005, pp. 4360–4367. IEEE (2005)

    Google Scholar 

  7. Canudas, C., Astrom, K., Braun, K.: Adaptive friction compensation in dc-motor drives. IEEE Journal of Robotics and Automation 3(6), 681–685 (1987)

    Article  Google Scholar 

  8. Kostic, D., de Jager, B., Steinbuch, M., Hensen, R.: Modeling and identification for high-performance robot control: an rrr-robotic arm case study. IEEE Transactions on Control Systems Technology 12(6), 904–919 (2004)

    Article  Google Scholar 

  9. Papadopoulos, E.G., Chasparis, G.C.: Analysis and model-based control of servomechanisms with friction. Journal of Dynamic Systems, Measurement, and Control 126(4), 911–915 (2004)

    Article  Google Scholar 

  10. Kermani, M.R., Wong, M., Patel, R.V., Moallem, M., Ostojic, M.: Friction compensation in low and high-reversal-velocity manipulators. In: Proceedings on IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 5, pp. 4320–4325. IEEE (2004)

    Google Scholar 

  11. Na, J., Chen, Q., Ren, X., Guo, Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Transactions on Industrial Electronics 61(1), 486–494 (2014)

    Article  Google Scholar 

  12. Gomes, S.C.P., Santos da Rosa, V.: A new approach to compensate friction in robotic actuators. In: Proceedings IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 622–627. IEEE (2003)

    Google Scholar 

  13. Traversaro, S., Del Prete, A., Muradore, R., Natale, L., Nori, F.: Inertial parameter identification including friction and motor dynamics. In: IEEE-RAS International Conference on Humanoid Robots (Humanoid 2013), Atlanta, USA (2013)

    Google Scholar 

  14. Luo, R.C., Yi, C.Y., Perng, Y.W.: Gravity compensation and compliance based force control for auxiliarily easiness in manipulating robot arm. In: 2011 8th Asian Control Conference (ASCC), pp. 1193–1198. IEEE (2011)

    Google Scholar 

  15. An, C.H., Atkeson, C.G., Hollerbach, J.M.: Model-based control of a robot manipulator, vol. 214. MIT press Cambridge, MA (1988)

    Google Scholar 

  16. Sciavicco, L., Villani, L.: Robotics: modelling, planning and control. Springer (2009)

    Google Scholar 

  17. De Luca, A., Panzieri, S.: Learning gravity compensation in robots: Rigid arms, elastic joints, flexible links. International Journal of Adaptive Control and Signal Processing 7(5), 417–433 (1993)

    Article  MATH  Google Scholar 

  18. Virgala, I., Kelemen, M.: Experimental friction identification of a dc motor. International Journal of Mechanics and Applications 3(1), 26–30 (2013)

    Google Scholar 

  19. Martínez, S., Monje, C.A., Jardón, A., Pierro, P., Balaguer, C., Muñoz, D.: Teo: Full-size humanoid robot design powered by a fuel cell system. Cybernetics and Systems 43(3), 163–180 (2012)

    Article  Google Scholar 

  20. Mallon, N., van de Wouw, N., Putra, D., Nijmeijer, H.: Friction compensation in a controlled one-link robot using a reduced-order observer. IEEE Transactions on Control Systems Technology 14(2), 374–383 (2006)

    Article  Google Scholar 

  21. Morante, S., Victores, J.G., Martinez, S., Balaguer, C.: Sensorless friction and gravity compensation. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 265–265. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Morante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Morante, S., Victores, J.G., Martínez, S., Balaguer, C. (2016). Force-Sensorless Friction and Gravity Compensation for Robots. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics